
SUMS PROBLEM COMPETITION, 1998

The organizers of the SUMS Problem Competition would like to acknowledge the
many contributions made by David Jackson to the competition over the last 10
years. He was a prize winner in each of the 1989, 1990 and 1991 competitions, and
supplied many problems since then, including three in this year’s competition. He
died in August this year at the age of 27.

SOLUTIONS

1. Consider the general case immediately. Suppose that we can form a palindrome using
mi ai’s for i = 1, . . . , r. The total number of letters in the palindrome is m1 + · · ·+mr.

Case 1: m1 + · · ·+mr is even, 2n say. Let the number of ai’s in the first half of the
palindrome be ki. Then the number of ai’s in the second half of the palindrome must also
be ki. Hence mi = 2ki for each i. Thus each mi must be even.

Case 2: m1 + · · ·+mr is odd, 2n+ 1 say. Let the n+ 1-st letter of the palindrome be
aj . For each i, let the number of ai’s in the first n letters of the palindrome be ki. Then
the number of ai’s in the last n letters of the palindrome must also be ki. Hence mi = 2ki
for each i 6= j, and mj = 2kj + 1. Thus exactly one of the mi’s is odd.

Thus a palindrome can only exist when at most one of the mi’s is odd.
To count the number of palindromes, we again consider two cases separately.
Case 1: each mi is even, mi = 2ki, say. Then to form a palindrome, we must first form

a word of length n = k1 + · · ·+ kr consisting of ki ai’s for each i. The second half of the
palindrome must be this word repeated in reverse order. So the palindrome is determined
by the first half, and the number of possiblities is the multinomial coefficient(

k1 + · · ·+ kr
k1, . . . , kr

)
=

(k1 + · · ·+ kr)!
k1!k2! · · · kr!

=
m1+···+mr

2 !
m1
2 !m2

2 ! · · · mr

2 !
.

Case 2: mj is odd, mj = 2kj + 1, say, and the other mi’s are even, mi = 2ki, say.
Then to form a palindrome, we must first form a word of length n = k1 + · · ·+kr consisting
of ki ai’s for each i. Then the n + 1-st letter of the palindrome must be aj . The last n
letters of the palindrome must be the same as the first n letters, repeated in reverse order.
So the palindrome is determined by the first n letters, and the number of possibilities is(

k1 + · · ·+ kr
k1, . . . , kr

)
=

(k1 + · · ·+ kr)!
k1!k2! · · · kr!

=
m1+···+mr−1

2 !
m1
2 ! · · · mj−1

2 ! · · · mr

2 !
.

2. Let f(x) = x4 + c3x
3 + c2x

2 + c1x + c0. Then if the curve y = f(x) meets the
line y = αx + β in 4 distinct points, then f(x)− αx − β = 0 for 4 distinct points, and so
f ′(x) − α = 0 for 3 distinct points, by Rolles’s theorem. Hence f ′′(x) = 0 for 2 distinct
points, again by Rolles’s theorem. But f ′′(x) = 12x2+6c3x+2c2, and so (6c3)2 > 4·12·2c2.
That is, c23 > 8c2/3. Conversely, if c23 > 8c2/3, let ξ1 < ξ2 be the two roots of f ′′(x) = 0.
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Then f ′′(x) > 0 for x < ξ1 and for x > ξ2, and f ′′(x) < 0 for ξ1 < x < ξ2. So f ′(x) is
increasing on (−∞, ξ1] decreasing on [ξ1, ξ2], and increasing on [ξ2,∞). So ξ1 is a local
maximum for f ′(x) and ξ2 is a local minimum for f ′(x), and f ′(ξ2) < f ′(ξ1). Choose any
α ∈ (f ′(ξ2), f ′(ξ1)). Then f ′(x)− α < 0 for large negative x, f ′(x)− α > 0 for x near ξ1,
f ′(x) − α < 0 for x near ξ2, and f ′(x) − α > 0 for large positive x. Hence f ′(x) − α = 0
holds for three distinct x’s, say for x = t1, t2, t3, where t1 < t2 < t3. Then f(x) − αx
is decreasing on (−∞, t1], increasing on [t1, t2], decreasing on [t2, t3], and increasing on
[t3,∞). Thus t2 is a local maximum for f(x) − αx, and f(t2) − αt2 > f(t1) − αt1 and
f(t2)−αt2 > f(t3)−αt3. Choose β less than f(t2)−αt2, but greater than both f(t1)−αt1
and f(t3)−αt3. Then f(x)−αx−β is positive for large negative x, negative for x near t1,
positive for x near t2 , negative for x near t3, and positive again for large positive x. Hence
f(x)−αx−β = 0 for 4 x’s, say x = u1, u2, u3, u4, where u1 < t1 < u2 < t2 < u3 < t3 < u4.

3. The smallest number of charts needed to cover the torus, T , is 3. It is easy to
exhibit three charts which cover T . Imagine T as the image of the following rectangle, in
which the opposite sides have been glued together along the sides indicated by the parallel
arrows. The three charts are indicated by the numbers 1, 2 and 3. For example, chart 1 is
the image of the quarter discs in the four corners of the rectangle.
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We now show that it is not possible to cover T with less than three charts. Let
D = {(x, y) ∈ R

2 : x2 + y2 < 1} be the open disc of radius 1 in the plane, centred on the
origin. A chart is the image of a continuous one to one map ϕ : D→ T such that ϕ(D) is
open in T and such that ϕ : D→ ϕ(D) is a homeomorphism.

It is certainly not possible to cover T with a single chart. For then we would have a
homeomorphism ϕ of D onto T . This is impossible because T is compact and D is not.

To show that it is not possible to cover the torus with two charts, A and B, say, first
suppose that A is small, as in the following diagram. Choose any loop C going around the
torus and not meeting A:
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Then because C ⊂ T = A ∪ B and C ∩ A = ∅, we have C ⊂ B. But any loop in a
disc, and hence in a chart, must be contractible to a single point. The given loop is not
contractible.

When A′ and B′ are two charts covering T , neither of which is small, we shrink one
of them, say A′. What we precisely need here is the following theorem (see Proposition
A2.2.6 on page 100 of “A first course in geometric topology and differential geometry”
by Ethan D. Bloch): Let A and A′ be two charts in T . Then there is a homeomorphism
H : T → T such that H(A′) = A. (This is valid if T is replaced by any path connected
surface).

When we apply this result, we see that T = H(T ) = H(A′ ∪B′) = H(A′) ∪H(B′) =
A ∪ B, where B = H(B′). Both A and B are charts, and A is small. Note that in the
notation of the cited book, a chart is the the homeomorphic image of a closed disc. But if
T is written as the union of two charts in our sense, then a simple compactness argument
(just shrink our discs a little) shows that T is also expressible as the union of two charts
in the sense of Bloch.

4. The proof goes by induction on the minimum number of marbles in the three
boxes. Let a ≤ b ≤ c be the numbers of marbles in the boxes. Assume that if the numbers
of marbles in the boxes are a′ ≤ b′ ≤ c′, where a′ < a, then the process can be chosen
to lead to an empty box. Label the boxes containing a, b and c marbles B1, B2 and B3,
respectively.

Divide a into b: b = aq+ r, where 0 ≤ r < a and q ≥ 1. Write q in the binary system:

q = m0 + 2m1 + · · ·+ 2kmk,

where each mi is 0 or 1, and mk = 1. Place in the first box successively a, 2a, . . . , 2ka
marbles, such that for i = 0, . . . , k, if mi = 1, the 2ia marbles are taken from B2 and
if mi = 0, the 2ia marbles are taken from B3. In this fashion, we have taken at most
(1 + 2 + · · · + 2k−1)a = (2k − 1)a < qa ≤ b ≤ c marbles from B3. We have taken exactly
qa marbles from B2, leaving r < a there. By the induction hypothesis, the process can be
continued until one of the boxes is empty.

5. Let u1, u2, . . . be a sequence of positive terms such that un → 0 as n → ∞, but
such that

∑∞
k=1 u

3
k = ∞. For example, take uk = 1/k1/3. For simplicity, we assume also

that uk ≤ π for all k. The series

a1 + a2 + a3 + · · · = u1

2
+
u1

2
− u1 +

u2

2
+
u2

2
− u2 +

u3

2
+
u3

2
− u3 + · · ·

converges to 0, because for each n its 3n-th partial sum s3n equals 0, while s3n+1 = un+1/2
and s3n+2 = un+1. The 3n-th partial sum S3n of the series sin(a1) + sin(a2) + · · · is the
sum of the n terms

2 sin(uk/2)− sin(uk) = 2 sin(uk/2)(1− cos(uk/2)), k = 1, . . . , n.

Now sin(x)/x→ 1 and (1−cos(x))/x2 → 1/2 as x→ 0 by l’Hôpital’s rule. So the function
f(x), defined on [0, π/2] by f(0) = 1 and f(x) = 2 sin(x)(1−cos(x))/x3 for 0 < x ≤ π/2, is
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continuous and positive throughout [0, π/2]. So its minimum value c on [0, π/2] is positive.
So 2 sin(x)(1− cos(x))/x3 ≥ c for all x ∈ (0, π/2]. Since we assumed that 0 < uk ≤ π for
all k,

2 sin(uk/2)(1− cos(uk/2)) ≥ c

8
u3
k.

Hence

S3n ≥
c

8

n∑
k=1

u3
k,

which tends to ∞ as n→∞ by hypothesis. Hence the series
∑∞
k=1 sin(ak) diverges.

It is not possible to give a convergent series
∑∞
k=1 ak with |a1| ≥ |a2| ≥ · · · such that∑∞

k=1 sin(ak) is divergent. To see this, we set bk = sin(ak)/ak. Then bk → 1 as k → ∞
because ak → 0. Also, bk = |bk| = sin(|ak|)/|ak| increases with k (once k is so large that
|ak| ≤ π/2), because sin(x)/x is a decreasing function on (0, π/2] (since tan(x) > x for
0 < x < π/2).

Since
∑∞
k=1 ak converges and b1, b2, . . . is a monotone sequence converging to a limit,

the series
∑∞
k=1 akbk converges by Abel’s Test (see, for example, Bartle and Sherbert

“Introduction to Real Analysis”). That is,
∑∞
k=1 sin(ak) converges.

6. For n = 1, 2, . . ., let

fn(t) =
(et + e2t + e−3t

3

)n2

e−tn.

It is easy to see that fn(t) → ∞ as t → ±∞. For example, fn(t) ≥ (e2t/3)n
2
e−tn =

etn(2n−1)/3n
2 → ∞ as t → +∞. So fn(t) has a minimum value at some point of R. At

this point, f ′n(t) must equal 0. A routine calculation shows that f ′n(t) = 0 if and only if

et + e2t + e−3t = n(et + 2e2t − 3e−3t). (1)

Now
et + 2e2t − 3e−3t = e−3t(et − 1)(2e4t + 3e3t + 3e2t + 3et + 3)

is negative if t < 0, and so (1) has no solutions for t < 0, and clearly, t = 0 is not a
solution. For t > 0,

d

dt

( et + e2t + e−3t

et + 2e2t − 3e−3t

)
= −e

3t + 16e−2t + 25e−t

(et + 2e2t − 3e−3t)2
< 0,

and so (et+e2t+e−3t)/(et+2e2t−3e−3t) is strictly decreasing on (0,∞). As this expression
clearly tends to ∞ as t → 0 from the right, we see that for each n, (1) has a unique
solution tn, which is positive. Clearly tn → 0 as n→∞, and since

t
et + e2t + e−3t

et + 2e2t − 3e−3t
→ 3

14
as t→ 0+

by l’Hôpital’s rule, we see that tnn→ 3/14 as n→∞.
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By Taylor’s theorem, et = 1 + t+ t2

2 (1 + ε(t)), where ε(t)→ 0 as t→ 0. Hence

et + e2t + e−3t

3
= 1 +

7
3
t2
(
1 + δ(t)

)
,

where δ(t) = (1/14)(ε(t) + 4ε(2t) + 9ε(−3t))→ 0 as t→ 0. Hence

min
t
fn(t) = fn(tn) =

(
1 +

7
3
t2n
(
1 + δ(tn)

))n2

e−tnn

which equals (
1 +

3
28

1
n2

(
1 + εn

))n2

e−3/14+ε′n ,

where εn, ε′n → 0 as n→∞. Now (1+x/n)n → ex as n→∞, and it is easy to see from this
that if xn → x, then (1 + xn/n)n → ex as n→∞. Applying this to xn = (3/28)(1 + εn),
we see that

lim
n→∞

min
t
fn(t) = e3/28e−3/14 = e−3/28.

7. We work in the field Fp consisting of the set {0, 1, . . . , p − 1}, where addition
and multiplication are taken modulo p. When p = 2, then 0 is the only number in Fp

expressible in the form x3 − 3x, and 1 = (2p− 1)/3 in this case. If p = 3, then all of 0, 1
and 2 are so expressible. So assume below that p ≥ 5. Suppose that α ∈ Fp. Then

X3 − 3X − (α3 − 3α) = (X − α)(X2 + αX + α2 − 3). (1)

If 3(4− α2) has a square root σ in Fp, then by the quadratic formula the quadratic factor
on the right in (1) has roots X = (−α ± σ)/2. These are distinct iff α 6= ±2, and are
distinct from α iff α 6= ±1. When α = ±1 or ±2, we can give explicit factorizations of the
cubic polynomials in (1):

X3 − 3X − 2 = (X − 2)(X + 1)2 and X3 − 3X + 2 = (X + 2)(X − 1)2.

When α 6= ±1,±2 and when 3(4− α2) has a square root in Fp, then the cubic polynomial
in (1) is the product of three distinct linear factors:

X3 − 3X − (α3 − 3α) = (X − α)(X − β)(X − γ), say.

The elements α3−3α, β3−3β and γ3−3γ are all the same, and α, β and γ are all different
from ±1 and ±2, and all of 3(4− α2), 3(4− β2) and 3(4− γ2) have non-zero square roots
in Fp.

If α3 − 3α does not have a square root in Fp, then the quadratic factor in (1) has no
roots, and so X3 −X − (α3 − 3α) = 0 has no solutions in Fp other than α.

So we can divide the set Fp into 3 disjoint subsets: the set S3 of α ∈ Fp \ {±1,±2}
such that 3(4 − α2) has a square root in Fp, the set S2 = {±1,±2}, and the set S1 of
α ∈ Fp such that 3(4 − α2) has no square root in Fp. The map f : Fp → Fp defined by
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f(α) = α3−3α is, because of the above discussion, one to one on S1, two to one on S2 and
three to one on S3. The set S of elements of Fp which are expressible in the form α3 − 3α
is the image of f , and has order |S| = |S1|+ |S2|/2 + |S3|/3, which equals 2 + |S1|+ |S3|/3
because p ≥ 5.

We next show that if p ≡ 1 mod 3 then |S1| = (p − 1)/2 and |S3| = (p − 7)/2, while
if p ≡ −1 mod 3 then |S1| = (p− 3)/2 and |S3| = (p− 5)/2. The result will follow.

Recall that if p is an odd prime and if n is an integer not divisible by p, then we write(
n
p

)
= 1 if n modulo p has a square root in Fp and

(
n
p

)
= −1 otherwise. The following

well-known facts can be found in Chapter 3 of Niven and Zuckerman, “The Theory of
Numbers”, for example:

(i).
(
mn
p

)
=
(
m
p

)(
n
p

)
.

(ii). −1 has a square root in Fp if and only if p ≡ 1 mod 4. That is,
(−1
p

)
= (−1)(p−1)/2.

(iii). For distinct odd primes p and q,

(
q

p

)(
p

q

)
= (−1)(p−1)(q−1)/4.

This is called the quadratic reciprocity theorem.

Applying (iii) to q = 3, we see that if p ≡ 1 mod 3 (so that
(
p
3

)
= 1) then

(
3
p

)
=

(−1)(p−1)/2. Hence by (i) and (ii),
(−3
p

)
= 1. Similarly, if p ≡ −1 mod 3 (so that

(
p
3

)
= −1)

then
(
3
p

)
= −(−1)(p−1)/2. Hence by (i) and (ii),

(−3
p

)
= −1.

In summary,
(−3
p

)
= ±1 according as p ≡ ±1 mod 3.

So to count the number of α 6∈ {2,−2} for which 3(4 − α2) is a square, we need
only count the number of α for which α2 − 4 is a non-zero square. If α2 − 4 = β2, then
(α+ β)(α− β) = 4. We can solve the equation xy = 4 by taking any x 6= 0 and y = 4/x.
So setting α = 1

2

(
x + 4

x

)
and β = 1

2

(
x − 4

x

)
, we get a solution (α, β) of the equation

α2 − 4 = β2, and each solution arises in this way. The non-zero elements of Fp can be
listed in this way:

2,−2, x1,
4
x1
, . . . , xr,

4
xr
,

where r = (p − 3)/2. Thus the elements αj = 1
2

(
xj + 4

xj

)
, j = 1, . . . , r, are the distinct

α 6∈ {2,−2} for which α2 − 4 is a square. When p ≡ 1 mod 3, then −3 is a square, and
so ±1 are two of the numbers α1, . . . , αr. Thus |S3| = (p − 3)/2 − 2 = (p − 7)/2 in this
case. When p ≡ −1 mod 3, then −3 is not a square, and so ±1 do not appear among the
numbers α1, . . . , αr. Thus there are exactly (p − 3)/2 elements α 6= ±2 such that α2 − 4
is a square, and so S3, which in this case is the set of α such that α2 − 4 is not a square,
has p − 4 − (p − 3)/2 = (p − 5)/2 elements. As Fp is the disjoint union of the three sets
S1, S2 and S3, we have |S1|+ |S2|+ |S3| = p. Hence |S1| = (p− 1)/2 or |S1| = (p− 3)/2
according as p ≡ 1 or p ≡ −1 mod 3.
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8. Let Sn =
∑n
k=1 ak and S′n =

∑∞
k=n 1/ak for each n ≥ 1.

(i). Suppose that there is a number C such that a−1
n

∑n
k=1 ak ≤ C for all n. Then

Sn ≤ Can, and so an ≥ Sn/C for all n. For each n, Sn+1 = Sn + an ≥ Sn + Sn/C =
Sn(1+1/C). Repeating this, we find that Sn+j ≥ Sn(1+1/C)j for j = 0, 1, . . .. So, noting
that Sn ≥ an for each n, an+j ≥ Sn+j/C ≥ Sn(1 + 1/C)j/C ≥ an(1 + 1/C)j/C for all
j ≥ 1. Thus

∞∑
k=n

1
ak

=
1
an

+
∞∑
j=1

1
an+j

≤ 1
an

+
∞∑
j=1

C

an(1 + 1
C )j

=
1
an

(
1 + C

∞∑
j=1

( C

C + 1

)j)
=

1 + C2

an
.

So anS′n ≤ 1 + C2.
Conversely, suppose that there is a number C ′ such that anS′n ≤ C ′ for all n. Clearly,

S′n > 1/an for all n, and so C ′ > 1. Also, 1/an ≥ S′n/C ′, and so if n > 1,

S′n−1 = S′n +
1

an−1
≥ S′n +

S′n−1

C ′
,

so that (1− 1/C ′)S′n−1 ≥ S′n. Repeating this step, we see that (1− 1/C ′)jS′n−j ≥ S′n for
j = 0, 1, . . . , n− 1. Thus

1
an

< S′n ≤
(

1− 1
C ′

)j
S′n−j ≤

C ′

an−j

(
1− 1

C ′

)j
for j = 1, . . . , n− 1. Hence

n∑
k=1

ak = an +
n−1∑
j=1

an−j ≤ an
(

1 + C ′
n−1∑
j=1

(
1− 1

C ′

)j)
< an

(
1 + C ′

∞∑
j=1

(
1− 1

C ′

)j)
= an(1 + (C ′ − 1)C ′).

So a−1
n Sn ≤ C for C = 1 + (C ′ − 1)C ′.

9. Let Fi = {fi−1 + 1, . . . , fi} for i = 1, . . . , k, and let Gj = {gj−1 + 1, . . . , gj} for
j = 1, . . . ,m. Let W1 be the set of permutations σ such that σ(Fi) = Fi for each i, and let
W2 be the set of permutations σ such that σ(Gj) = Gj for each j. If σ is the composition
σ1◦σ2 of a σ1 ∈ W1 and a σ2 ∈ W2, and if fj−1 < gi ≤ gj (or, indeed, if fj−1 ≤ gi ≤ fj),
then

F1 ∪ · · · ∪ Fj−1 ⊂ G1 ∪ · · · ∪Gi ⊂ F1 ∪ · · · ∪ Fj .

Hence σ({1, . . . , gi}) = σ(G1 ∪ · · · ∪Gi) = σ1(σ2(G1 ∪ · · · ∪Gi)) equals σ1(G1 ∪ · · · ∪Gi),
which contains σ1(F1 ∪ · · · ∪ Fj−1) = F1 ∪ · · · ∪ Fj−1 = {1, . . . , fj−1} and is contained in
σ1(F1 ∪ · · · ∪ Fj) = F1 ∪ · · · ∪ Fj = {1, . . . , fj}. Hence the condition is necessary.
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To prove the converse, we use induction on n. First suppose that f1 ≤ g1. Let a be
the largest integer such that fa ≤ g1. If a = k, then g1 = n and m = 1, and so W2 is the
group of all permutations, and the result is trivial. So assume that a < k. If fa < g1, then
by hypothesis, F1 ∪ · · · ∪ Fa ⊂ σ(G1) ⊂ F1 ∪ · · · ∪ Fa+1. If fa = g1, then fa−1 < g1 ≤ fa,
and the hypothesis implies that σ(G1) = F1 ∪ · · · ∪ Fa. For ν = 1, . . . , a, Fν is contained
in σ(G1), and so equals σ(Sν) for some Sν ⊂ G1. We can therefore define a permutation
τ of G1 by setting τ(x) = σ(x) if x ∈ Sν for some ν ≤ a, and mapping the remaining
part G1 \ (S1 ∪ · · · ∪ Sa) of G1 onto the set G1 \ (F1 ∪ · · · ∪ Fa). We then extend τ to
a permutation of {1, . . . , n} by setting τ(x) = x for all x ∈ G2 ∪ · · · ∪ Gm. Note that
τ ∈ W2 and that σ and τ agree on S1 ∪ · · · ∪ Sa. Let σ′ = σ◦τ−1. If y ∈ {1, . . . , fa},
then y = σ(x) = τ(x) for some x ∈ S1 ∪ · · · ∪ Sa. So σ′(y) = y. Thus σ′ also permutes
{fa + 1, . . . , n}. Let σ̃ denote the restriction of σ′ to that set.

Assume for the moment that fa < g1. Now G̃1 = G1\(F1∪· · ·∪Fa) = {fa+1, . . . , g1},
together with G2, . . . , Gm, partition {fa + 1, . . . , n}. So do the sets Fa+1, . . . , Fk. If
fj−1 < gi ≤ fj for some i ≥ 1 and j ≥ a+ 1, then by the hypothesis on σ,

{1, . . . , fj−1} ⊂ σ(G1 ∪ · · · ∪Gi) ⊂ {1, . . . , fj}. (1)

Also, σ̃({fa + 1, . . . , gi}) equals σ̃(G̃1 ∪G2 ∪ · · · ∪Gi). Now

σ̃(G̃1) = σ′(G1 \ (F1 ∪ · · · ∪ Fa)) = σ′(G1) \ σ′(F1 ∪ · · · ∪ Fa)) = σ(G1) \ (F1 ∪ · · · ∪ Fa).

So if we remove F1 ∪ · · · ∪ Fa = {1, . . . , fa} from the sets in (1), we get

{fa + 1, . . . , fj−1} ⊂ σ̃(G̃1) ∪ σ(G2 ∪ · · · ∪Gi) ⊂ {fa + 1, . . . , fj}.

This means that the permutation σ̃ satisfies the same condition as σ, but for the new
partitions G̃1, G2, . . . , Gm and Fa+1, . . . , Fk of the smaller set {fa + 1, . . . , n}. So by the
induction hypothesis, there are permutations σ̃1 and σ̃2 such that σ̃1(Fi) = Fi for i =
a + 1, . . . , k and σ̃2(G̃1) = G̃1 and σ̃2(Gj) = Gj for j = 2, . . . ,m, so that σ̃ = σ̃1◦σ̃2.
We then define σ1 ∈ W1 by setting σ1(x) = x if x ∈ F1 ∪ · · · ∪ Fa and σ1(x) = σ̃1(x) if
x ∈ Fa+1 ∪ · · · ∪ Fk. We define σ2 ∈ W2 by setting σ2(x) = τ(x) if x ∈ F1 ∪ · · · ∪ Fa and
σ2(x) = σ̃2(x) if x ∈ Fa+1 ∪ · · · ∪ Fk. Then σ = σ1◦σ2.

If fa = g1, then we arrive at the same conclusion with a little less work, because we
do not need to use the set G̃1.

Finally, if f1 > g1, then interchange the roles of the fi’s and gj ’s. It is routine to
check that σ−1 satisfies

{1, . . . , gj−1} ⊂ σ−1({1, . . . , fi}) ⊂ {1, . . . , gj}

if gj−1 < fi ≤ gj . Hence by the case just treated, σ−1 = σ2◦σ1 for some σ1 ∈ W1 and
σ2 ∈W2. Thus σ = σ−1

1 ◦σ−1
2 has the desired form.
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10. We first give a solution of the stated problem, and then give a “formula” for an
for general n.

A. Formula for an when n is a power of 2.
Step (i): For each n ≥ 1, an+1 = an or an+1 = an + 1. This is proved by induction.

It is clearly true if n = 1. Suppose that it is true for n = 1, . . . , N . We show that it
is true for n = N + 1. Now aN+2 = aaN+1 + aN+2−aN+1 is either aaN

+ aN+2−aN
or

aaN+1 + aN+1−aN
by the induction hypothesis. In the first case, since N + 1 − aN ≤ N ,

we know that aN+2−aN
= aN+1−aN

+ ε for ε = 0 or 1. So

aN+2 = aaN
+ aN+2−aN

= aaN
+ aN+1−aN

+ ε = aN+1 + ε.

In the second case, since aN ≤ N is an obvious consequence of the induction hypothesis,
aaN+1 = aaN + ε for ε = 0 or 1. So

aN+2 = aaN+1 + aN+1−aN
= aaN

+ ε+ aN+1−aN
= aN+1 + ε.

So the statement is true for n = N + 1.
Step (ii): a1 ≤ a2 ≤ · · ·, and an ≤ n for all n. This is an immediate consequence of

Step (i).
Step (iii): an ≥ n/2 for all n ≥ 1. This is also proved by induction. It is clearly

true if n = 1 and n = 2. Suppose that it is true for n = 1, . . . , N . Then as aN ≤ N and
N + 1− aN ≤ N , we find from the induction hypothesis that

aN+1 = aaN
+ aN+1−aN

≥ aN
2

+
N + 1− aN

2
=
N + 1

2
.

Final Step: We show that a2k = 2k−1 for all integers k ≥ 1. This is certainly true for
k = 1. Suppose that it is true for a particular k, but not true when k is replaced by k+ 1.
We know from Step (iii) that a2k+1 ≥ 2k. So suppose that a2k+1 ≥ 2k + 1. Let n be the
smallest integer such that an = 2k + 1. Since a1 ≤ a2 ≤ · · ·, we see that n ≤ 2k+1. As
a2k = 2k−1, we know from Step (i) that n ≥ 2k + 2. By the choice of n and by Step (i) we
know that an−1 = 2k. Using n− 2k ≤ 2k and Step (ii),

2k + 1 = an = aan−1 + an−an−1 = a2k + an−2k ≤ a2k + a2k = 2k−1 + 2k−1 = 2k.

This contradiction completes the induction step.

B. Formula for an for general n. First we show the following: Every positive
integer n has a unique representation

n = 2k +
k∑
`=1

(
µ`
`

)
, (1)

where the µ` are positive integers such that for a certain j ∈ {0, . . . , k}, depending on n,

0 ≤ µ1 < µ2 < · · · < µj < µj+1 = · · · = µk = k.

9



Example: n = 720, k = 9, j = 5. Then

720 = 29 +
(

0
1

)
+
(

3
2

)
+
(

4
3

)
+
(

6
4

)
+
(

8
5

)
+
(

9
6

)
+
(

9
7

)
+
(

9
8

)
+
(

9
9

)
.

The existence and uniqueness of the representation (1) is shown as follows: The sum in
(1) is at most

2k +
k∑
`=1

(
k

`

)
= 2k + (2k − 1) = 2k+1 − 1

and so k is uniquely determined by 2k ≤ n ≤ 2k+1 − 1. There is a unique integer j ∈
{0, . . . , k} such that

2k +
k∑

`=j+1

(
k

`

)
≤ n < 2k +

k∑
`=j

(
k

`

)
;

for example, take j = k if n = 2k, and take j = 0 if n = 2k+1 − 1.
Now write n = m + 2k +

∑k
`=j+1

(
k
`

)
, where 0 ≤ m <

(
k
j

)
. We want to show that

generally if 0 ≤ m <
(
k
j

)
for a given k and some j ∈ {0, . . . , k} then

m =
j∑
`=1

(
µ`
`

)
where 0 ≤ µ1 < µ2 < · · · < µj < k. (2)

If m = 0, then µ` = `− 1 for ` = 1, . . . , j gives the required representation. If j = 0, then
m = 0 and again we have a (trivial) representation (2). So assume that j,m > 0. First
determine µj by requiring (

µj
j

)
≤ m <

(
µj + 1
j

)
.

Clearly such a µj exists and µj < k since m <
(
k
j

)
. Now m <

(
µj+1
j

)
=
(
µj

j

)
+
(
µj

j−1

)
,

and hence 0 ≤ m−
(
µj

j

)
<
(
µj

j−1

)
. We may assume by induction on j that m−

(
µj

j

)
has a

representation (2):

m−
(
µj
j

)
=

j−1∑
`=1

(
µ`
`

)
where 0 ≤ µ1 < µ2 < · · · < µj−1 < µj

Thus m has the required representation (2). Uniqueness of the representation is easily seen
from the above.

We shall call the representation (1) of n the c-representation of n (c for combinatorial).
Here now is a formula for an: If n has representation (1), then omitting the zero terms

from (1), namely those with µ` = `− 1, we can write the c-representation

n = 2k +
k∑

`=i+1

(
µ`
`

)
(3)
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for some i = i(n) in {0, 1, . . . , k}. We claim that then an is given by

an = 2k−1 +
k∑

`=i+1

(
µ` − 1
`− 1

)
, (4)

(note that µ` = `− 1 for ` ≤ i and µ` ≥ ` for ` > i).
In particular, if n = 2k, then the sum in (4) is empty (i = k), and we obtain a2k = 2k−1.
In the example n = 720 given above, i = 1, and

a720 = 28 +
(

2
1

)
+
(

3
2

)
+
(

5
3

)
+
(

7
4

)
+
(

8
5

)
+
(

8
6

)
+
(

8
7

)
+
(

8
8

)
= 399.

The formula for an was first guessed from numerical evidence—a computer-produced table
of an, n ≤ 1024.

Write αn for the right hand side in (4). Then we have to show that αn satisfies the
same recursion as an, namely

αn+1 = ααn + αn+1−αn . (5)

First we observe that if i(n) > 0, then the c-representation of n+ 1 is

n+ 1 = 2k +
k∑
`=i

(
µ`
`

)
, with µi = i. (6)

This is no longer true if i = 0, since
(
0
0

)
is not admitted in the c-representation. In that

case, we write µ1 = 1+d for some d ≥ 0 and define i1 ≥ 1 as the index for which µ` = `+d
for 1 ≤ ` ≤ i1 and µ` > `+ d for ` > i1. Hence

n+ 1 = 2k +
i1∑
`=0

(
`+ d

d

)
+

k∑
`=i1+1

(
µ`
`

)
= 2k +

(
d+ i1 + 1

i1

)
+

k∑
`=i1+1

(
µ`
`

)
, (7)

and this last expression is indeed a c-representation of n+ 1 since d+ i1 + 1 < µi1+1. Here
we have made use of the well-known combinatorial formula

m∑
`=0

(
`+ d

`

)
=
(
m+ d+ 1

m

)
,

which is easily proved by induction on m. It follows from (6) that

αn+1 = 2k−1 + 1 +
k∑

`=i+1

(
µ` − 1
`− 1

)
= αn + 1 if i > 0
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and from (7) that

αn+1 = 2k−1 +
(
d+ i1
i1 − 1

)
+

k∑
`=i1+1

(
µ` − 1
`− 1

)
= αn if i = 0,

since
i1∑
`=1

(
`+ d− 1
`− 1

)
=
(
d+ i1
i1 − 1

)
.

Thus

αn+1 =
{
αn if i(n) = 0;
αn + 1 if i(n) > 0. (8)

Next we observe that the c-representation of n− αn is

n− αn = 2k−1 +
k∑

`=i+1

(
µ` − 1
`

)
(9)

since
(
µ`

`

)
−
(
µ`−1
`−1

)
=
(
µ`−1
`

)
and 2k − 2k−1 = 2k−1. Here if µi+1 = i + 1, then there are

some zero terms in (9), but in any case i(n− αn) ≥ i(n).
We are now ready to prove (5). Suppose first that i(n) > 0. Then by (8),

αn+1 = αn + 1 and αn+1−αn
= αn−αn

+ 1,

because i(n− αn) ≥ i(n) > 0, and we have to show that

αn = ααn + αn−αn . (10)

But

ααn = 2k−2 +
k∑

`=i+1

(
µ` − 2
`− 2

)
by (4),

and

αn−αn = 2k−2 +
k∑

`=i+1

(
µ` − 2
`− 1

)
by (9),

hence

ααn + αn−αn = 2k−1 +
k∑

`=i+1

(
µ` − 1
`− 1

)
= αn

as required.
If i(n) = 0 and µ1 > 1, then by (8), αn+1 = αn, αn+1−αn = αn−αn and the statement

to be proved is again (10). Write the c-representation of n in the form

n = 2k +
i1∑
`=1

(
d1 + `

`

)
+

i2∑
`=i1+1

(
d2 + `

`

)
+
∑
`>i2

(
µ`
`

)
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for some d2 > d1 > 0, i2 > i1 > 0, where µ` > d2 + ` for ` > i2. Then

αn − 2k−1 −
∑
`>i2

(
µ` − 1
`− 1

)
=

i1∑
`=1

(
d1 + `− 1
`− 1

)
+

i2∑
`=i1+1

(
d2 + `− 1
`− 1

)
.

If i1 = 1, the right hand side becomes
(
d2+i2
i2−1

)
, hence setting

n′ = 2k +
(
d2 + i2 + 1

i2

)
+
∑
`>i2

(
µ`
`

)
,

we have αn′ = αn, i(n′) = i2 − 1 > 0 and

n′ − n =
(
d2 + i2 + 1

i2

)
−

i2∑
`=2

(
d2 + `

`

)
−
(
d1 + 1

1

)
= d2 − d1 + 1,

and so n′ = n+ d2 − d1 + 1.
If i1 > 1, we define

n′ = 2k +
(
d1 + i1 + 1

i1

)
+

i2∑
`=i1+1

(
d2 + `

`

)
+
∑
`>i2

(
µ`
`

)
. (11)

The right hand side of (11) gives the c-representation of n′, and we see that αn′ = αn,
i(n′) = i1 − 1 > 0 and

n′ − n =
(
d1 + i1 + 1

i1

)
−

i1∑
`=1

(
d1 + `

`

)
= 1,

so that n′ = n+1. From (9) we can verify easily (since i1(n−αn) = i1(n)) that αn′−αn′ =
αn−αn and we can replace (10) by

αn′ = ααn′ + αn′−αn′ ,

which is satisfied since i(n′) > 0.
The only case left to be considered is when i(n) = 0 and µ1 = 1. The argument is

similar to the previous one, and will not be repeated. The only modification is that the
equation to be satisfied now is

αn = ααn + αn−αn + 1

instead of (10).
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