SUMS PROBLEM COMPETITION, 1998

The organizers of the SUMS Problem Competition would like to acknowledge the many contributions made by David Jackson to the competition over the last 10 years. He was a prize winner in each of the 1989, 1990 and 1991 competitions, and supplied many problems since then, including three in this year's competition. He died in August this year at the age of 27 .

SOLUTIONS

1. Consider the general case immediately. Suppose that we can form a palindrome using $m_{i} a_{i}$'s for $i=1, \ldots, r$. The total number of letters in the palindrome is $m_{1}+\cdots+m_{r}$.

Case 1: $m_{1}+\cdots+m_{r}$ is even, $2 n$ say. Let the number of a_{i} 's in the first half of the palindrome be k_{i}. Then the number of a_{i} 's in the second half of the palindrome must also be k_{i}. Hence $m_{i}=2 k_{i}$ for each i. Thus each m_{i} must be even.

Case 2: $m_{1}+\cdots+m_{r}$ is odd, $2 n+1$ say. Let the $n+1$-st letter of the palindrome be a_{j}. For each i, let the number of a_{i} 's in the first n letters of the palindrome be k_{i}. Then the number of a_{i} 's in the last n letters of the palindrome must also be k_{i}. Hence $m_{i}=2 k_{i}$ for each $i \neq j$, and $m_{j}=2 k_{j}+1$. Thus exactly one of the m_{i} 's is odd.

Thus a palindrome can only exist when at most one of the m_{i} 's is odd.
To count the number of palindromes, we again consider two cases separately.
Case 1: each m_{i} is even, $m_{i}=2 k_{i}$, say. Then to form a palindrome, we must first form a word of length $n=k_{1}+\cdots+k_{r}$ consisting of $k_{i} a_{i}$'s for each i. The second half of the palindrome must be this word repeated in reverse order. So the palindrome is determined by the first half, and the number of possiblities is the multinomial coefficient

$$
\binom{k_{1}+\cdots+k_{r}}{k_{1}, \ldots, k_{r}}=\frac{\left(k_{1}+\cdots+k_{r}\right)!}{k_{1}!k_{2}!\cdots k_{r}!}=\frac{\frac{m_{1}+\cdots+m_{r}!}{2}}{\frac{m_{1}}{2}!\frac{m_{2}}{2}!\cdots \frac{m_{r}}{2}!} .
$$

Case 2: m_{j} is odd, $m_{j}=2 k_{j}+1$, say, and the other m_{i} 's are even, $m_{i}=2 k_{i}$, say. Then to form a palindrome, we must first form a word of length $n=k_{1}+\cdots+k_{r}$ consisting of $k_{i} a_{i}$'s for each i. Then the $n+1$-st letter of the palindrome must be a_{j}. The last n letters of the palindrome must be the same as the first n letters, repeated in reverse order. So the palindrome is determined by the first n letters, and the number of possibilities is

$$
\binom{k_{1}+\cdots+k_{r}}{k_{1}, \ldots, k_{r}}=\frac{\left(k_{1}+\cdots+k_{r}\right)!}{k_{1}!k_{2}!\cdots k_{r}!}=\frac{\frac{m_{1}+\cdots+m_{r}-1}{2}!}{\frac{m_{1}}{2}!\cdots \frac{m_{j}-1}{2}!\cdots \frac{m_{r}}{2}!} .
$$

2. Let $f(x)=x^{4}+c_{3} x^{3}+c_{2} x^{2}+c_{1} x+c_{0}$. Then if the curve $y=f(x)$ meets the line $y=\alpha x+\beta$ in 4 distinct points, then $f(x)-\alpha x-\beta=0$ for 4 distinct points, and so $f^{\prime}(x)-\alpha=0$ for 3 distinct points, by Rolles's theorem. Hence $f^{\prime \prime}(x)=0$ for 2 distinct points, again by Rolles's theorem. But $f^{\prime \prime}(x)=12 x^{2}+6 c_{3} x+2 c_{2}$, and so $\left(6 c_{3}\right)^{2}>4 \cdot 12 \cdot 2 c_{2}$. That is, $c_{3}^{2}>8 c_{2} / 3$. Conversely, if $c_{3}^{2}>8 c_{2} / 3$, let $\xi_{1}<\xi_{2}$ be the two roots of $f^{\prime \prime}(x)=0$.

Then $f^{\prime \prime}(x)>0$ for $x<\xi_{1}$ and for $x>\xi_{2}$, and $f^{\prime \prime}(x)<0$ for $\xi_{1}<x<\xi_{2}$. So $f^{\prime}(x)$ is increasing on $\left(-\infty, \xi_{1}\right]$ decreasing on $\left[\xi_{1}, \xi_{2}\right]$, and increasing on $\left[\xi_{2}, \infty\right)$. So ξ_{1} is a local maximum for $f^{\prime}(x)$ and ξ_{2} is a local minimum for $f^{\prime}(x)$, and $f^{\prime}\left(\xi_{2}\right)<f^{\prime}\left(\xi_{1}\right)$. Choose any $\alpha \in\left(f^{\prime}\left(\xi_{2}\right), f^{\prime}\left(\xi_{1}\right)\right)$. Then $f^{\prime}(x)-\alpha<0$ for large negative $x, f^{\prime}(x)-\alpha>0$ for x near ξ_{1}, $f^{\prime}(x)-\alpha<0$ for x near ξ_{2}, and $f^{\prime}(x)-\alpha>0$ for large positive x. Hence $f^{\prime}(x)-\alpha=0$ holds for three distinct x 's, say for $x=t_{1}, t_{2}, t_{3}$, where $t_{1}<t_{2}<t_{3}$. Then $f(x)-\alpha x$ is decreasing on $\left(-\infty, t_{1}\right]$, increasing on $\left[t_{1}, t_{2}\right]$, decreasing on $\left[t_{2}, t_{3}\right]$, and increasing on $\left[t_{3}, \infty\right)$. Thus t_{2} is a local maximum for $f(x)-\alpha x$, and $f\left(t_{2}\right)-\alpha t_{2}>f\left(t_{1}\right)-\alpha t_{1}$ and $f\left(t_{2}\right)-\alpha t_{2}>f\left(t_{3}\right)-\alpha t_{3}$. Choose β less than $f\left(t_{2}\right)-\alpha t_{2}$, but greater than both $f\left(t_{1}\right)-\alpha t_{1}$ and $f\left(t_{3}\right)-\alpha t_{3}$. Then $f(x)-\alpha x-\beta$ is positive for large negative x, negative for x near t_{1}, positive for x near t_{2}, negative for x near t_{3}, and positive again for large positive x. Hence $f(x)-\alpha x-\beta=0$ for $4 x$'s, say $x=u_{1}, u_{2}, u_{3}, u_{4}$, where $u_{1}<t_{1}<u_{2}<t_{2}<u_{3}<t_{3}<u_{4}$.
3. The smallest number of charts needed to cover the torus, T, is 3 . It is easy to exhibit three charts which cover T. Imagine T as the image of the following rectangle, in which the opposite sides have been glued together along the sides indicated by the parallel arrows. The three charts are indicated by the numbers 1,2 and 3 . For example, chart 1 is the image of the quarter discs in the four corners of the rectangle.

We now show that it is not possible to cover T with less than three charts. Let $\mathbb{D}=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2}<1\right\}$ be the open disc of radius 1 in the plane, centred on the origin. A chart is the image of a continuous one to one map $\varphi: \mathbb{D} \rightarrow T$ such that $\varphi(\mathbb{D})$ is open in T and such that $\varphi: \mathbb{D} \rightarrow \varphi(\mathbb{D})$ is a homeomorphism.

It is certainly not possible to cover T with a single chart. For then we would have a homeomorphism φ of \mathbb{D} onto T. This is impossible because T is compact and \mathbb{D} is not.

To show that it is not possible to cover the torus with two charts, A and B, say, first suppose that A is small, as in the following diagram. Choose any loop C going around the torus and not meeting A :

Then because $C \subset T=A \cup B$ and $C \cap A=\emptyset$, we have $C \subset B$. But any loop in a disc, and hence in a chart, must be contractible to a single point. The given loop is not contractible.

When A^{\prime} and B^{\prime} are two charts covering T, neither of which is small, we shrink one of them, say A^{\prime}. What we precisely need here is the following theorem (see Proposition A2.2.6 on page 100 of "A first course in geometric topology and differential geometry" by Ethan D. Bloch): Let A and A^{\prime} be two charts in T. Then there is a homeomorphism $H: T \rightarrow T$ such that $H\left(A^{\prime}\right)=A$. (This is valid if T is replaced by any path connected surface).

When we apply this result, we see that $T=H(T)=H\left(A^{\prime} \cup B^{\prime}\right)=H\left(A^{\prime}\right) \cup H\left(B^{\prime}\right)=$ $A \cup B$, where $B=H\left(B^{\prime}\right)$. Both A and B are charts, and A is small. Note that in the notation of the cited book, a chart is the the homeomorphic image of a closed disc. But if T is written as the union of two charts in our sense, then a simple compactness argument (just shrink our discs a little) shows that T is also expressible as the union of two charts in the sense of Bloch.
4. The proof goes by induction on the minimum number of marbles in the three boxes. Let $a \leq b \leq c$ be the numbers of marbles in the boxes. Assume that if the numbers of marbles in the boxes are $a^{\prime} \leq b^{\prime} \leq c^{\prime}$, where $a^{\prime}<a$, then the process can be chosen to lead to an empty box. Label the boxes containing a, b and c marbles B_{1}, B_{2} and B_{3}, respectively.

Divide a into $b: b=a q+r$, where $0 \leq r<a$ and $q \geq 1$. Write q in the binary system:

$$
q=m_{0}+2 m_{1}+\cdots+2^{k} m_{k}
$$

where each m_{i} is 0 or 1 , and $m_{k}=1$. Place in the first box successively $a, 2 a, \ldots, 2^{k} a$ marbles, such that for $i=0, \ldots, k$, if $m_{i}=1$, the $2^{i} a$ marbles are taken from B_{2} and if $m_{i}=0$, the $2^{i} a$ marbles are taken from B_{3}. In this fashion, we have taken at most $\left(1+2+\cdots+2^{k-1}\right) a=\left(2^{k}-1\right) a<q a \leq b \leq c$ marbles from B_{3}. We have taken exactly $q a$ marbles from B_{2}, leaving $r<a$ there. By the induction hypothesis, the process can be continued until one of the boxes is empty.
5. Let u_{1}, u_{2}, \ldots be a sequence of positive terms such that $u_{n} \rightarrow 0$ as $n \rightarrow \infty$, but such that $\sum_{k=1}^{\infty} u_{k}^{3}=\infty$. For example, take $u_{k}=1 / k^{1 / 3}$. For simplicity, we assume also that $u_{k} \leq \pi$ for all k. The series

$$
a_{1}+a_{2}+a_{3}+\cdots=\frac{u_{1}}{2}+\frac{u_{1}}{2}-u_{1}+\frac{u_{2}}{2}+\frac{u_{2}}{2}-u_{2}+\frac{u_{3}}{2}+\frac{u_{3}}{2}-u_{3}+\cdots
$$

converges to 0 , because for each n its $3 n$-th partial sum $s_{3 n}$ equals 0 , while $s_{3 n+1}=u_{n+1} / 2$ and $s_{3 n+2}=u_{n+1}$. The $3 n$-th partial sum $S_{3 n}$ of the series $\sin \left(a_{1}\right)+\sin \left(a_{2}\right)+\cdots$ is the sum of the n terms

$$
2 \sin \left(u_{k} / 2\right)-\sin \left(u_{k}\right)=2 \sin \left(u_{k} / 2\right)\left(1-\cos \left(u_{k} / 2\right)\right), \quad k=1, \ldots, n
$$

Now $\sin (x) / x \rightarrow 1$ and $(1-\cos (x)) / x^{2} \rightarrow 1 / 2$ as $x \rightarrow 0$ by l'Hôpital's rule. So the function $f(x)$, defined on $[0, \pi / 2]$ by $f(0)=1$ and $f(x)=2 \sin (x)(1-\cos (x)) / x^{3}$ for $0<x \leq \pi / 2$, is
continuous and positive throughout $[0, \pi / 2]$. So its minimum value c on $[0, \pi / 2]$ is positive. So $2 \sin (x)(1-\cos (x)) / x^{3} \geq c$ for all $x \in(0, \pi / 2]$. Since we assumed that $0<u_{k} \leq \pi$ for all k,

$$
2 \sin \left(u_{k} / 2\right)\left(1-\cos \left(u_{k} / 2\right)\right) \geq \frac{c}{8} u_{k}^{3} .
$$

Hence

$$
S_{3 n} \geq \frac{c}{8} \sum_{k=1}^{n} u_{k}^{3}
$$

which tends to ∞ as $n \rightarrow \infty$ by hypothesis. Hence the series $\sum_{k=1}^{\infty} \sin \left(a_{k}\right)$ diverges.
It is not possible to give a convergent series $\sum_{k=1}^{\infty} a_{k}$ with $\left|a_{1}\right| \geq\left|a_{2}\right| \geq \cdots$ such that $\sum_{k=1}^{\infty} \sin \left(a_{k}\right)$ is divergent. To see this, we set $b_{k}=\sin \left(a_{k}\right) / a_{k}$. Then $b_{k} \rightarrow 1$ as $k \rightarrow \infty$ because $a_{k} \rightarrow 0$. Also, $b_{k}=\left|b_{k}\right|=\sin \left(\left|a_{k}\right|\right) /\left|a_{k}\right|$ increases with k (once k is so large that $\left|a_{k}\right| \leq \pi / 2$), because $\sin (x) / x$ is a decreasing function on $(0, \pi / 2]$ (since $\tan (x)>x$ for $0<x<\pi / 2)$.

Since $\sum_{k=1}^{\infty} a_{k}$ converges and b_{1}, b_{2}, \ldots is a monotone sequence converging to a limit, the series $\sum_{k=1}^{\infty=1} a_{k} b_{k}$ converges by Abel's Test (see, for example, Bartle and Sherbert "Introduction to Real Analysis"). That is, $\sum_{k=1}^{\infty} \sin \left(a_{k}\right)$ converges.
6. For $n=1,2, \ldots$, let

$$
f_{n}(t)=\left(\frac{e^{t}+e^{2 t}+e^{-3 t}}{3}\right)^{n^{2}} e^{-t n}
$$

It is easy to see that $f_{n}(t) \rightarrow \infty$ as $t \rightarrow \pm \infty$. For example, $f_{n}(t) \geq\left(e^{2 t} / 3\right)^{n^{2}} e^{-t n}=$ $e^{\operatorname{tn}(2 n-1)} / 3^{n^{2}} \rightarrow \infty$ as $t \rightarrow+\infty$. So $f_{n}(t)$ has a minimum value at some point of \mathbb{R}. At this point, $f_{n}^{\prime}(t)$ must equal 0 . A routine calculation shows that $f_{n}^{\prime}(t)=0$ if and only if

$$
\begin{equation*}
e^{t}+e^{2 t}+e^{-3 t}=n\left(e^{t}+2 e^{2 t}-3 e^{-3 t}\right) \tag{1}
\end{equation*}
$$

Now

$$
e^{t}+2 e^{2 t}-3 e^{-3 t}=e^{-3 t}\left(e^{t}-1\right)\left(2 e^{4 t}+3 e^{3 t}+3 e^{2 t}+3 e^{t}+3\right)
$$

is negative if $t<0$, and so (1) has no solutions for $t<0$, and clearly, $t=0$ is not a solution. For $t>0$,

$$
\frac{d}{d t}\left(\frac{e^{t}+e^{2 t}+e^{-3 t}}{e^{t}+2 e^{2 t}-3 e^{-3 t}}\right)=-\frac{e^{3 t}+16 e^{-2 t}+25 e^{-t}}{\left(e^{t}+2 e^{2 t}-3 e^{-3 t}\right)^{2}}<0
$$

and so $\left(e^{t}+e^{2 t}+e^{-3 t}\right) /\left(e^{t}+2 e^{2 t}-3 e^{-3 t}\right)$ is strictly decreasing on $(0, \infty)$. As this expression clearly tends to ∞ as $t \rightarrow 0$ from the right, we see that for each n, (1) has a unique solution t_{n}, which is positive. Clearly $t_{n} \rightarrow 0$ as $n \rightarrow \infty$, and since

$$
t \frac{e^{t}+e^{2 t}+e^{-3 t}}{e^{t}+2 e^{2 t}-3 e^{-3 t}} \rightarrow \frac{3}{14} \quad \text { as } t \rightarrow 0+
$$

by l'Hôpital's rule, we see that $t_{n} n \rightarrow 3 / 14$ as $n \rightarrow \infty$.

By Taylor's theorem, $e^{t}=1+t+\frac{t^{2}}{2}(1+\epsilon(t))$, where $\epsilon(t) \rightarrow 0$ as $t \rightarrow 0$. Hence

$$
\frac{e^{t}+e^{2 t}+e^{-3 t}}{3}=1+\frac{7}{3} t^{2}(1+\delta(t)),
$$

where $\delta(t)=(1 / 14)(\epsilon(t)+4 \epsilon(2 t)+9 \epsilon(-3 t)) \rightarrow 0$ as $t \rightarrow 0$. Hence

$$
\min _{t} f_{n}(t)=f_{n}\left(t_{n}\right)=\left(1+\frac{7}{3} t_{n}^{2}\left(1+\delta\left(t_{n}\right)\right)\right)^{n^{2}} e^{-t_{n} n}
$$

which equals

$$
\left(1+\frac{3}{28} \frac{1}{n^{2}}\left(1+\epsilon_{n}\right)\right)^{n^{2}} e^{-3 / 14+\epsilon_{n}^{\prime}}
$$

where $\epsilon_{n}, \epsilon_{n}^{\prime} \rightarrow 0$ as $n \rightarrow \infty$. Now $(1+x / n)^{n} \rightarrow e^{x}$ as $n \rightarrow \infty$, and it is easy to see from this that if $x_{n} \rightarrow x$, then $\left(1+x_{n} / n\right)^{n} \rightarrow e^{x}$ as $n \rightarrow \infty$. Applying this to $x_{n}=(3 / 28)\left(1+\epsilon_{n}\right)$, we see that

$$
\lim _{n \rightarrow \infty} \min _{t} f_{n}(t)=e^{3 / 28} e^{-3 / 14}=e^{-3 / 28}
$$

7. We work in the field \mathbb{F}_{p} consisting of the set $\{0,1, \ldots, p-1\}$, where addition and multiplication are taken modulo p. When $p=2$, then 0 is the only number in \mathbb{F}_{p} expressible in the form $x^{3}-3 x$, and $1=(2 p-1) / 3$ in this case. If $p=3$, then all of 0,1 and 2 are so expressible. So assume below that $p \geq 5$. Suppose that $\alpha \in \mathbb{F}_{p}$. Then

$$
\begin{equation*}
X^{3}-3 X-\left(\alpha^{3}-3 \alpha\right)=(X-\alpha)\left(X^{2}+\alpha X+\alpha^{2}-3\right) . \tag{1}
\end{equation*}
$$

If $3\left(4-\alpha^{2}\right)$ has a square root σ in \mathbb{F}_{p}, then by the quadratic formula the quadratic factor on the right in (1) has roots $X=(-\alpha \pm \sigma) / 2$. These are distinct iff $\alpha \neq \pm 2$, and are distinct from α iff $\alpha \neq \pm 1$. When $\alpha= \pm 1$ or ± 2, we can give explicit factorizations of the cubic polynomials in (1):

$$
X^{3}-3 X-2=(X-2)(X+1)^{2} \quad \text { and } \quad X^{3}-3 X+2=(X+2)(X-1)^{2}
$$

When $\alpha \neq \pm 1, \pm 2$ and when $3\left(4-\alpha^{2}\right)$ has a square root in \mathbb{F}_{p}, then the cubic polynomial in (1) is the product of three distinct linear factors:

$$
X^{3}-3 X-\left(\alpha^{3}-3 \alpha\right)=(X-\alpha)(X-\beta)(X-\gamma), \text { say. }
$$

The elements $\alpha^{3}-3 \alpha, \beta^{3}-3 \beta$ and $\gamma^{3}-3 \gamma$ are all the same, and α, β and γ are all different from ± 1 and ± 2, and all of $3\left(4-\alpha^{2}\right), 3\left(4-\beta^{2}\right)$ and $3\left(4-\gamma^{2}\right)$ have non-zero square roots in \mathbb{F}_{p}.

If $\alpha^{3}-3 \alpha$ does not have a square root in \mathbb{F}_{p}, then the quadratic factor in (1) has no roots, and so $X^{3}-X-\left(\alpha^{3}-3 \alpha\right)=0$ has no solutions in \mathbb{F}_{p} other than α.

So we can divide the set \mathbb{F}_{p} into 3 disjoint subsets: the set S_{3} of $\alpha \in \mathbb{F}_{p} \backslash\{ \pm 1, \pm 2\}$ such that $3\left(4-\alpha^{2}\right)$ has a square root in \mathbb{F}_{p}, the set $S_{2}=\{ \pm 1, \pm 2\}$, and the set S_{1} of $\alpha \in \mathbb{F}_{p}$ such that $3\left(4-\alpha^{2}\right)$ has no square root in \mathbb{F}_{p}. The map $f: \mathbb{F}_{p} \rightarrow \mathbb{F}_{p}$ defined by
$f(\alpha)=\alpha^{3}-3 \alpha$ is, because of the above discussion, one to one on S_{1}, two to one on S_{2} and three to one on S_{3}. The set S of elements of \mathbb{F}_{p} which are expressible in the form $\alpha^{3}-3 \alpha$ is the image of f, and has order $|S|=\left|S_{1}\right|+\left|S_{2}\right| / 2+\left|S_{3}\right| / 3$, which equals $2+\left|S_{1}\right|+\left|S_{3}\right| / 3$ because $p \geq 5$.

We next show that if $p \equiv 1 \bmod 3$ then $\left|S_{1}\right|=(p-1) / 2$ and $\left|S_{3}\right|=(p-7) / 2$, while if $p \equiv-1 \bmod 3$ then $\left|S_{1}\right|=(p-3) / 2$ and $\left|S_{3}\right|=(p-5) / 2$. The result will follow.

Recall that if p is an odd prime and if n is an integer not divisible by p, then we write $\left(\frac{n}{p}\right)=1$ if n modulo p has a square root in \mathbb{F}_{p} and $\left(\frac{n}{p}\right)=-1$ otherwise. The following well-known facts can be found in Chapter 3 of Niven and Zuckerman, "The Theory of Numbers", for example:
(i). $\left(\frac{m n}{p}\right)=\left(\frac{m}{p}\right)\left(\frac{n}{p}\right)$.
(ii). -1 has a square root in \mathbb{F}_{p} if and only if $p \equiv 1 \bmod 4$. That is, $\left(\frac{-1}{p}\right)=(-1)^{(p-1) / 2}$.
(iii). For distinct odd primes p and q,

$$
\left(\frac{q}{p}\right)\left(\frac{p}{q}\right)=(-1)^{(p-1)(q-1) / 4} .
$$

This is called the quadratic reciprocity theorem.
Applying (iii) to $q=3$, we see that if $p \equiv 1 \bmod 3\left(\right.$ so that $\left.\left(\frac{p}{3}\right)=1\right)$ then $\left(\frac{3}{p}\right)=$ $(-1)^{(p-1) / 2}$. Hence by (i) and (ii), $\left(\frac{-3}{p}\right)=1$. Similarly, if $p \equiv-1 \bmod 3\left(\right.$ so that $\left.\left(\frac{p}{3}\right)=-1\right)$ then $\left(\frac{3}{p}\right)=-(-1)^{(p-1) / 2}$. Hence by (i) and (ii), $\left(\frac{-3}{p}\right)=-1$.
In summary, $\left(\frac{-3}{p}\right)= \pm 1$ according as $p \equiv \pm 1 \bmod 3$.
So to count the number of $\alpha \notin\{2,-2\}$ for which $3\left(4-\alpha^{2}\right)$ is a square, we need only count the number of α for which $\alpha^{2}-4$ is a non-zero square. If $\alpha^{2}-4=\beta^{2}$, then $(\alpha+\beta)(\alpha-\beta)=4$. We can solve the equation $x y=4$ by taking any $x \neq 0$ and $y=4 / x$. So setting $\alpha=\frac{1}{2}\left(x+\frac{4}{x}\right)$ and $\beta=\frac{1}{2}\left(x-\frac{4}{x}\right)$, we get a solution (α, β) of the equation $\alpha^{2}-4=\beta^{2}$, and each solution arises in this way. The non-zero elements of \mathbb{F}_{p} can be listed in this way:

$$
2,-2, x_{1}, \frac{4}{x_{1}}, \ldots, x_{r}, \frac{4}{x_{r}},
$$

where $r=(p-3) / 2$. Thus the elements $\alpha_{j}=\frac{1}{2}\left(x_{j}+\frac{4}{x_{j}}\right), j=1, \ldots, r$, are the distinct $\alpha \notin\{2,-2\}$ for which $\alpha^{2}-4$ is a square. When $p \equiv 1 \bmod 3$, then -3 is a square, and so ± 1 are two of the numbers $\alpha_{1}, \ldots, \alpha_{r}$. Thus $\left|S_{3}\right|=(p-3) / 2-2=(p-7) / 2$ in this case. When $p \equiv-1 \bmod 3$, then -3 is not a square, and so ± 1 do not appear among the numbers $\alpha_{1}, \ldots, \alpha_{r}$. Thus there are exactly $(p-3) / 2$ elements $\alpha \neq \pm 2$ such that $\alpha^{2}-4$ is a square, and so S_{3}, which in this case is the set of α such that $\alpha^{2}-4$ is not a square, has $p-4-(p-3) / 2=(p-5) / 2$ elements. As \mathbb{F}_{p} is the disjoint union of the three sets S_{1}, S_{2} and S_{3}, we have $\left|S_{1}\right|+\left|S_{2}\right|+\left|S_{3}\right|=p$. Hence $\left|S_{1}\right|=(p-1) / 2$ or $\left|S_{1}\right|=(p-3) / 2$ according as $p \equiv 1$ or $p \equiv-1 \bmod 3$.
8. Let $S_{n}=\sum_{k=1}^{n} a_{k}$ and $S_{n}^{\prime}=\sum_{k=n}^{\infty} 1 / a_{k}$ for each $n \geq 1$.
(i). Suppose that there is a number C such that $a_{n}^{-1} \sum_{k=1}^{n} a_{k} \leq C$ for all n. Then $S_{n} \leq C a_{n}$, and so $a_{n} \geq S_{n} / C$ for all n. For each n, $S_{n+1}=S_{n}+a_{n} \geq S_{n}+S_{n} / C=$ $S_{n}(1+1 / C)$. Repeating this, we find that $S_{n+j} \geq S_{n}(1+1 / C)^{j}$ for $j=0,1, \ldots$ So, noting that $S_{n} \geq a_{n}$ for each $n, a_{n+j} \geq S_{n+j} / C \geq S_{n}(1+1 / C)^{j} / C \geq a_{n}(1+1 / C)^{j} / C$ for all $j \geq 1$. Thus

$$
\sum_{k=n}^{\infty} \frac{1}{a_{k}}=\frac{1}{a_{n}}+\sum_{j=1}^{\infty} \frac{1}{a_{n+j}} \leq \frac{1}{a_{n}}+\sum_{j=1}^{\infty} \frac{C}{a_{n}\left(1+\frac{1}{C}\right)^{j}}=\frac{1}{a_{n}}\left(1+C \sum_{j=1}^{\infty}\left(\frac{C}{C+1}\right)^{j}\right)=\frac{1+C^{2}}{a_{n}}
$$

So $a_{n} S_{n}^{\prime} \leq 1+C^{2}$.
Conversely, suppose that there is a number C^{\prime} such that $a_{n} S_{n}^{\prime} \leq C^{\prime}$ for all n. Clearly, $S_{n}^{\prime}>1 / a_{n}$ for all n, and so $C^{\prime}>1$. Also, $1 / a_{n} \geq S_{n}^{\prime} / C^{\prime}$, and so if $n>1$,

$$
S_{n-1}^{\prime}=S_{n}^{\prime}+\frac{1}{a_{n-1}} \geq S_{n}^{\prime}+\frac{S_{n-1}^{\prime}}{C^{\prime}}
$$

so that $\left(1-1 / C^{\prime}\right) S_{n-1}^{\prime} \geq S_{n}^{\prime}$. Repeating this step, we see that $\left(1-1 / C^{\prime}\right)^{j} S_{n-j}^{\prime} \geq S_{n}^{\prime}$ for $j=0,1, \ldots, n-1$. Thus

$$
\frac{1}{a_{n}}<S_{n}^{\prime} \leq\left(1-\frac{1}{C^{\prime}}\right)^{j} S_{n-j}^{\prime} \leq \frac{C^{\prime}}{a_{n-j}}\left(1-\frac{1}{C^{\prime}}\right)^{j}
$$

for $j=1, \ldots, n-1$. Hence

$$
\begin{aligned}
\sum_{k=1}^{n} a_{k}=a_{n}+\sum_{j=1}^{n-1} a_{n-j} & \leq a_{n}\left(1+C^{\prime} \sum_{j=1}^{n-1}\left(1-\frac{1}{C^{\prime}}\right)^{j}\right) \\
& <a_{n}\left(1+C^{\prime} \sum_{j=1}^{\infty}\left(1-\frac{1}{C^{\prime}}\right)^{j}\right) \\
& =a_{n}\left(1+\left(C^{\prime}-1\right) C^{\prime}\right)
\end{aligned}
$$

So $a_{n}^{-1} S_{n} \leq C$ for $C=1+\left(C^{\prime}-1\right) C^{\prime}$.
9. Let $F_{i}=\left\{f_{i-1}+1, \ldots, f_{i}\right\}$ for $i=1, \ldots, k$, and let $G_{j}=\left\{g_{j-1}+1, \ldots, g_{j}\right\}$ for $j=1, \ldots, m$. Let W_{1} be the set of permutations σ such that $\sigma\left(F_{i}\right)=F_{i}$ for each i, and let W_{2} be the set of permutations σ such that $\sigma\left(G_{j}\right)=G_{j}$ for each j. If σ is the composition $\sigma_{1} \circ \sigma_{2}$ of a $\sigma_{1} \in W_{1}$ and a $\sigma_{2} \in W_{2}$, and if $f_{j-1}<g_{i} \leq g_{j}$ (or, indeed, if $f_{j-1} \leq g_{i} \leq f_{j}$), then

$$
F_{1} \cup \cdots \cup F_{j-1} \subset G_{1} \cup \cdots \cup G_{i} \subset F_{1} \cup \cdots \cup F_{j}
$$

Hence $\sigma\left(\left\{1, \ldots, g_{i}\right\}\right)=\sigma\left(G_{1} \cup \cdots \cup G_{i}\right)=\sigma_{1}\left(\sigma_{2}\left(G_{1} \cup \cdots \cup G_{i}\right)\right)$ equals $\sigma_{1}\left(G_{1} \cup \cdots \cup G_{i}\right)$, which contains $\sigma_{1}\left(F_{1} \cup \cdots \cup F_{j-1}\right)=F_{1} \cup \cdots \cup F_{j-1}=\left\{1, \ldots, f_{j-1}\right\}$ and is contained in $\sigma_{1}\left(F_{1} \cup \cdots \cup F_{j}\right)=F_{1} \cup \cdots \cup F_{j}=\left\{1, \ldots, f_{j}\right\}$. Hence the condition is necessary.

To prove the converse, we use induction on n. First suppose that $f_{1} \leq g_{1}$. Let a be the largest integer such that $f_{a} \leq g_{1}$. If $a=k$, then $g_{1}=n$ and $m=1$, and so W_{2} is the group of all permutations, and the result is trivial. So assume that $a<k$. If $f_{a}<g_{1}$, then by hypothesis, $F_{1} \cup \cdots \cup F_{a} \subset \sigma\left(G_{1}\right) \subset F_{1} \cup \cdots \cup F_{a+1}$. If $f_{a}=g_{1}$, then $f_{a-1}<g_{1} \leq f_{a}$, and the hypothesis implies that $\sigma\left(G_{1}\right)=F_{1} \cup \cdots \cup F_{a}$. For $\nu=1, \ldots, a, F_{\nu}$ is contained in $\sigma\left(G_{1}\right)$, and so equals $\sigma\left(S_{\nu}\right)$ for some $S_{\nu} \subset G_{1}$. We can therefore define a permutation τ of G_{1} by setting $\tau(x)=\sigma(x)$ if $x \in S_{\nu}$ for some $\nu \leq a$, and mapping the remaining part $G_{1} \backslash\left(S_{1} \cup \cdots \cup S_{a}\right)$ of G_{1} onto the set $G_{1} \backslash\left(F_{1} \cup \cdots \cup F_{a}\right)$. We then extend τ to a permutation of $\{1, \ldots, n\}$ by setting $\tau(x)=x$ for all $x \in G_{2} \cup \cdots \cup G_{m}$. Note that $\tau \in W_{2}$ and that σ and τ agree on $S_{1} \cup \cdots \cup S_{a}$. Let $\sigma^{\prime}=\sigma_{\circ} \tau^{-1}$. If $y \in\left\{1, \ldots, f_{a}\right\}$, then $y=\sigma(x)=\tau(x)$ for some $x \in S_{1} \cup \cdots \cup S_{a}$. So $\sigma^{\prime}(y)=y$. Thus σ^{\prime} also permutes $\left\{f_{a}+1, \ldots, n\right\}$. Let $\tilde{\sigma}$ denote the restriction of σ^{\prime} to that set.

Assume for the moment that $f_{a}<g_{1}$. Now $\tilde{G}_{1}=G_{1} \backslash\left(F_{1} \cup \cdots \cup F_{a}\right)=\left\{f_{a}+1, \ldots, g_{1}\right\}$, together with G_{2}, \ldots, G_{m}, partition $\left\{f_{a}+1, \ldots, n\right\}$. So do the sets F_{a+1}, \ldots, F_{k}. If $f_{j-1}<g_{i} \leq f_{j}$ for some $i \geq 1$ and $j \geq a+1$, then by the hypothesis on σ,

$$
\begin{equation*}
\left\{1, \ldots, f_{j-1}\right\} \subset \sigma\left(G_{1} \cup \cdots \cup G_{i}\right) \subset\left\{1, \ldots, f_{j}\right\} \tag{1}
\end{equation*}
$$

Also, $\tilde{\sigma}\left(\left\{f_{a}+1, \ldots, g_{i}\right\}\right)$ equals $\tilde{\sigma}\left(\tilde{G}_{1} \cup G_{2} \cup \cdots \cup G_{i}\right)$. Now

$$
\left.\tilde{\sigma}\left(\tilde{G}_{1}\right)=\sigma^{\prime}\left(G_{1} \backslash\left(F_{1} \cup \cdots \cup F_{a}\right)\right)=\sigma^{\prime}\left(G_{1}\right) \backslash \sigma^{\prime}\left(F_{1} \cup \cdots \cup F_{a}\right)\right)=\sigma\left(G_{1}\right) \backslash\left(F_{1} \cup \cdots \cup F_{a}\right)
$$

So if we remove $F_{1} \cup \cdots \cup F_{a}=\left\{1, \ldots, f_{a}\right\}$ from the sets in (1), we get

$$
\left\{f_{a}+1, \ldots, f_{j-1}\right\} \subset \tilde{\sigma}\left(\tilde{G}_{1}\right) \cup \sigma\left(G_{2} \cup \cdots \cup G_{i}\right) \subset\left\{f_{a}+1, \ldots, f_{j}\right\}
$$

This means that the permutation $\tilde{\sigma}$ satisfies the same condition as σ, but for the new partitions $\tilde{G}_{1}, G_{2}, \ldots, G_{m}$ and F_{a+1}, \ldots, F_{k} of the smaller set $\left\{f_{a}+1, \ldots, n\right\}$. So by the induction hypothesis, there are permutations $\tilde{\sigma}_{1}$ and $\tilde{\sigma}_{2}$ such that $\tilde{\sigma}_{1}\left(F_{i}\right)=F_{i}$ for $i=$ $a+1, \ldots, k$ and $\tilde{\sigma}_{2}\left(\tilde{G}_{1}\right)=\tilde{G}_{1}$ and $\tilde{\sigma}_{2}\left(G_{j}\right)=G_{j}$ for $j=2, \ldots, m$, so that $\tilde{\sigma}=\tilde{\sigma}_{1} \circ \tilde{\sigma}_{2}$. We then define $\sigma_{1} \in W_{1}$ by setting $\sigma_{1}(x)=x$ if $x \in F_{1} \cup \cdots \cup F_{a}$ and $\sigma_{1}(x)=\tilde{\sigma}_{1}(x)$ if $x \in F_{a+1} \cup \cdots \cup F_{k}$. We define $\sigma_{2} \in W_{2}$ by setting $\sigma_{2}(x)=\tau(x)$ if $x \in F_{1} \cup \cdots \cup F_{a}$ and $\sigma_{2}(x)=\tilde{\sigma}_{2}(x)$ if $x \in F_{a+1} \cup \cdots \cup F_{k}$. Then $\sigma=\sigma_{1} \circ \sigma_{2}$.

If $f_{a}=g_{1}$, then we arrive at the same conclusion with a little less work, because we do not need to use the set \tilde{G}_{1}.

Finally, if $f_{1}>g_{1}$, then interchange the roles of the f_{i} 's and g_{j} 's. It is routine to check that σ^{-1} satisfies

$$
\left\{1, \ldots, g_{j-1}\right\} \subset \sigma^{-1}\left(\left\{1, \ldots, f_{i}\right\}\right) \subset\left\{1, \ldots, g_{j}\right\}
$$

if $g_{j-1}<f_{i} \leq g_{j}$. Hence by the case just treated, $\sigma^{-1}=\sigma_{2} \circ \sigma_{1}$ for some $\sigma_{1} \in W_{1}$ and $\sigma_{2} \in W_{2}$. Thus $\sigma=\sigma_{1}^{-1} \circ \sigma_{2}^{-1}$ has the desired form.
10. We first give a solution of the stated problem, and then give a "formula" for a_{n} for general n.

A. Formula for a_{n} when n is a power of 2 .

Step (i): For each $n \geq 1, a_{n+1}=a_{n}$ or $a_{n+1}=a_{n}+1$. This is proved by induction. It is clearly true if $n=1$. Suppose that it is true for $n=1, \ldots, N$. We show that it is true for $n=N+1$. Now $a_{N+2}=a_{a_{N+1}}+a_{N+2-a_{N+1}}$ is either $a_{a_{N}}+a_{N+2-a_{N}}$ or $a_{a_{N}+1}+a_{N+1-a_{N}}$ by the induction hypothesis. In the first case, since $N+1-a_{N} \leq N$, we know that $a_{N+2-a_{N}}=a_{N+1-a_{N}}+\epsilon$ for $\epsilon=0$ or 1 . So

$$
a_{N+2}=a_{a_{N}}+a_{N+2-a_{N}}=a_{a_{N}}+a_{N+1-a_{N}}+\epsilon=a_{N+1}+\epsilon .
$$

In the second case, since $a_{N} \leq N$ is an obvious consequence of the induction hypothesis, $a_{a_{N}+1}=a_{a_{N}}+\epsilon$ for $\epsilon=0$ or 1 . So

$$
a_{N+2}=a_{a_{N}+1}+a_{N+1-a_{N}}=a_{a_{N}}+\epsilon+a_{N+1-a_{N}}=a_{N+1}+\epsilon .
$$

So the statement is true for $n=N+1$.
Step (ii): $a_{1} \leq a_{2} \leq \cdots$, and $a_{n} \leq n$ for all n. This is an immediate consequence of Step (i).

Step (iii): $a_{n} \geq n / 2$ for all $n \geq 1$. This is also proved by induction. It is clearly true if $n=1$ and $n=2$. Suppose that it is true for $n=1, \ldots, N$. Then as $a_{N} \leq N$ and $N+1-a_{N} \leq N$, we find from the induction hypothesis that

$$
a_{N+1}=a_{a_{N}}+a_{N+1-a_{N}} \geq \frac{a_{N}}{2}+\frac{N+1-a_{N}}{2}=\frac{N+1}{2} .
$$

Final Step: We show that $a_{2^{k}}=2^{k-1}$ for all integers $k \geq 1$. This is certainly true for $k=1$. Suppose that it is true for a particular k, but not true when k is replaced by $k+1$. We know from Step (iii) that $a_{2^{k+1}} \geq 2^{k}$. So suppose that $a_{2^{k+1}} \geq 2^{k}+1$. Let n be the smallest integer such that $a_{n}=2^{k}+1$. Since $a_{1} \leq a_{2} \leq \cdots$, we see that $n \leq 2^{k+1}$. As $a_{2^{k}}=2^{k-1}$, we know from Step (i) that $n \geq 2^{k}+2$. By the choice of n and by Step (i) we know that $a_{n-1}=2^{k}$. Using $n-2^{k} \leq 2^{k}$ and Step (ii),

$$
2^{k}+1=a_{n}=a_{a_{n-1}}+a_{n-a_{n-1}}=a_{2^{k}}+a_{n-2^{k}} \leq a_{2^{k}}+a_{2^{k}}=2^{k-1}+2^{k-1}=2^{k}
$$

This contradiction completes the induction step.
B. Formula for a_{n} for general n. First we show the following: Every positive integer n has a unique representation

$$
\begin{equation*}
n=2^{k}+\sum_{\ell=1}^{k}\binom{\mu_{\ell}}{\ell} \tag{1}
\end{equation*}
$$

where the μ_{ℓ} are positive integers such that for a certain $j \in\{0, \ldots, k\}$, depending on n,

$$
0 \leq \mu_{1}<\mu_{2}<\cdots<\mu_{j}<\mu_{j+1}=\cdots=\mu_{k}=k
$$

Example: $n=720, k=9, j=5$. Then

$$
720=2^{9}+\binom{0}{1}+\binom{3}{2}+\binom{4}{3}+\binom{6}{4}+\binom{8}{5}+\binom{9}{6}+\binom{9}{7}+\binom{9}{8}+\binom{9}{9}
$$

The existence and uniqueness of the representation (1) is shown as follows: The sum in (1) is at most

$$
2^{k}+\sum_{\ell=1}^{k}\binom{k}{\ell}=2^{k}+\left(2^{k}-1\right)=2^{k+1}-1
$$

and so k is uniquely determined by $2^{k} \leq n \leq 2^{k+1}-1$. There is a unique integer $j \in$ $\{0, \ldots, k\}$ such that

$$
2^{k}+\sum_{\ell=j+1}^{k}\binom{k}{\ell} \leq n<2^{k}+\sum_{\ell=j}^{k}\binom{k}{\ell} ;
$$

for example, take $j=k$ if $n=2^{k}$, and take $j=0$ if $n=2^{k+1}-1$.
Now write $n=m+2^{k}+\sum_{\ell=j+1}^{k}\binom{k}{\ell}$, where $0 \leq m<\binom{k}{j}$. We want to show that generally if $0 \leq m<\binom{k}{j}$ for a given k and some $j \in\{0, \ldots, k\}$ then

$$
\begin{equation*}
m=\sum_{\ell=1}^{j}\binom{\mu_{\ell}}{\ell} \quad \text { where } 0 \leq \mu_{1}<\mu_{2}<\cdots<\mu_{j}<k \tag{2}
\end{equation*}
$$

If $m=0$, then $\mu_{\ell}=\ell-1$ for $\ell=1, \ldots, j$ gives the required representation. If $j=0$, then $m=0$ and again we have a (trivial) representation (2). So assume that $j, m>0$. First determine μ_{j} by requiring

$$
\binom{\mu_{j}}{j} \leq m<\binom{\mu_{j}+1}{j}
$$

Clearly such a μ_{j} exists and $\mu_{j}<k$ since $m<\binom{k}{j}$. Now $m<\binom{\mu_{j}+1}{j}=\binom{\mu_{j}}{j}+\binom{\mu_{j}}{j-1}$, and hence $0 \leq m-\binom{\mu_{j}}{j}<\binom{\mu_{j}}{j-1}$. We may assume by induction on j that $m-\binom{\mu_{j}}{j}$ has a representation (2):

$$
m-\binom{\mu_{j}}{j}=\sum_{\ell=1}^{j-1}\binom{\mu_{\ell}}{\ell} \quad \text { where } 0 \leq \mu_{1}<\mu_{2}<\cdots<\mu_{j-1}<\mu_{j}
$$

Thus m has the required representation (2). Uniqueness of the representation is easily seen from the above.

We shall call the representation (1) of n the c-representation of n (c for combinatorial).
Here now is a formula for a_{n} : If n has representation (1), then omitting the zero terms from (1), namely those with $\mu_{\ell}=\ell-1$, we can write the c-representation

$$
\begin{equation*}
n=2^{k}+\sum_{\ell=i+1}^{k}\binom{\mu_{\ell}}{\ell} \tag{3}
\end{equation*}
$$

for some $i=i(n)$ in $\{0,1, \ldots, k\}$. We claim that then a_{n} is given by

$$
\begin{equation*}
a_{n}=2^{k-1}+\sum_{\ell=i+1}^{k}\binom{\mu_{\ell}-1}{\ell-1} \tag{4}
\end{equation*}
$$

(note that $\mu_{\ell}=\ell-1$ for $\ell \leq i$ and $\mu_{\ell} \geq \ell$ for $\ell>i$).
In particular, if $n=2^{k}$, then the sum in (4) is empty ($i=k$), and we obtain $a_{2^{k}}=2^{k-1}$. In the example $n=720$ given above, $i=1$, and

$$
a_{720}=2^{8}+\binom{2}{1}+\binom{3}{2}+\binom{5}{3}+\binom{7}{4}+\binom{8}{5}+\binom{8}{6}+\binom{8}{7}+\binom{8}{8}=399
$$

The formula for a_{n} was first guessed from numerical evidence - a computer-produced table of $a_{n}, n \leq 1024$.

Write α_{n} for the right hand side in (4). Then we have to show that α_{n} satisfies the same recursion as a_{n}, namely

$$
\begin{equation*}
\alpha_{n+1}=\alpha_{\alpha_{n}}+\alpha_{n+1-\alpha_{n}} \tag{5}
\end{equation*}
$$

First we observe that if $i(n)>0$, then the c-representation of $n+1$ is

$$
\begin{equation*}
n+1=2^{k}+\sum_{\ell=i}^{k}\binom{\mu_{\ell}}{\ell}, \quad \text { with } \mu_{i}=i \tag{6}
\end{equation*}
$$

This is no longer true if $i=0$, since $\binom{0}{0}$ is not admitted in the c-representation. In that case, we write $\mu_{1}=1+d$ for some $d \geq 0$ and define $i_{1} \geq 1$ as the index for which $\mu_{\ell}=\ell+d$ for $1 \leq \ell \leq i_{1}$ and $\mu_{\ell}>\ell+d$ for $\ell>i_{1}$. Hence

$$
\begin{equation*}
n+1=2^{k}+\sum_{\ell=0}^{i_{1}}\binom{\ell+d}{d}+\sum_{\ell=i_{1}+1}^{k}\binom{\mu_{\ell}}{\ell}=2^{k}+\binom{d+i_{1}+1}{i_{1}}+\sum_{\ell=i_{1}+1}^{k}\binom{\mu_{\ell}}{\ell} \tag{7}
\end{equation*}
$$

and this last expression is indeed a c-representation of $n+1$ since $d+i_{1}+1<\mu_{i_{1}+1}$. Here we have made use of the well-known combinatorial formula

$$
\sum_{\ell=0}^{m}\binom{\ell+d}{\ell}=\binom{m+d+1}{m}
$$

which is easily proved by induction on m. It follows from (6) that

$$
\alpha_{n+1}=2^{k-1}+1+\sum_{\ell=i+1}^{k}\binom{\mu_{\ell}-1}{\ell-1}=\alpha_{n}+1 \quad \text { if } i>0
$$

and from (7) that

$$
\alpha_{n+1}=2^{k-1}+\binom{d+i_{1}}{i_{1}-1}+\sum_{\ell=i_{1}+1}^{k}\binom{\mu_{\ell}-1}{\ell-1}=\alpha_{n} \quad \text { if } i=0
$$

since

$$
\sum_{\ell=1}^{i_{1}}\binom{\ell+d-1}{\ell-1}=\binom{d+i_{1}}{i_{1}-1}
$$

Thus

$$
\alpha_{n+1}= \begin{cases}\alpha_{n} & \text { if } i(n)=0 \tag{8}\\ \alpha_{n}+1 & \text { if } i(n)>0\end{cases}
$$

Next we observe that the c-representation of $n-\alpha_{n}$ is

$$
\begin{equation*}
n-\alpha_{n}=2^{k-1}+\sum_{\ell=i+1}^{k}\binom{\mu_{\ell}-1}{\ell} \tag{9}
\end{equation*}
$$

since $\binom{\mu_{\ell}}{\ell}-\binom{\mu_{\ell}-1}{\ell-1}=\binom{\mu_{\ell}-1}{\ell}$ and $2^{k}-2^{k-1}=2^{k-1}$. Here if $\mu_{i+1}=i+1$, then there are some zero terms in (9), but in any case $i\left(n-\alpha_{n}\right) \geq i(n)$.

We are now ready to prove (5). Suppose first that $i(n)>0$. Then by (8),

$$
\alpha_{n+1}=\alpha_{n}+1 \quad \text { and } \quad \alpha_{n+1-\alpha_{n}}=\alpha_{n-\alpha_{n}}+1
$$

because $i\left(n-\alpha_{n}\right) \geq i(n)>0$, and we have to show that

$$
\begin{equation*}
\alpha_{n}=\alpha_{\alpha_{n}}+\alpha_{n-\alpha_{n}} . \tag{10}
\end{equation*}
$$

But

$$
\alpha_{\alpha_{n}}=2^{k-2}+\sum_{\ell=i+1}^{k}\binom{\mu_{\ell}-2}{\ell-2} \quad \text { by }(4)
$$

and

$$
\alpha_{n-\alpha_{n}}=2^{k-2}+\sum_{\ell=i+1}^{k}\binom{\mu_{\ell}-2}{\ell-1} \quad \text { by }(9),
$$

hence

$$
\alpha_{\alpha_{n}}+\alpha_{n-\alpha_{n}}=2^{k-1}+\sum_{\ell=i+1}^{k}\binom{\mu_{\ell}-1}{\ell-1}=\alpha_{n}
$$

as required.
If $i(n)=0$ and $\mu_{1}>1$, then by (8), $\alpha_{n+1}=\alpha_{n}, \alpha_{n+1-\alpha_{n}}=\alpha_{n-\alpha_{n}}$ and the statement to be proved is again (10). Write the c-representation of n in the form

$$
n=2^{k}+\sum_{\ell=1}^{i_{1}}\binom{d_{1}+\ell}{\ell}+\sum_{\ell=i_{1}+1}^{i_{2}}\binom{d_{2}+\ell}{\ell}+\sum_{\ell>i_{2}}\binom{\mu_{\ell}}{\ell}
$$

for some $d_{2}>d_{1}>0, i_{2}>i_{1}>0$, where $\mu_{\ell}>d_{2}+\ell$ for $\ell>i_{2}$. Then

$$
\alpha_{n}-2^{k-1}-\sum_{\ell>i_{2}}\binom{\mu_{\ell}-1}{\ell-1}=\sum_{\ell=1}^{i_{1}}\binom{d_{1}+\ell-1}{\ell-1}+\sum_{\ell=i_{1}+1}^{i_{2}}\binom{d_{2}+\ell-1}{\ell-1}
$$

If $i_{1}=1$, the right hand side becomes $\binom{d_{2}+i_{2}}{i_{2}-1}$, hence setting

$$
n^{\prime}=2^{k}+\binom{d_{2}+i_{2}+1}{i_{2}}+\sum_{\ell>i_{2}}\binom{\mu_{\ell}}{\ell}
$$

we have $\alpha_{n^{\prime}}=\alpha_{n}, i\left(n^{\prime}\right)=i_{2}-1>0$ and

$$
n^{\prime}-n=\binom{d_{2}+i_{2}+1}{i_{2}}-\sum_{\ell=2}^{i_{2}}\binom{d_{2}+\ell}{\ell}-\binom{d_{1}+1}{1}=d_{2}-d_{1}+1
$$

and so $n^{\prime}=n+d_{2}-d_{1}+1$.
If $i_{1}>1$, we define

$$
\begin{equation*}
n^{\prime}=2^{k}+\binom{d_{1}+i_{1}+1}{i_{1}}+\sum_{\ell=i_{1}+1}^{i_{2}}\binom{d_{2}+\ell}{\ell}+\sum_{\ell>i_{2}}\binom{\mu_{\ell}}{\ell} . \tag{11}
\end{equation*}
$$

The right hand side of (11) gives the c-representation of n^{\prime}, and we see that $\alpha_{n^{\prime}}=\alpha_{n}$, $i\left(n^{\prime}\right)=i_{1}-1>0$ and

$$
n^{\prime}-n=\binom{d_{1}+i_{1}+1}{i_{1}}-\sum_{\ell=1}^{i_{1}}\binom{d_{1}+\ell}{\ell}=1
$$

so that $n^{\prime}=n+1$. From (9) we can verify easily (since $i_{1}\left(n-\alpha_{n}\right)=i_{1}(n)$) that $\alpha_{n^{\prime}-\alpha_{n^{\prime}}}=$ $\alpha_{n-\alpha_{n}}$ and we can replace (10) by

$$
\alpha_{n^{\prime}}=\alpha_{\alpha_{n^{\prime}}}+\alpha_{n^{\prime}-\alpha_{n^{\prime}}}
$$

which is satisfied since $i\left(n^{\prime}\right)>0$.
The only case left to be considered is when $i(n)=0$ and $\mu_{1}=1$. The argument is similar to the previous one, and will not be repeated. The only modification is that the equation to be satisfied now is

$$
\alpha_{n}=\alpha_{\alpha_{n}}+\alpha_{n-\alpha_{n}}+1
$$

instead of (10).

