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Solutions.

1. Notice that 22 = 4, 122 = 144, 382 = 1444 and 25382 = 6441444.

(i) Show that there is no integer x such that x2 = . . . 4444 in its decimal representation.

(ii) Find a number n such that the last four digits of n2 are 4144.

(iii) Show that for each k ≥ 1 there is a number x such that the last k digits of x2 consist
of 1’s and 4’s only.

(iv) What can one say if 1 and 4 are replaced by other pairs of digits?

Solution. A quick solution to (i) and (ii) is as follows: (i) If x2 = . . . 4444, then x2 ≡ 4444
(mod 10000), and so x2 ≡ 12 (mod 16). But the squares mod 16 are just 0, 1, 4 and 9.
(ii) The smallest number n with this property is n = 1012.

But for the more difficult parts (iii) and (iv) of the question, SUMS cannot improve
on the following solution, due to Stewart Wilcox (Sydney University):

Let D = {0, 1, . . . , 9}, O = {1, 3, 5, 7, 9}, E = {2, 4, 6, 8} and S = {0, 1, 4, 5, 6, 9}. Pick
any integer x and let y be the last digit of x2, so y ∈ D and x2 ≡ y (mod 10). Then there
exists z ∈ D with x ≡ z (mod 10). In fact we can choose z ≤ 5 by replacing x with −x if
necessary, as we will still have y ≡ x2 (mod 10). But then y ≡ z2 (mod 10), so squaring
0, 1, . . . , 5 we see that y ∈ S. Hence the last digit of any square must be in S. Note that
each element of S is achievable as the last digit of a square, as

02 ≡ 0 (mod 10),

12 ≡ 1 (mod 10),

22 ≡ 4 (mod 10),

52 ≡ 5 (mod 10),

42 ≡ 6 (mod 10),

32 ≡ 9 (mod 10).

Let X be the set of subsets A ⊆ D such that for any positive integer k there exists a
perfect square with the last k digits belonging to A. That is, A ∈ X if and only if for any
k > 0 there exist integers x, y with x2 ≡ y (mod 10k) and y ∈

∑k−1
i=0 10iA. We will show

that A ∈ X if and only if either 0 ∈ A or A satisfies the following conditions:

A ∩ S 6= ∅ and

A ∩E 6= ∅ and

|A| ≥ 2 and

A 6⊆ {2, 6, 8} and

A 6⊆ {3, 5, 7, 8}.

First assume A ∈ X. If 0 ∈ A we are done, so assume otherwise. Setting k = 1,
there exists x ∈ Z and a ∈ A with x2 ≡ a (mod 10). Thus a ∈ S, so A ∩ S 6= ∅. Now
setting k = 2, we have x2 ≡ 10a + b (mod 100) for some x ∈ Z and a, b ∈ A. If b ∈ E
then A ∩ E 6= ∅ as required. Otherwise b /∈ E, so b ∈ O as b 6= 0. Again b ∈ S, so
b ∈ O ∩ S = {1, 5, 9}. In particular b ≡ 1 (mod 4), so x2 ≡ 10a + b ≡ 2a + 1 (mod 4).
Squaring 0, 1, 2 shows that any square must be ≡ 0 or 1 (mod 4), so a is even. Since
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a ∈ A we have a 6= 0, so a ∈ E. Hence in either case A ∩ E 6= ∅ as required. Next we
show that A 6⊆ {2, 6, 8}. Assume otherwise. Then setting k = 2, for some x ∈ Z we have
x2 ≡ 10a + b (mod 100) with a, b ∈ A. But then b ∈ S and b ∈ A ⊆ {2, 6, 8}, so b = 6.
Also a ∈ A ⊆ {2, 6, 8} so a is even, giving x2 ≡ 10a + b ≡ 6 ≡ 2 (mod 4), contradiction.
Assume |A| ≤ 1. Since A ∩ S 6= ∅ we can pick a ∈ A ∩ S, giving A = {a}. Also A ∩E 6= ∅
so a ∈ E ∩ S = {4, 6}. If a = 6 then A ⊆ {2, 6, 8}, contradiction. Thus a = 4, so setting
k = 4 we can pick x ∈ Z with x2 ≡ 4444 (mod 104). Clearly x is even so let x = 2y,
giving y2 ≡ 1111 (mod 2500). In particular y2 ≡ 1111 ≡ 3 (mod 4), contradiction. Note
that we have shown A = {4} fails at k = 4, a fact which will be used later. Hence |A| ≥ 2
as required. Finally assume A ⊆ {3, 5, 7, 8}. Setting k = 2 we have x2 ≡ 10a + b (mod
100) for some x ∈ Z and a, b ∈ A. Thus b ∈ S ∩ A ⊆ {5}, so b = 5. Since x2 is then
odd, we must have x2 ≡ 1 (mod 4). Thus 10a ≡ x2 − 5 ≡ 0 (mod 4), so a is even. But
a ∈ A ⊆ {3, 5, 7, 8}, giving a = 8. Hence x2 ≡ 85 ≡ 0 (mod 5), so x = 5y for some y ∈ Z.
Thus 85 ≡ x2 ≡ 0 (mod 25), contradiction, so the 5 conditions are satisfied as required.

Conversely, assume first that 0 ∈ A. Then for any k > 0, setting x = 10k and y = 0
we have x2 ≡ y (mod 10k) and y ∈

∑k−1
i=0 10iA, as required. Now assume 0 /∈ A but that

A satisfies the above 5 conditions. We will first consider the special case A ∩ S = {5}, so
A ⊆ {2, 3, 5, 7, 8}. But A 6⊆ {3, 5, 7, 8}, so 2 ∈ A. We will inductively construct xk ∈ Z
with xk ≡ 15 (mod 25) and

x2
k ≡ 225 +

k−1
∑

i=3

5 × 10i (mod 5k+1)

for all k ≥ 3. When k = 3 let x3 = 515, so x2
3 = 225 + 265000 and 54|265000 as required.

Now assume xk has been constructed for some k ≥ 3, and let

225 +

k−1
∑

i=3

5 × 10i − x2
k = 5k+1l

where l ∈ Z. Let xk+1 = xk + 10k + 5kl. We have

2xk ≡ 30 ≡ 5 (mod 25)

Multiplying by 10k + 5kl, which is divisible by 5k, this gives

2xk(10k + 5kl) ≡ 5 × 10k + 5k+1l = 225 +

k
∑

i=3

5 × 10i − x2
k (mod 5k+2)

Also since k ≥ 3 we have 2k ≥ k + 3 > k + 2, so 5k+2|52k. Hence (10k + 5kl)2 ≡ 0 (mod
5k+2), giving

x2
k+1 = x2

k + 2xk(10k + 5kl) + (10k + 5kl)2 ≡ 225 +
k

∑

i=3

5 × 10i (mod 5k+2)

as required. Also 25|5k|(10k +5kl) since k ≥ 3, so we still have xk+1 ≡ 15 (mod 25). Hence
xk has been constructed inductively. Next we construct yk ∈ Z inductively with

y2
k ≡ 225 +

k−1
∑

i=3

5 × 10i (mod 2k)
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for all k ≥ 3. When k = 3 let y3 = 1, giving y2
3 = 1 ≡ 225 (mod 8). Now assume yk has

been constructed for some k ≥ 3. Then

225 +
k

∑

i=3

5 × 10i − y2
k ≡ 5 × 10k ≡ 0 (mod 2k)

Let 225 +
∑k

i=3 5 × 10i − y2
k = 2kl, and yk+1 = yk + 2k−1l. Since k ≥ 3, we have

2(k − 1) ≥ k + 1. Hence (2k−1l)2 ≡ 0 (mod 2k+1), so

y2
k+1 = y2

k + 2kl + (2k−1l)2 ≡ 225 +

k
∑

i=3

5 × 10i (mod 2k+1)

as required. By the Chinese Remainder Theorem, since 5k and 2k are coprime, we can
now find zk ∈ Z with zk ≡ xk (mod 5k) and zk ≡ yk (mod 2k). Then

z2
k ≡ x2

k ≡ 225 +

k−1
∑

i=3

5 × 10i (mod 5k)

z2
k ≡ y2

k ≡ 225 +

k−1
∑

i=3

5 × 10i (mod 2k)

Again using that 2k and 5k are coprime, and since 10k = 2k × 5k, this gives

z2
k ≡ 225 +

k−1
∑

i=3

5 × 10i (mod 10k)

for k ≥ 3. Clearly the k = 3 case implies the k = 1, 2 cases, so A ∈ X. Now assume
A ∩ S 6= {5}. We will inductively construct a sequence ai ∈ A such that a0 ∈ S \ {5} and
for all k ≥ 1,

There exists x ∈ Z with x2 ≡
k−1
∑

i=0

ai10i (mod 2k) (1)

First assume A ∩ O 6= ∅. We also have A ∩ E 6= ∅, so there exist b, c ∈ A with b odd and
c even. Since A ∩ S 6= ∅ or {5}, there exists a0 ∈ A ∩ S with a0 6= 5. But because a0 ∈ S
there exists x ∈ Z with x2 ≡ a0 (mod 10). Thus x2 ≡ a0 (mod 2), and the statement is
true for k = 1. Assume we have constructed a0, . . . , ak−1 for some k ≥ 1 with

x2 ≡
k−1
∑

i=0

ai10i (mod 2k)

for some x ∈ Z. Then x2 −
∑k−1

i=0 ai10i ≡ 0 or 2k (mod 2k+1). In the former case let
ak = c. Then

x2 ≡
k−1
∑

i=0

ai10i ≡
k−1
∑

i=0

ai10i + ak10k ≡
k

∑

i=0

ai10i (mod 2k+1)

since 2k+1|ak2k|ak10k. In the latter case let ak = b, so ak10k ≡ 2k (mod 2k+1). Then

x2 ≡
k−1
∑

i=0

ai10i + 2k ≡
k−1
∑

i=0

ai10i + ak10k ≡
k

∑

i=0

ai10i (mod 2k+1)
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As required. Hence we have constructed ai inductively. Now assume A ∩ O = ∅. Since
0 /∈ A this gives A ⊆ E. But A 6⊆ {2, 6, 8}, so 4 ∈ A. Also |A| ≥ 2, so there exists b ∈ A
with b 6= 4. Then b ∈ {2, 6, 8}. Assume b ∈ {2, 6}, so b ≡ 2 (mod 4). We will construct a
sequence ai satisfying the stronger condition

There exists x ∈ Z with x2 ≡
k−1
∑

i=0

ai10i (mod 2k+1)

Clearly this will imply (1). When k = 1 we can take a0 = 4 ∈ A ∩ S and x = 2, giving
22 = 4 ≡ 4 (mod 4) as required. Assume such a0, . . . , ak−1 have been constructed for some
k ≥ 1. Then

x2 −
k−1
∑

i=0

ai10i ≡ 0 or 2k+1 (mod 2k+2)

In the former case set ak = 4 ∈ A, so 2k+2|ak10k. Then

x2 ≡
k−1
∑

i=0

ai10i ≡
k−1
∑

i=0

ai10i + ak10k =
k

∑

i=0

ai10i (mod 2k+2)

In the latter case set ak = b, so ak ≡ 2 (mod 4) gives ak10k ≡ 2k+1 (mod 2k+2). Then

x2 ≡
k−1
∑

i=0

ai10i + 2k+1 ≡
k−1
∑

i=0

ai10i + ak10k =

k
∑

i=0

ai10i (mod 2k+2)

As required. Finally assume b = 8. In this case we will construct ai so that

There exists x ∈ Z with x2 ≡
k−1
∑

i=0

ai10i (mod 2k+2)

Again this will imply (1). As before we can set a0 = 4 and x = 2 for the k = 1 case.
Assume such a0, . . . , ak−1 have been constructed for some k ≥ 1. Then

x2 −
k−1
∑

i=0

ai10i ≡ 0 or 2k+2 (mod 2k+3)

In the former case set ak = 8 ∈ A, so 2k+3|ak10k. Then

x2 ≡
k−1
∑

i=0

ai10i ≡
k−1
∑

i=0

ai10i + ak10k =
k

∑

i=0

ai10i (mod 2k+3)

In the latter case set ak = 4 ∈ A, so ak ≡ 4 (mod 8) gives ak10k ≡ 2k+2 (mod 2k+3). Then

x2 ≡
k−1
∑

i=0

ai10i + 2k+2 ≡
k−1
∑

i=0

ai10i + ak10k =

k
∑

i=0

ai10i (mod 2k+3)

As required. Thus in each case we have inductively constructed a sequence satisfying
5 6= a0 ∈ S and (1) for each k. Next we show by induction on k that for all k ≥ 1 there
exists x ∈ Z with

x2 ≡
k−1
∑

i=0

ai10i (mod 5k)
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Since a0 ∈ S, there exists x ∈ Z with x2 ≡ a0 (mod 10). Thus x2 ≡ a0 (mod 5), giving
the k = 1 case. Assume the statement is true for some k ≥ 1, and pick such x. Then

k
∑

i=0

ai10i − x2 ≡ ak10k ≡ 0 (mod 5k)

Let
∑k

i=0 ai10i − x2 = 5kl where l ∈ Z. Since a0 ∈ D and a0 6= 0, 5, we have 5 - a0. Thus

x2 ≡
k−1
∑

i=0

ai10i ≡ a0 6≡ 0 (mod 5)

So 5 - x. Since 5 is prime there exists m ∈ Z with xm ≡ 1 (mod 5). Let y = x + 3lm5k.
Since k ≥ 1 we have 2k ≥ k + 1, so (3lm5k)2 ≡ 0 (mod 5k+1). Also 6lmx ≡ l (mod 5) so
multiplying by 5k gives

y2 = x2 + 2 × x× 3lm5k + (3lm5k)2 ≡ x2 + 5kl =
k

∑

i=0

ai10i (mod 5k+1)

As required. Hence such x exists for all k ≥ 1 by induction. For any k, from (1) and the
above result we have shown that there exist x, y ∈ Z with

x2 ≡
k−1
∑

i=0

ai10i (mod 2k)

y2 ≡
k−1
∑

i=0

ai10i (mod 5k)

As before, choosing z ∈ Z with z ≡ x (mod 2k) and z ≡ y (mod 5k) gives z2 ≡
∑k−1

i=0 ai10i

(mod 10k). Hence A ∈ X as required.

Referring to the parts of the original question, we let A = {1, 4}. (i) has been shown
above. We can see (ii) using the above method as follows: We know that 122 ≡ 144
(mod 8). Extending to (mod 16) as in the above proof with A = {1, 4} gives

122 ≡ 4144 (mod 16)

Now we apply the (very inefficient) algorithm in the above proof to give

22 ≡ 4 (mod 5)

3622 ≡ 44 (mod 25) since l = 8,m = 3

(−1177738)2 ≡ 144 (mod 125) since l = −5236,m = 3

(−12483602310238)2 ≡ 4144 (mod 625) since l = −11096534340,m = 3

Note that −12483602310238 ≡ 387 (mod 625). Thus we wish to find z ∈ Z with z ≡ 12
(mod 16) and z ≡ 387 (mod 625). We have 387 ≡ 3 (mod 16) and 625 ≡ 1 (mod 16), so
one such z is z = 387+9×625 = 6012. Indeed 60122 = 36144144 (in fact 10122 = 1024144
would have sufficed).

(iii) We have A ∩ S = {1, 4} 6= ∅, A ∩ E = {4} 6= ∅, |A| = 2 ≥ 2, 1 ∈ A \ {2, 6, 8} and
1 ∈ A \ {3, 5, 7, 8}. Hence A satisfies the 5 conditions, so A ∈ X. That is, for k ≥ 1 there
exists x ∈ Z with the last k digits of x2 in A.
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(iv) Applying the above criteria to each pair, the elements of X with order 2 are

{0, 1}, {0, 2}, {0, 3}, {0, 4}, {0, 5}, {0, 6}, {0, 7}, {0, 8}, {0, 9},

{1, 2}, {1, 4}, {1, 6}, {1, 8}, {2, 4}, {2, 5}, {2, 9}, {3, 4}, {3, 6},

{4, 5}, {4, 6}, {4, 7}, {4, 8}, {4, 9}, {5, 6}, {6, 7}, {6, 9}, {8, 9}.

2. Recall that the Fibonacci numbers (fn)n≥1 are defined by f1 = f2 = 1 and fn+2 =
fn+1 + fn if n ≥ 1.

(a) Let `n ∈ {0, 1, . . . , 9} be the last digit in fn. Thus the sequence (`n) starts

1, 1, 2, 3, 5, 8, 3, 1, 4, 5, 9, . . . .

Show that this sequence is periodic. What is its period?

(b) Notice that there are 6 n’s such that fn is only one digit long. Show that if k ≥ 2,
there are either 4 or 5 n’s such that fn has exactly k digits.

Solution. (a) The numbers `n satisfy `n ≡ fn (mod 10), and so `n+2 ≡ `n+1+`n (mod 10).
If (`n, `n+1) = (`n+r, `n+r+1) (mod 10) for some n ∈ N, then `n+r+2 ≡ `n+r+1 + `n+r ≡
`n+1 + `n ≡ `n+2, and so (`n+1, `n+2) = (`n+r+1, `n+r+2) (mod 10). Similarly, `n+r−1 ≡
`n+r+1 − `n+r ≡ `n+1 − `n ≡ `n−1 and so (`n−1, `n) = (`n+r−1, `n+r) (mod 10).

A routine induction now shows that (`m, `m+1) = (`m+r, `m+r+1) (mod 10) for all
m ∈ N, so that `m+r = `m for all m ∈ N. So to show that the sequence (`n) is periodic, it
is enough to find n, r ∈ N with r > 0 such that (`n, `n+1) = (`n+r, `n+r+1) (mod 10). This
must be possible, because (`n, `n+1) ∈ {0, 1, . . . , 9}2, and so there are at most 100 different
possibilities for (`n, `n+1). A routine calculation shows that (`r, `r+1) = (`0, `1) (mod 10)
for r = 60, but for no smaller r > 0. It follows that the sequence (`n) is periodic, with
period 60.

(b) An integer a is k digits long if and only if 10k−1 ≤ a < 10k. Suppose that
k ≥ 2 and that m is the smallest positive integer such that fm is k digits long. Then
fm−1 < 10k−1 ≤ fm < 10k. Now fm−1 > fm−2, and so fm = fm−1 + fm−2 < 2fm−1.
Hence fm−1 >

1
2fm ≥ 5 · 10k−2. Also,

fm+1 = fm + fm−1 > 10 · 10k−2 + 5 · 10k−2 = 15 · 10k−2,

fm+2 = fm+1 + fm > 15 · 10k−2 + 10 · 10k−2 = 25 · 10k−2,

fm+3 = fm+2 + fm+1 > 25 · 10k−2 + 15 · 10k−2 = 40 · 10k−2,

fm+4 = fm+3 + fm+2 > 40 · 10k−2 + 25 · 10k−2 = 65 · 10k−2,

fm+5 = fm+4 + fm+3 > 65 · 10k−2 + 40 · 10k−2 = 105 · 10k−2 > 10k.

Hence fm+5 needs at least k+1 digits. On the other hand, fm = fm−1 +fm−2 < 2fm−1 <
2 · 10k−1, and so

fm+1 = fm + fm−1 < 2 · 10k−1 + 10k−1 = 3 · 10k−1,

fm+2 = fm+1 + fm < 3 · 10k−1 + 2 · 10k−1 = 5 · 10k−1,

fm+3 = fm+2 + fm+1 < 5 · 10k−1 + 3 · 10k−1 = 8 · 10k−1 < 10k.

Hence fm+3 needs at most k digits. So at least the 4 Fibonacci numbers fm, fm+1, fm+2

and fm+3 have exactly k digits. The next number, fm+4 may or may not have k digits, but
fm+5 definitely has at least k+1 digits (in fact, exactly k+1 digits, because one similarly
finds that fm+4 < 13 · 10k−1 and then that fm+5 < 21 · 10k−1 < 10k+1).
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3. Oscar and Nicole are playing the following game with matchsticks: They form two
piles of matches, one with 42 matches, and the other with 86. They take turns removing
matches from the piles, according to the following rule: at each stage the matches taken
must all come from one pile, and the number taken must be a divisor of the number of
matches in the other pile. The player who removes the last match wins. Nicole goes first.
Describe a strategy for Oscar to adopt so that he wins the game, no matter what Nicole
does. Show that if we instead start with piles of 40 and 86 matches, the Nicole can always
win, if she adopts the correct strategy.

Solution. Let ord2(k) denote the number of times 2 divides the integer k.

Step 1. Suppose that at a certain point in the game there are m matches on one pile
and n on the other, with ord2(m) = ord2(n), and that it is Nicole’s turn. Then after her
move, the numbers m′ and n′ on the piles will satisfy ord2(m

′) 6= ord2(n
′). For suppose

that Nicole removes r matches from the pile of m. Then by the rule, r divides n, and
we have m′ = m − r and n′ = n. Let v = ord2(m) = ord2(n), and write m = 2vm1

and n = 2vn1, where m1 and n1 are odd. Since r divides n, we have ord2(r) ≤ v. If
ord2(r) = v, write r = 2vr1, where r1 is odd. Then m′ = 2vm1 − 2vr1 = 2v(m1 − r1),
which is divisible by 2 at least v+1 times, because m1 and r1 are both odd, forcing m1−r1
to be even. Thus ord2(m

′) ≥ v+1 > ord2(n
′). If however ord2(r) = u < v, write r = 2ur1,

with r1 odd. Then m′ = 2vm1 − 2ur1 = 2u(2v−um1 − r1) is divisible by 2 exactly u times,
because 2v−um1 − r1 is odd. Thus ord2(m

′) = u < v = ord2(n
′).

Step 2. Suppose that at a certain point in the game there are m matches on one
pile and n on the other, with ord2(m) 6= ord2(n), and that it is Oscar’s turn. Then
he can choose his move so that the numbers m′ and n′ on the new piles will satisfy
ord2(m

′) = ord2(n
′). For suppose that m = 2um1 and n = 2vn1, where u < v (say) and

m1 and n1 are odd. Oscar should remove 2u matches from the pile with n matches. Then
m′ = m and n′ = n− 2u = 2vn1 − 2u = 2u(2v−un1 − 1) satisfy ord2(m

′) = ord2(n
′) = u.

Notice that game starts with ord2(42) = ord2(86) = 1. By Step 1, after Nicole’s first
move the numbers m and n of matches satisfy ord2(m) 6= ord2(n). Oscar then makes a
move to obtain numbers m′ and n′ of matches in the piles satisfying ord2(m

′) = ord2(n
′),

as he can, by Step 2. Continuing in this way, after any of Nicole’s moves we have numbers
m and n of matches satisfy ord2(m) 6= ord2(n). In particular, m = n = 0 cannot happen,
and so Nicole cannot make the last move.

If instead we start with piles of 40 and 86, then Nicole’s first move should be to remove
2 matches from the pile with 40. Then it is as if we started with 38 matches and 86, but
with Oscar going first. Since ord2(38) = ord2(86) = 1, Nicole will win if she adopts the
strategy described for Oscar in the original game.

4. Let G be a finite group. If x ∈ G, then the conjugacy class of x is the set of elements
of the form gxg−1, where g ∈ G. Now suppose that H is a subgroup of G which contains
an element from each conjugacy class in G. Show that H = G.

Solution. Let x ∈ G. Then H contains an element gxg−1 for some g ∈ G. That is, there
exist g ∈ G and h ∈ H so that gxg−1 = h. Hence x = g−1hg is an element of the subgroup
g−1Hg = {g−1hg : h ∈ H}. So our hypothesis tells us that every element x of G belongs
to one of the subgroups g−1Hg. That is

G =
⋃

g∈G

g−1Hg. (1)

Now let N = {g ∈ G : g−1Hg = H}. Then N is a subgroup of G, called the normalizer
of H. Clearly H ⊂ N . Suppose that g1, g2 ∈ G and g−1

1 Hg1 = g−1
2 Hg2. Then g1g

−1
2 ∈ N .

7



So the cosets Ng1 and Ng2 are equal. Conversely, if Ng1 = Ng2, then g−1
1 Hg1 = g−1

2 Hg2.
This means that the number of distinct subgroups g−1Hg, as g varies, is the same as the
number c of distinct cosets of N in G. Since G is the disjoint union of the distinct cosets
Ng, and all these cosets have exactly |N | elements, we have c = |G|/|N |.

So there are exactly c = |G|/|N | distinct subgroups g−1Hg, say g−1
1 Hg1, . . . , g

−1
c Hgc.

Each of these subgroups contains the element 1. So the union on the right in (1) is

{1} ∪
c

⋃

i=1

(

g−1
i Hgi \ {1}

)

,

and it therefore has at most 1+c(|H|−1) elements. So (1) implies that |G| ≤ 1+c(|H|−1).
But H ⊂ N implies that c ≤ |G|/|H|, and so c|H| ≤ |G|. Therefore |G| ≤ 1 + |G| − c. So
c = 1. But then |G| ≤ 1 + c(|H| − 1) = |H|, and so H = G.

5. If u and v are distinct roots of the quadratic equation x2 − px + q = 0, then we have
u+v = p and uv = q. Now suppose that P , Q, U and V are 2×2 matrices and that U and
V are distinct solutions of the matrix equation X2 − PX + Q = 0. For a square matrix
A, let Tr(A) denote the sum of its diagonal terms, and let det(A) denote its determinant.
Show that Tr(U+V ) = Tr(P ) and det(UV ) = det(Q) is true if we add the extra hypothesis
that U − V is invertible.

Solution. The result is in fact true for n × n matrices, for any n. Subtracting the two
equations, we have U2 − V 2 − P (U − V ) = 0, and so P = (U 2 − V 2)(U − V )−1. Let
V ′ = (U − V )V (U − V )−1. Then

U + V ′ =
(

U(U − V ) + UV − V 2
)

(U − V )−1 = (U2 − V 2)(U − V )−1 = P

Now Tr(AB) = Tr(BA), and so Tr(V ′) = Tr(V ), and

Tr(U + V ) = Tr(U) + Tr(V ) = Tr(U) + Tr(V ′) = Tr(U + V ′) = Tr(P ).

Also,

Q = PU − U2 = (U2 − V 2)(U − V )−1U − U2 =
(

U2 − V 2 − U(U − V )
)

(U − V )−1U

= (U − V )V (U − V )−1U.

Since det(AB) = det(A) det(B) for n× n matrices, we have

det(Q) = det((U − V )V (U − V )−1U) = det(V ) det(U) = det(UV ).

To see that the result is false without the extra hypothesis that U −V is invertible, choose
any quadratic equation x2 − px+ q = 0 with two distinct roots u and v. For example, we
could take p = 1 and q = 0, so that u = 0 and v = 1. Now let

P =

(

p 0
0 p

)

, Q =

(

q 0
0 q

)

, U =

(

u 0
0 u

)

and V =

(

u 0
0 v

)

.

Then Tr(U + V ) = 3u+ v, whereas Tr(P ) = 2p = 2(u+ v).

6. Suppose that we have a curve C given by an equation in polar coordinates r = f(θ),
0 ≤ θ ≤ 2π. Here f is a continuous function, and f(θ) ≥ 0 for all θ. Assume that the
region bounded by this curve is convex. Now consider a segment of length a + b, and a
point P at distance a from one end of the segment. Imagine sliding this segment round
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inside the curve so that its ends are touching C. The point P traces a curve C ′ inside C.
What is the area of the region between the two curves?

Solution. The answer is πab. Here is one solution.

Let X and Y be the ends of the segment. Notice that f(θ) represents the distance
from the origin to X when OX makes an angle of θ with the positive x-axis. Let g(θ) and
h(θ) denote the distances from O to Y and from O to P , respectively.

The area bounded by C is

A =

∫ 2π

0

∫ f(θ)

0

r dr dθ =
1

2

∫ 2π

0

f(θ)2 dθ.

In the same way, A is also equal to 1
2

∫ 2π

0
g(θ)2 dθ, while the area bounded by C ′ is

A′ = 1
2

∫ 2π

0
h(θ)2 dθ.

Let α denote the angle OXY . Then using the cosine rule for the triangles 4OXY
and 4OXP , we get two formulas for cosα:

cosα =
(a+ b)2 + f(θ)2 − g(θ)2

2(a+ b)f(θ)
and cosα =

a2 + f(θ)2 − h(θ)2

2af(θ)
.

Equating these formulas, multiplying through by f(θ), and integrating both sides from
θ = 0 to θ = 2π, the answer drops out, in view of the formulas for A and A′ derived above.

7. Suppose that f, c are integers such that 1 ≤ f ≤ c. Under what conditions is it possible
to find integers n,m so that 1 ≤ m < c and (f − 1)/c < n/m ≤ f/c?

Solution. If f 6= 1, then taking n = f − 1 and m = c − 1, it is easy to check that
(f − 1)/c < n/m ≤ f/c. If f = 1, it is not possible to find n and m, because we want
0 < n/m ≤ 1/c and m < c. This would imply that nc ≤ m < c, so that n < 1. But then
0 < n/m is not true.

8. We consider strings of 0’s and 1’s, and modify them using the “substitution” rule
σ(0) = 01, σ(1) = 0 as follows: if ξ = x1x2 · · ·xn is a string of 0’s and 1’s, we define σ(ξ)
to be the concatenation σ(x1)σ(x2) · · ·σ(xn). For example, starting from the string 0, and
applying σ repeatedly, we get

σ(0) = 01, σ2(0) = σ(01) = 010, σ3(0) = σ(010) = 01001, etc.

(a) Show that σn(0) is a string of length fn+1, where fn is the n-th Fibonacci number
(see Question 2).

(b) Show that the first fn letters of σn(0) are those of σn−1(0).

Because of (b), there is a unique infinite string ξ = 0100101 · · · of 0’s and 1’s with the
property that, for each n ≥ 1, the first fn letters of ξ are those of σn−1(0). Notice that
the string 11 doesn’t appear in ξ, but 00, 01 and 10 do occur. Show that more generally,

(c) For each n ≥ 1, there are exactly n+1 different strings of length n occurring somewhere
in ξ.

Solution. Let ξn = σn(0) for n = 0, 1, . . .. We first show that, for n = 0, 1, . . .,

ξn+2 = ξn+1ξn. (1)

Firstly, ξ0 = 0, ξ1 = 01, and ξ1ξ0 = 010 = ξ2, so that (1) holds for n = 0. Now suppose
that (1) holds for n = m− 1 for some m ≥ 1. Then

ξm+2 = σm+2(0) = σ(σm+1(0)) = σ(ξm+1) = σ(ξmξm−1) = σ(ξm)σ(ξm−1) = ξm+1ξm,
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so that (1) holds for n = m.

We can now prove (a) and (b). For if `n denotes the length of ξn, then (1) shows that
`n+2 = `n+1 + `n, and since `0 = 1 = f1 and `1 = 2 = f2, an obvious induction shows that
`n = fn+1 for each n ≥ 0, so that (a) holds. By (1), we have ξn = ξn−1ξn−2, and since ξn−1

has length fn by (a), the first fn letters of σn(0) = ξn are the letters of ξn−1 = σn−1(0).

The proof of (c) involves a number of steps.

(i) We can define the action of σ on infinite strings of 0’s and 1’s in the obvious way. Let
us next show that σ(ξ) = ξ. For let n ≥ 0 be an integer. Then the first fn+1 letters of ξ
are those of ξn, and so the first fn+2 letters of σ(ξ) are those of σ(ξn) = ξn+1 = ξnξn−1.
Thus the first fn+1 letters of σ(ξ) are those of ξn, and hence those of ξ. Hence σ(ξ) and
ξ agree in their first fn+1 letters. Since n ≥ 1 was arbitrary, and fn → ∞ as n → ∞, we
see that σ(ξ) = ξ.

(ii) Let us next show that the strings 11, 000 and 10101 do not appear in ξ. To exclude 11
is easy, but the following method can be used for the other two cases. Suppose that the
letters of ξ are x1, x2, x3, . . .. Then ξ = σ(ξ) = y1y2y3 · · ·, where

yi =

{

01 if xi = 0,
0 if xi = 1.

So if a 1 appears in ξ, then it appears in one of the yi’s, and so is preceded by a 0. Hence
11 does not appear in ξ.

Now suppose that 000 appears in ξ. Then if the first of these 0’s appears in yi, then
the string 000 appears in yiyi+1yi+2, since each yj has length at least 1. The possible
yiyi+1yi+2’s, are

010101, 01010, 01001, 00101, and 0010, (2)

according as xixi+1xi+2 = 000, 001, 010, 100 or 101 (the strings 011, 110 and 111 being
excluded as possible xixi+1xi+2’s, since 11 does not appear in ξ). We observe that 000
does not appear in any of the strings (2).

We can exclude 10101 similarly. If it appears in ξ, then it appears in yiyi+1yi+2yi+3yi+4

for some i. Of the 32 strings of 5 0’s and 1’s, all but 7 are excluded as possibilities for
xixi+1xi+2xi+3xi+4’s since 11 and 000 do not appear in ξ. The non-excluded 7 are

00100, 00101, 01001, 01010, 10010, 10100, and 10101.

and one may quickly check that none of the corresponding yiyi+1yi+2yi+3yi+4’s contains
10101.

(iii) Let us next show that if s = x1 · · ·xk and s′ = x′1 · · ·x
′
` are two finite strings of 0’s

and 1’s, and if σ(s) = σ(x1) · · ·σ(xk) equals σ(s′) = σ(x′1) · · ·σ(x′`), then s = s′. We prove
this by induction on min{k, `}. If k = 0, say, then s is empty, so that σ(s) is empty,
and so σ(s′) and s′ must be empty too. Now assume that k, ` ≥ 1. If xk 6= x′`, then we
may assume that xk = 0 and x′` = 1. But then σ(s) ends in a 1 and σ(s′) ends in a 0,
contrary to our hypothesis. Hence xk = x′`. Now by applying the induction hypothesis to
the shorter strings x1 · · ·xk−1 and x′1 · · ·x

′
`−1, we see that s = s′.

(iv) Let us now show that there is no string v of 0’s and 1’s such that both 0v0 and 1v1
appear in ξ. We prove this by induction on the length `(v) of v. Suppose that v is a string
of minimal length such that both 0v0 and 1v1 appear in ξ. Firstly, v is not the empty
string, and it neither begins nor ends in 1 because 11 does not appear in ξ. Similarly, v
is not simply 0, because 000 does not appear in ξ. Hence v = 0w0 for some string w. So
the string 00w00 appears in ξ, and so is in a finite string yiyi+1 · · ·yi+r−1 of length r, say,
for some i such that the first 0 of 00w00 is in yi. By considering the three possibilities
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00, 01 and 10 for xixi+1, the only way to get the first 00 in 00w00 is if xixi+1 = 10.
Similarly, by considering the final 00 in 00w00, we see that a string 10h10 must appear
in ξ, so that σ(10h10) = 00w001. We have σ(0h) = 0w and σ(10h1) = 00w0. Let x = 0h.
Then 1x1 appears in ξ and σ(1x1) = 00w0. Now 1v1 = 10w01 also appears in ξ, and
therefore 010w01 does too, since ξ does not start with 1. A similar analyis shows that
010w01 = σ(0x′0) for some string x′ such that 0x′0 is in ξ and σ(x′) = 0w. By step (v),
we must have x′ = x. Thus both 0x0 and 1x1 appear in ξ. Since σ(x) = 0w, we see that
`(x) ≤ `(σ(x)) = `(w) + 1 = `(v) − 1. This contradict the minimality of `(v).

(v) We can now show that for each n ≥ 1, there are exactly n + 1 distinct strings of 0’s
and 1’s of length n which appear in ξ. This is clearly true if n = 1, and so we suppose
that m ≥ 1 and that the result holds for n = m. Let s1, . . . , sm+1 be the distinct strings
of length m which appear in ξ. For each j, either 0sj or 1sj appears in ξ. For there must
be an n such that sj is a substring of ξn. If sj does not start at the beginning of ξn, then
εsj appears in ξn and hence in ξ, where ε is the letter of ξn immediately before the start
of sj . If sj does start at the beginning of ξn, then notice that sj is also a substring of
ξn+1ξn = ξn+2, and all of ξn+1 is to the left of sj. So either 0sj or 1sj appears in ξn+2

and hence in ξ.
If εsj and δsk appear in ξ, where ε, δ ∈ {0, 1} and j 6= k, then clearly εsj 6= δsk.

So we have at least m + 1 different strings of length m + 1 in ξ. Moreover, any string of
length m+ 1 in ξ must have the form εsj for ε = 0 or 1, and for some j ∈ {1, . . . ,m+ 1}.
So to complete the induction step, it is enough to show that there is exactly one string s
of 0’s and 1’s having length m and such that both 0s and 1s appear in ξ.

Firstly, there is such a string s. For choose n so large that fn+1 ≥ m, and let s be the
beginning m letters of ξn. Since ξn+1 starts with ξn, we see that s is also the beginning
m letters of ξn+1. If n is even, then ξn+1 ends in a 1, and so ξn+1ξn = ξn+2 contains the
string 1s. If n is odd, then ξn+2 ends in an 0, and so ξn+2ξn+1 = ξn+3 contains the string
0s. So both 0s and 1s appear in ξ.

Suppose that there are two distinct strings s and s′ of length m such that 0s, 1s, 0s′

and 1s′ all appear in ξ. Consider the first letter of s (reading from the left) which does
not equal the corresponding letter of s′. We may assume that this letter is 0 in s and 1
in s′. Let v denote the (possibly empty) part of s and s′ preceding these differing letters.
Then 0v0 is a substring of 0s and so appears in ξ. Similarly, 1v1 is a substring of 1s′ and
so appears in ξ. This contradicts step (iv) above, and therefore the induction step, and so
the proof of (c), is complete.

9. We consider a fixed finite alphabet of symbols and strings of these symbols. The strings
have a fixed length n, and a string of length n will be called a word. We think of the
symbols in a word as occurring in n places, so we can talk about the symbol in the first
place in a word, the symbol in the second place, and so forth.

We define the (Hamming) distance between two words to be the number of places in
which they differ.

Consider functions from the set of all words to itself which preserve the Hamming
distance. Here are two examples of such functions.

(i) Apply a permutation to the places. For example if n = 3 and we swap the first
two places, the word abc will be changed into the word bac.

(ii) Apply a permutation to the symbols in one place. For example, in the first place
we might change a to b, b to c and c to a. The word abc would be changed into bbc.

Show that every function from the set of all words to itself which preserves the Ham-
ming distance is a composite of functions of types (i) and (ii) above.

Solution. Let us first make some preliminary comments. As usual, we denote the com-
posite two functions ψ, φ by ψ ◦ φ, i.e., (ψ ◦ φ)(w) = ψ(φ(w)). We write d(u, v) for the
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(Hamming) distance between u and v. Let Σ denote the alphabet, and let W denote the
set of all words of length n over Σ. A function f : W → W which preserves distance
must be a bijection; to see that f is 1–1, note that u 6= v implies d(u, v) > 0 so that
d(φ(u), φ(v)) > 0, which implies that φ(u) 6= φ(v). This is all we need to check, since
a 1–1 function from a finite set to itself is a bijection. It is clear that the inverse of a
distance-preserving function is also distance-preserving. Also, the inverse of a function of
type (i) in the problem statement is again of type (i), and the same is true for functions
of type (ii).

If Σ has only one element, then |W | = 1, and there is nothing to prove. So assume
that |Σ| ≥ 2. We may as well assume that two of the elements of Σ are 0 and 1.

For each i ∈ Σ, let i denote the string ii · · · i of length n. Then d(i, j) = n for each
i 6= j. Hence d(f(i), f(j)) = n if i 6= j. This means that for ν = 1, . . . , n, the ν-th symbol
f(i)ν in f(i) is different from the ν-th symbol f(j)ν in f(j). So for each fixed ν, the map
πν : i 7→ f(i)ν is 1–1 on Σ, and is therefore a bijection. Let g denote the map W → W
defined by

g(x1x2 · · ·xn) = π1(x1)π2(x2) · · ·πn(xn).

Then g is a composition of n maps of the form (ii). Moreover,

f(i) = g(i) for each i ∈ Σ.

Replacing f by g−1
◦f , we may assume that f(i) = i for each i ∈ Σ.

Notice that for any x = x1x2 · · ·xn ∈ W , n − d(x, i) is the number of j’s such that
xj = i, i.e., the number of occurrences of the letter i in the string x. Now that we are
assuming that f(i) = i for each i ∈ Σ, we know that x and f(x) have the same number of
i’s, for each i ∈ Σ.

Let wj denote the string of length n having a 1 in position j and all other symbols 0.
By the preceding paragraph, we know that f(wj) has n−1 0’s and one 1. Hence f(wj) = wk

for some k ∈ {1, . . . , n}. If j 6= j ′, and f(wj) = wk and f(wj′) = wk′ , then wj 6= wj′ and
so wk 6= wk′ . So the map j 7→ k is a 1–1 function on Σ. Let us denote this map by σ.
That is, f(wj) = wσ(j) for each j. Since the map j 7→ σ(j) is a 1–1 map from {1, . . . , n}
to itself, it is a bijection, i.e., a permutation of {1, . . . , n}.

The map g : W →W defined by

g(x1x2 · · ·xn) = xσ−1(1)xσ−1(2) · · ·xσ−1(n)

is a map of the form (i), and so preserves that Hamming distance. Moreover g(i) = i for
each i ∈ Σ, and g(wj) = wσ(j) = f(wj) for j = 1, . . . , n. Hence, replacing f by g−1

◦f , we
may assume that σ = id. In other words, we may assume that f fixes all the words wj ,
j = 1, . . . , n, as well as the words i, i ∈ Σ. We now show that f must be the identity map.
We show that f(x) = x for each x = x1 · · ·xn ∈W by induction on the number of j’s such
that xj 6= 0.

Let’s first show that f(x) = x if x has only one nonzero letter. If this letter is 1, then
we are done, because x = wj for some j. So suppose that xj = a 6= 0, 1, and that all other
letters of x are 0. Then f(x) is a string containing one a and all other letters 0. Suppose
that this a occurs in position j ′. If j′ 6= j, then d(f(x), wj) = 2, whereas f(x,wj) = 1. So
j′ = j, which means that f(x) = x.

Now suppose that x = x1 · · ·xn has exactly k > 1 letters which are nonzero, and that
we have shown that f(x′) = x′ for all strings x′ with only k − 1 nonzero letters. Pick
some j so that xj = a 6= 0. Let x′ be the string which equals x except that its j-th letter
is 0. Then by assumption, f(x′) = x′. Also, let x′′ be the string whose j-th letter is a
and all of whose other letters are 0. We know that f(x′′) = x′′ too. Also, d(x, x′) = 1 and

12



d(x, x′′) = k − 1 (since x and x′′ have exactly n− k 0’s in common, and also agree at the
j-th letter. Now d(f(x), x′) = d(f(x), f(x′)) = d(x, x′) = 1, and f(x) has exactly n − k
0’s, whereas x′ has n − k + 1 0’s. So f(x) must be obtained from x′ by replacing one of
x′’s 0’s by a nonzero letter. This letter must be a, because f(x) has the same number of
a’s as x has. Suppose that f(x) is obtained from x′ by replacing a 0 in position j ′ by an a.
If we can show that j′ = j, then f(x) = x. If j′ 6= j, then f(x) has exactly n − k − 1 0’s
in positions different from j. The j-th letters of f(x) and x′′ are 0 and a respectively, so
that f(x) and x′′ agree in exactly n− k − 1 places, so that d(f(x), x′′) = k + 1. But this
contradicts d(f(x), x′′) = d(f(x), f(x′′)) = d(x, x′′) = k − 1. Hence j′ = j, and f(x) = x.

10. Let q be a prime power, Fq the finite field with q elements, and α ∈ Fq. Let Fq[X]
denote the set of polynomials with coefficients in Fq. A polynomial is called irreducible
if it cannot be written as a product of two polynomials both have smaller degree. Each
f ∈ Fq[X] can be written as a product of irreducible polynomials. For n ≥ 1, the number
of monic polynomials in Fq[X] of degree n with constant term α is clearly qn−1. How many
of these polynomials have distinct irreducible factors?

Solution. (Due to Peter McNamara, University of Sydney.) For α ∈ Fq, let f(n, α) denote
the number of monic polynomials in Fq[x] of degree n having constant term α and distinct
irreducible factors. We shall see that the formula for f(n, α) is a little different depending
on whether n is even or odd, and whether α is a square in Fq or not. There are several
steps.

(i) Each monic polynomial f ∈ Fq[x] may be written uniquely as f = gh2, where g, h ∈
Fq[x] are monic and where g has distinct irreducible factors. To see this, note that f may
be written pm1

1 pm2

2 · · · pmr

r , where p1, . . . , pr are distinct irreducible monic polynomials and
m1, . . . ,mr ≥ 1. Order the pj ’s so that the mi’s are odd, mi = 2ni +1 say, for i = 1, . . . , s,
and the mi’s are even, mi = 2ni say, for i = s+ 1, . . . , r. Then f = (p1 · · · ps)(p

n1

1 · · · pnr

r )2

is a factorization f = gh2 of the desired type. This factorization is unique, because if
f = gh2 with g = p1 · · · ps, and the pj ’s distinct irreducibles, then write h = pn1

1 · · · pnr

r ,
where n1, . . . , nr ≥ 0 (and ns+1, . . . , nr ≥ 1) and all the pj ’s are distinct irreducibles. Then

f = p2n1+1
1 · · · p2ns+1

s p
2ns+1

s+1 · · · p2nr

r , and this must be the factorization of f into a product
of monic irreducibles, which is unique up to order because Fq[x] is a unique factorization
domain.

(ii) For each k ≥ 1, the number of monic polynomials h = xk + ak−1x
k−1 + · · ·+ a1x+ a0

of degree k having a nonzero constant term is qk−1(q − 1). This is clear because there are
q choices for each of the coefficients a1, . . . , ak−1, but only q − 1 for a0 since we require
that a0 6= 0.

(iii) The number f(2n + 1, α) is the same for all nonzero α ∈ Fq. Thus f(2n + 1, α) =
f(2n + 1, 1). This is clearly true for n = 0, since x + α is the only monic polynomial
of degree 1 having constant term α. Now assume that n > 0, and assume the result
for all smaller n’s. Consider the set S2n+1,α of all monic polynomials of degree 2n + 1
having constant term α. Clearly there are q2n polynomials in S2n+1,α. Now S2n+1,α is the
disjoint union of the sets S2n+1,α,k, k = 0, . . . , n, where S2n+1,α,k consists of all the monic
polynomials f of degree 2n+1 having constant term α for which the h in the factorization
f = gh2 of step (i) above has degree k. We count the number of polynomials in each
S2n+1,α,k. If k = 0, then f = g, and so |S2n+1,α,0| = f(2n + 1, α). If 1 ≤ k ≤ n, write
h = xk + bk−1x

k−1 + · · ·+ b1x+ b0 and g = x` + a`−1x
`−1 + · · ·+ a1x+ a0. Then a0b

2
0 = α

must hold. That is, the constant term in g must be α/h(0)2. By Step (ii), there are
qk−1(q − 1) choices of h, and for each one, there are f(2(n− k) + 1, α/h(0)2) choices of g.
By the induction hypothesis, we have f(2(n− k)+ 1, α/h(0)2) = f(2(n− k)+ 1, 1). Hence
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|S2n+1,α,k| = f(2(n− k) + 1, 1)qk−1(q − 1), and so

q2n = f(2n+ 1, α) +

n
∑

k=1

f(2(n− k) + 1, 1)qk−1(q − 1), (1)

which shows that f(2n+ 1, α) is independent of the nonzero α.

(iv) We can now show that for each nonzero α ∈ Fq,

f(2n+ 1, α) =
q2n+1 + 1

q + 1
.

For we can form the generating function F (x) =
∑∞

n=0 f(2n+ 1, α)xn. Multiplying both
sides of (1) by xn, then summing, we get

1

1 − q2x
= F (x) +

(q − 1)x

1 − qx
F (x).

Rearranging, we have

F (x) =
1

q + 1

( q

1 − q2x
+

1

1 − x

)

,

and from this we can read off that the coefficient of xn is (q2n+1 + 1)/(q + 1).

We now turn to the case of polynomials of even degree, where we still assume that
α 6= 0. We shall see that the answer depends on whether α is a square in Fq. As is well
known, if q is odd, then (q − 1)/2 elements of Fq \ {0} are squares and (q − 1)/2 are not.
If q is even, then all elements of Fq are squares. If α ∈ Fq, let sα denote the number of
x ∈ Fq such that x2 = α. Thus sα = 0 or 2 if q is odd, and sα = 1 if q is even.

(v) The number f(2n + 2, α) depends only on n, q and whether or not α is a square in
Fq. As before, we do an induction on n. If n = 0, then the polynomials of degree 2
having constant term α which do not have distinct irreducible factors are the polynomials
(x + s)2 = x2 + 2sx + s2, where s is a square root of α. There are sα such polynomials.
The ones with distinct irreducible factors are the polynomials x2 + cx + α, where c 6= 2s
for any square root of α, and so f(2, α) = q − sα. Now assume that n ≥ 1 and that the
result has been proved for polynomials of smaller degree. As in step (iii) above we consider
the set S2n+2,α of all monic polynomials of degree 2n+ 2 having constant term α. Clearly
|S2n+2,α| = q2n+1. Now S2n+2,α is the disjoint union of the sets S2n+2,α,k, k = 0, . . . , n+1,
where S2n+2,α,k consists of all the monic polynomials f of degree 2n+ 2 having constant
term α for which the h in the factorization f = gh2 of step (i) above has degree k. As
before, |S2n+2,α,0| = f(2n + 2, α). To count |S2n+1,α,k| when k ≤ n, as before there are
qk−1(q − 1) choices of h, and then g must have constant term α/h(0)2). Since α/h(0)2 is
a square if and only if α is, the number |f(2(n− k) + 2, α/h(0)2)| does not depend on the
the nonzero number h(0), and so |S2n+1,α,k| = f(2(n− k) + 2, α)qk−1(q − 1). The count
of |S2n+1,α,k| is different when k = n + 1, because g must be 1, and h(0) must satisfy
h(0)2 = α. There are clearly qnsα monic polynomials h for which h(0)2 = α. Hence we
obtain

q2n+1 = f(2n+ 2, α) +

n
∑

k=1

f(2(n− k) + 2, α)qk−1(q − 1) + qnsα. (2)

(vi) We can now show that for nonzero α,

f(2n+ 2, α) =
q(q2n+1 + 1)

q + 1
− sα.
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Again, form the generating function F (x) =
∑∞

n=0 f(2n+ 2, α)xn. Multiplying both sides
of (2) by xn, then summing, we get

q

1 − q2x
= F (x) +

(q − 1)x

1 − qx
F (x) +

sα

1 − qx
.

Rearranging, we have

F (x) =
q

q + 1

( q

1 − q2x
+

1

1 − x

)

−
sα

1 − x
,

and from this we can read off that the coefficient of xn is q(q2n+1 + 1)/(q + 1) − sα.

(vii) Finally, we deal with the case α = 0. A polynomial f of degree n with distinct
irreducible factors is just a polynomial xg(x), where g is a polynomial of degree n− 1 with
distinct irreducible factors and nonzero constant term. Hence f(1, 0) = 1, and

f(n, 0) =
∑

α∈Fq\{0}

f(n− 1, α) if n > 1.

If n is even, then n−1 is odd, and f(n−1, α) = (qn−1 +1)/(q+1) for all nonzero α. Thus

f(n, 0) =
(q − 1)(qn−1 + 1)

q + 1
if n is even.

If n is odd, then the result of Step (vi) is that f(n− 1, α) = (qn−1 + q)/(q + 1) − sα for
each α. Summing over the nonzero α, and noticing that

∑

α6=0 sα = q − 1, we get

f(n, 0) =
(q − 1)(qn−1 + q)

q + 1
− (q − 1) =

(q − 1)(qn−1 − 1)

q + 1
if n > 1 is odd.
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