
Sydney University Mathematical Society

Problems Competition 2004

Solutions.

1. We can partition an equilateral triangle into two, three or four congruent triangles, as the following
diagram shows:
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Show that it is not possible to partition it into five congruent triangles.

Solution. Let us call the original triangle T , and let ` be the length of each side of T . Suppose that we can
partition T into 5 congruent triangles T1, . . . , T5. Each of the three vertices of T must be a vertex of one
or more of the Ti’s. In addition, there may be vertices of the Ti’s which are on the sides of T (but are not
vertices of T ), and there may be vertices of the Ti’s which are in the interior of T . Let I denote the number
of vertices of the Ti’s which are in the interior of T , and let S be the number of vertices of the Ti’s which
are on the sides of T , but are not vertices of T .

If v is one of the I interior vertices, then the angles formed by Ti’s at v add up to 360◦. If v is one of
the S side vertices, then the angles formed by Ti’s at v add up to 180◦. If v is one of the three vertices of T ,
then the angles formed by Ti’s at v add up to 60◦. The angles of the 5 triangles add up to 5 × 180 = 900◦,
and so we have the formula

360× I + 180× E + 3 × 60 = 900,

which simplifies to 2I + E = 4. The non-negative integer solutions of this equation are (I, E) = (2, 0), (1, 2)
and (0, 4).

The possibility E = 0 is excluded. For this would mean that any side of T is a side of some Ti. But the
triangles Ti are congruent, and so each one would have a side of length `. But there are only three unordered
pairs (P, Q) of points of T such that dist(P, Q) = `, namely the pairs of vertices of T .

For the same reason, the possibility E = 2 is excluded, because then at least one side of T has no vertex
of any Ti in its interior, and so would be a side of some Ti.

So we must have I = 0 and E = 4, and for the same reasons as discussed in the previous two paragraphs,
each side of T must have at least one vertex of a Ti in its interior. Therefore one side of T has two side
vertices of Ti’s, and the other two sides have one side vertex each. So we are in a situation like this:
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The vertices A, . . . , G are the vertices of the 5 triangles. Interchanging the roles of D and E if necessary,
there are four cases, according to which other vertices D and E are joined to:
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We want to show that the first of these cases must hold. So suppose otherwise.

We first exclude the last of these cases. In that case, since there are no interior vertices, there is no edge
of any Ti from A to G, and so the angle 60◦ at A must be one of the angles of one of the Ti’s. Also, 4DEC
must be one of the five triangles Ti, and so one of its angles must be 60◦. But if we write x◦, y◦ and z◦ for
the angles ∠ACE, ∠ECD and ∠DCB, respectively, then

∠DEC = 60◦ + x◦ > 60◦,

∠EDC = 60◦ + z◦ > 60◦, and

∠ECD = y◦ < 60◦,

so that no angle of 4DEC is 60◦, a contradiction.

The third of the above possibilities is excluded, because we suppose that we are not in the first case,
and so there are no edges from D to F nor from E to G. So we must have edges from D to C and from E
to C, so that we are also in the fourth case, which has been excluded.

Similarly the second case is excluded, because we suppose that we are not in the first case, and so there
is no edge from E to G, so there must be one from from D to C, so that once again we are also in the fourth
case, which has been excluded.

So consider now the first of the above cases:
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Then 4BDG and 4DEG must be two of the Ti’s, and therefore congruent. So ∠EDG must be one of the
angles in 4BDG. But ∠EDG = ∠DBG+∠BGD, so that the only angle of 4BDG which ∠EDG can equal
is ∠BDG. Since ∠EDG + ∠BDG = 180◦, we must have ∠EDG = ∠BDG = 90◦. Hence ∠BGD = 30◦. So
the values of ∠DEG and ∠DGE are 30◦ and 60◦, or vice versa. If ∠DEG = 30◦, then in the congruence
between 4BDG and 4GDE, the edges BD and GD correspond, so that 4BDG is isosceles, which is clearly
not the case. So ∠DEG must be 60◦, and ∠DGE must be 30◦.

So we must be in the following situation:
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There is no edge of any Ti joining A and G because otherwise 4AEG would be one of the Ti’s and so
congruent to 4BDG. But then ∠AEG = 120◦ would be one of the angles of 4BDG, which is not the case.
Similarly, there is no edge of any Ti joining C and E. So we must have edges from E to F and from G to F .
Since the sides EG and AC are parallel, we know that ∠FEG = ∠AFE, = α, say. For the same reason,



∠EGF = ∠CFG, = β, say. Label other angles as in the diagram:
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Then {α, γ} = {30, 90}, {β, δ} = {30, 90}, and α + β + ε = 180. The possibility α = β = 30 is therefore
impossible, because then the last equation would imply that ε = 120. Also, the possibility α = β = 90 is
impossible, because then that equation would imply that ε = 0. So (α, β) = (30, 90) or (90, 30) (and in either
case, ε = 60).

The five triangles Ti all have an angle of 90◦. Let d denote the common length of their hypothenuses.
Then the lengths of the sides of the Ti’s next to an angle of 60◦ is d/2, and the lengths of the sides of the
Ti’s next to an angle of 30◦ is d

√
3/2. So if (α, β) = (30, 90), then |GC| = d = |BG|, and |EA| = d/2 =

|BD| = |DE|. But then |BC| = 2d and |AB| = 3d/2, contradicting the hypothesis that T is equilateral. If
instead (α, β) = (90, 30), then δ = 90, and so |CF | = d = |AE| and |AF | = d/2, so that |AB| = 2d and
|AC| = 3d/2, again a contradiction. This completes the solution.

2. For which positive integers n is 2n−1 + 1 divisible by n?

Solution. The only n which divides 2n−1 + 1 is n = 1. More generally, let us show that if a ≥ 2 is an even
integer, then 1 is the only integer n ≥ 1 such that n divides an−1 + 1.

So suppose that a ≥ 2 is even, and that n > 1 divides an−1 + 1. Then n must be odd, since an−1 + 1 is
odd.

Let’s now show that for any integer a ≥ 1, the only odd integer n such that n divides an−1 + 1 is n = 1.
To see this, write n − 1 = 2st, where s, t are integers and t is odd. Then s > 0 because n is odd.

Now let p be a prime number which divides n. Since n is odd, we know that p 6= 2. Then p divides n
and so p divides an−1 + 1. Hence an−1 ≡ −1 (mod p), and therefore a2(n−1) ≡ 1 (mod p). In particular, p
does not divide a. Let h = hp be the smallest positive integer such that ah ≡ 1 (mod p). It is well-known
that for an integer m ≥ 1, am ≡ 1 (mod p) if and only if m is divisible by h. Another well-known fact is
Fermat’s Theorem, which says that ap−1 ≡ 1 (mod p). It follows that

(i) h divides p − 1,

(ii) h divides 2(n − 1),

(iii) h does not divide n − 1.

So if we write n − 1 = qh + r, where q, r are integers and 0 ≤ r < h, then r 6= 0. However, h divides
2(n − 1) − 2qh = 2r. Hence 2r is a multiple hk of h. Since 0 < r < h, k must be 1, and so (2q + 1)h =
2(n − 1) = 2s+1t. So h is divisible by 2s+1, and so by (i), p − 1 is divisible by 2s+1. Thus for each prime
divisor p of n we can write p = 1 + 2s+1ap for some integer ap. Now n is a product pm1

1 · · · pmr

r , and since
each pj has the form 1 + 2s+1aj , also n = 1 + 2s+1a for some integer a. But then n − 1 is divisible by 2s+1,
contrary to the defining property of s. This contradiction shows that n cannot exist.

If a > 1 is odd, then there are integers n > 1 (necessarily even, as we have just shown) such that n
divides an−1 + 1. For example, if n is an even divisor of a + 1, then n divides an−1 + 1. One sees this easily
by writing a + 1 = nk and expanding an−1 + 1 = (nk − 1)n−1 + 1 by the binomial theorem. This is not the
full story, however. For example, 3n−1 + 1 is divisible by n for n = 28 and n = 532.

3. Suppose that M is an n×n matrix of 0’s and 1’s with the property that in each row the 1’s are adjacent
to each other. For example,

M =






0 1 1 1
1 1 0 0
0 1 1 0
1 1 1 1








Show that det(M) is either 0, 1, or −1.

Solution. The proof is by induction on n. If n = 1, then M = (0) or M = (1), and so det(M) is either 0
or 1.

Now suppose that n > 1 and that the result has been proved for (n−1)× (n−1) matrices. Let M be an
n×n matrix with the stated property. Consider the first column of M . If all the entries mi,1 in that column
are 0, then det(M) = 0. So assume that at least one of the entries mi,1 is 1. Amongst the i’s for which
mi,1 = 1, choose the i such that the number of 1’s in row i is minimal. If this i is not 1, interchange rows 1
and i in M . This results in a new matrix, still denoted M , which still has the stated property, and whose
determinant is −1 times the determinant of the matrix we started with. So now m1,1 = 1, and the number
of 1’s in row 1 is less than or equal to the number of 1’s in any row i for which mi,1 = 1. Now for each row i
such that mi,1 = 1, replace row i by row i minus row 1. This results in a new matrix, still denoted M , which
has the same determinant as the M we had before, and which still has the stated property, because in each
of the row operations, we subtracted a row of the form (1, . . . , 1, 0, . . . , 0) (with its last 1 in column k, say)
from a row of the form (1, . . . , 1, 0, . . . , 0) (with its last 1 in column k′, say, where k′ ≥ k), resulting in a row
(0, . . . , 0, 1, . . . , 1, 0, . . . , 0), whose 1’s are all adjacent. After we have done these row operations, M has a 1
in position (1, 1) and a 0 in all other positions of its first column. Hence det(M) = det(M ′), where M ′ is the
(n−1)× (n−1) matrix obtained from M by deleting row 1 and column 1. Since M ′ has the stated property,
we know that det(M ′) ∈ {0, 1,−1} by the induction hypothesis. Hence det(M) = det(M ′) ∈ {0, 1,−1} too.

4. Back in 1999, the following might have made a nice SUMS problem: “Consider the sum 1− 1/2 + 1/3−
1/4 + · · ·+ 1/1331− 1/1332, written in reduced form as m/n. Show that m is divisible by 1999.” Solve this
problem, and formulate a similar problem for some years in the near future.

Solution. Consider the sum
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+
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3
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− 1

2k
.

We can write this
(1

1
+

1

2
+

1

3
+ · · · + 1
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2k

)

− 2
(1

2
+

1

4
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2k
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1

2
+

1

3
+ · · · + 1
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+

1

2k

)

−
(1

1
+

1

2
+ · · · + 1

k

)

=
1

k + 1
+

1

k + 2
+

1

3
+ · · · + 1

2k

=

k/2
∑

j=1

( 1

k + j
+

1

2k + 1 − j

)

if k is even

=

k/2
∑

j=1

3k + 1

(k + j)(2k + 1 − j)
.

This last expression may be written (3k +1)a/b, where b is the product of all the terms k + j and 2k +1− j,
for j = 1, . . . , k/2. All of these terms are smaller than 3k + 1, so if 3k + 1 is prime, then when (3k + 1)a/b
is put in reduced form, m/n, say, then the factor 3k + 1 is not cancelled from the numerator, and so m is
divisible by 3k + 1.

Applying this with k = 666, the 1999 problem is solved. The next prime after 2004 is 2011, which equals
3k + 1 for k = 670, and so a similar problem can be posed in 2011, starting from the sum 1 − 1/2 + 1/3 −
1/4 + · · · + 1/1339− 1/1340, and again in 2017. In 2027 = 3(675) + 2, we can modify the problem a little
more, starting from
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.



We can write this
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=
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∑

j=1
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if k is odd

=

(k+1)/2
∑

j=1

3k + 2

(k + j)(2k + 2 − j)
.

This will have reduced form m/n for m divisible by 3k + 2, provided that 3k + 2 is prime.
Since any prime number is either 2 or 3, or equals 3k + 1 (with k even) or 3k + 2 (with k odd) for some

positive integer k, the above shows that a question like this could have been set in any prime year except
the years 2 and 3.

5. Find a closed form expression for
m∑

k=0

(n!

k!

)2 1

(n − 2k)!4k

where m = bn
2 c.

Solution. We give two solutions. Write the above as

n!

2n

m∑

k=0

n!

k!k!(n − 2k)!
2n−2k

By the Multinomial Theorem, this is the constant term in

n!

2n

(
x2 + 2 + x−2

)n
.

But
n!

2n

(
x2 + 2 + x−2

)n
=

n!

2n

(
x + x−1

)2n
,

and the Binomial Theorem tells us that the constant term on the right is

n!

2n

(
2n

n

)

=
(2n)!

2nn!

(
= (2n − 1)(2n − 3) · · · 5 · 3 · 1

)
.

Here is a second solution, which gives a combinatorial interpretation of the identity. Suppose that you
consider strings of 0’s and 1’s of length 2n, and you want to know how many strings have exactly n 1’s. On
the one hand, the answer is clearly

(
2n
n

)
. On the other hand, you can divide the 2n 0’s and 1’s in a string into

n consecutive pairs. Some of these pairs will be 00’s, some 10’s, some 01’s and some 11’s. Suppose there are
k 00’s. Then no matter how many 10’s and 01’s you have, they contribute the same number of 0’s and 1’s,
and so in order to have n 1’s (and therefore n 0’s) you must also have k 11’s. So 2k ≤ n must hold. To count
the number of strings of length 2n containing exactly n 1’s, we sum over the k’s satisfying 0 ≤ k ≤ n/2 the
number Nn,k of such strings in which there are exactly k 00’s. Having chosen the locations of these k pairs

in
(
n
k

)
ways, we can choose the locations of the k pairs 11 in

(
n−k

k

)
ways. For each of the remaining n − 2k

locations, you have 2 choices: 10 or 01. So there are 2n−2k choices for “filling” these n − 2k places. So

Nn,k =

(
n

k

)(
n − k

k

)

2n−2k =
n!2n−2k

(k!)2(n − 2k)!
.



We sum Nn,k over k = 0, 1, . . . , bn
2 c to get the total number of strings in which there are exactly n 1’s. Hence

b n

2
c

∑

k=0

n!2n−2k

(k!)2(n − 2k)!
=

(
2n

n

)

.

Multiplying both sides by n!2−n, we get the formula to be proved.

6. Let A ⊂ R. Call x ∈ A an interior point of A if there is an ε > 0 so that (x − ε, x + ε) ⊂ A. Let Int(A)
denote the set of interior points of A. Let Ac denote the complement of A in R. Starting from a set, we can
(i) form its interior, or (ii) take its complement. How many different sets can be obtained from a given set A
by successively applying the operations (i) and (ii)?

Solution. There are at most 14 different sets you can obtain from a given set A by successive operations of
taking the interior and complement. It is easiest to explain this if we introduce some terminology. Let us call
a set A ⊂ R open if IntA = A. It is easy to see that the interior of any set is open, that is, Int(Int A) = Int A.
If A ⊂ R and if O ⊂ A is open, then O ⊂ Int A. Hence Int A is the largest open set contained in A. If
A ⊂ B, then Int A ⊂ Int B.

We call A ⊂ R closed if its complement Ac is open. If A ⊂ R, then Int
(
Ac

)
⊂ Ac, and so (Int(Ac))c ⊃ A.

The set (Int(Ac))c is closed because its complement Int(Ac) is open. If F is any closed set containing A,
then F c ⊂ Ac, and F c is open. Hence F c ⊂ Int(Ac), and so F ⊃ (Int(Ac))c. Hence the set (Int(Ac))c is the
smallest closed set containing A, and we call it the closure of A, and we denote it by A. It is easy to see

that A ⊂ B if A ⊂ B. Of course A is always closed, and so A = A for any A ⊂ R.
We need the following fact:

Int
(
O

)
= O if O ⊂ R is open. (1)

To see this, note first that Int
(
O

)
⊃ Int(O) = O, and so Int

(
O

)
⊃ O. On the other hand, Int

(
O

)
⊂ O, and

so Int
(
O

)
⊂ O = O.

In terms of our given operations of taking complements and interiors, (1) says that

Int((Int((Int((Int A)c))c))c) = Int((Int A)c) for any A ⊂ R. (2)

If we are given a set A, and we start by taking its interior, then to next get a new set, we must take
this last set’s complement. To then get a new set, we must take this last set’s interior, and so on:

A → Int A → (Int A)c → Int((Int A)c)

→ (Int((Int A)c))c

→ Int((Int((Int A)c))c)

→ (Int((Int((Int A)c))c))c,

(3)

but when we next take the interior, we get back to Int((Int A)c), by (2). We see seven sets in the above
string (3) of arrows.

If from our given set A we instead start by taking its complement, then we get at most seven new sets,
namely the sets

Ac, Int(Ac), (Int(Ac))c, . . . (5)

obtained from the sets in (3) by replacing A by Ac. So all together, we get at most 14 sets from a given
set A. To see that it is possible to in fact get 14 different sets, consider the following example:

A = {x ∈ (0, 1) : x is rational} ∪ (2, 3) ∪ (3, 4) ∪ {5}.
Then

Int A = (2, 3) ∪ (3, 4),

(Int A)c = (−∞, 2] ∪ {3} ∪ [4,∞),

Int((Int A)c) = (−∞, 2) ∪ (4,∞), ∗
(Int((Int A)c))c = [2, 4],

Int((Int((Int A)c))c) = (2, 4),

(Int((Int((Int A)c))c))c = (−∞, 2] ∪ [4,∞),



and taking interiors again we get back to the set marked by the asterisk. So we have seven distinct sets so
far. The complement of A is

Ac = (−∞, 0] ∪ {x ∈ (0, 1) : x is irrational} ∪ [1, 2] ∪ {3} ∪ [4, 5) ∪ (5,∞).

So
Int Ac = (−∞, 0) ∪ (1, 2) ∪ (4, 5) ∪ (5,∞),

(Int Ac)c = [0, 1] ∪ [2, 4] ∪ {5},
Int((Int Ac)c) = (0, 1) ∪ (2, 4), †

(Int((Int Ac)c))c = (−∞, 0] ∪ [1, 2] ∪ [4,∞)

Int((Int((Int Ac)c))c) = (−∞, 0) ∪ (1, 2) ∪ (4,∞)

(Int((Int((Int Ac)c))c))c = [0, 1] ∪ [2, 4],

and taking interiors again we get back to the set marked by the dagger. So starting from Ac we have made
seven sets, all different from the seven sets we got earlier. So it is possible to get 14 different sets.

If you know what a metric space is, or more generally, what a topological space is, then it is clear that
the above result is true if R is replaced by any metric or topological space, and in this more general context
it is due to Kuratowski.

7. Let fn denote the number of non-overlapping regions into which the interior of a convex n-gon is divided
by its diagonals. You should assume that no three diagonals meet at a point inside the n-gon. For example,
the diagonals divide the following 5-gon into 11 non-overlapping regions.
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Find a formula for fn.

Solution. We show that

fn =
(n − 1)(n − 2)

2
+

(
n

4

)

for n = 3, 4, . . . (1)

by induction on n. Clearly f3 = 1 and f4 = 4, and so this formula is valid for n = 3, 4 (defining
(
3
4

)
= 0 as

usual).
Now suppose that n ≥ 4 and that we have proved the formula for any convex n-gon. Consider a convex

(n + 1)-gon X , and label its vertices V1, . . . , Vn+1 in anti-clockwise order. Join the diagonal from V1 to Vn.
This divides our (n + 1)-gon into a triangle, 4V1VnVn+1, and a convex n-gon Y with vertices V1, V2, . . . , Vn.
The diagonals of Y divide it into fn non-overlapping regions. The diagonals of X consist of those of Y
together with the diagonals joining Vn+1 to each of V2, . . . , Vn−1. Suppose that 2 ≤ k ≤ n− 1, and consider
the diagonal Dk joining Vn+1 to Vk. There are k − 1 vertices of X on one side of Dk, namely V1, . . . , Vk−1,
and n − k vertices of X on the other side of Dk, namely Vk+1, . . . , Vn. The diagonal Dk therefore crosses
(k − 1)(n − k) diagonals of Y , namely the diagonals from Vi to Vj for i = 1, . . . , k − 1 and j = k + 1, . . . , n.
Imagine moving along Dk from Vn+1 to Vk . Let P1, . . . , P(k−1)(n−k) denote the successive crossing points
along Dk. So Dk meets the diagonal V1Vn of X at the point P1, dividing a triangular region into two
triangular regions, therefore adding a region. As we move from P1 to P2, we divide a region into 2, therefore
adding a region. Continuing in this way, as we move from Pi to Pi+1, we add another region. Finally,
as we go from P(k−1)(n−k) to Vk, we add another region. So all together, drawing the diagonal Dk adds
(k − 1)(n − k) + 1 new regions.

We started with fn regions in X , then added Vn+1, getting one more region (the triangle 4V1VnVn+1),
and then for k = 2, . . . , n − 1 we drew the diagonal Dk, thereby adding (k − 1)(n − k) + 1 new regions. So

fn+1 = fn + 1 +

n−1∑

k=2

(
(k − 1)(n − k) + 1

)
.



Using
∑n

k=1 k = n(n + 1)/2 and
∑n

k=1 k2 = n(n + 1)(2n + 1)/6, it is routine to see that

1 +
n−1∑

k=2

(
(k − 1)(n − k) + 1

)
= n − 1 +

n∑

k=1

(k − 1)(n − k) =
n3 − 3n2 + 8n − 6

6
.

So

fn+1 = fn +
n3 − 3n2 + 8n− 6

6
,

and it is now a routine matter to verify (1) by induction.

8. Show that for any integers m, n ≥ 1, the expression

m(m − 1)

(n + 1)(mn + 1)

(
mn + n

n

)

is an integer.

Solution. The solution uses three simple rules about divisibility:

(i) If a | c, b | c and gcd(a, b) = 1, then ab | c.

(ii) If a | bc and if gcd(a, b) = 1, then a | c.

(iii) If a | b1c and if gcd(a, b1) = gcd(a, b2), then a | b2c.

We start by observing that

m(m − 1)

(n + 1)(mn + 1)

(
mn + n

n

)

=
m(m − 1)

n(n + 1)

(
mn + n

n − 1

)

.

So we have to show that n(n+1) divides m(m−1)
(
mn+n
n−1

)
. Since gcd(n, n+1) = 1, by Rule (i) it is sufficient

to show that each of n and n + 1 divides m(m − 1)
(
mn+n
n−1

)
.

The identity

(mn + 1)

(
mn + n

n − 1

)

= n

(
mn + n

n

)

shows that n divides (mn + 1)
(
mn+n
n−1

)
. Since gcd(n, mn + 1) = 1, Rule (ii) implies that n divides

(
mn+n
n−1

)
.

Hence n divides m(m − 1)
(
mn+n
n−1

)
.

The identity

m(mn + 1)

(
mn + n

n − 1

)

= (n + 1)

(
mn + n

n + 1

)

shows that n + 1 divides m(mn + 1)
(
mn+n
n−1

)
. Since

gcd(n + 1, mn + 1) = gcd(n + 1, (n + 1)m − (m − 1)) = gcd(n + 1, m− 1),

Rule (iii) implies that n + 1 divides m(m − 1)
(
mn+n
n−1

)
.

9. A partition of n is a non-increasing sequence a1 ≥ a2 ≥ · · · ≥ ak > 0 of positive integers such that
∑k

i=1 ai = n. Let P(n) be the set of partitions of n. For example, P(3) = {(3), (2, 1), (1, 1, 1)}. A path

sequence is a doubly infinite sequence (pi)i∈Z = . . . p−2p−1p0|p1p2 . . . of 0’s and 1’s. We use the | to mark
the position of p0. The weight of a path sequence p = (pi)i∈Z is

wt(p) =
∑

i:pi=0

#{ j < i | pj = 1 }.

For example, the following path sequences all have weight 3:

. . . 00001|110111 . . . . . . 00010|101111 . . . . . . 00100|011111 . . .



Moreover, up to a shift these are all of the path sequences of weight 3.
(1) Show that there is a bijection between the partitions of n and the path sequences p = (pi)i∈Z of weight n
for which ∑

i≤0

pi =
∑

i>0

(1 − pi) < ∞.

The examples above give such a bijection when n = 3.
(2) Suppose that p = (pi)i∈Z is a path sequence satisfying the condition in (1) and that p corresponds to
the partition a under your bijection. Fix integers a < b with pa = 1 and pb = 0. Let p′ be the path sequence
obtained by swapping pa and pb in p; that is,

p′i =

{
pb, if i = a,
pa, if i = b,
pi, otherwise.

Show that p′ also satisfies the condition in (1) and describe the partition which corresponds to p′ under
your bijection.

Solution. Let S denote the set of doubly infinite sequences p = (pi)i∈Z of 0’s and 1’s such that

∑

i≤0

pi < ∞ and
∑

i≥1

(1 − pi) < ∞.

That is, S is the set of doubly infinite sequences p = (pi)i∈Z of 0’s and 1’s for which there exist integers m, n
such that pi = 0 for all i ≤ −m and pi = 1 for all i ≥ n.

If p ∈ S, let α(p) =
∑

i≤0 pi, let β(p) =
∑

i≥1(1 − pi), and let γ(p) = α(p) − β(p). Suppose that we
translate the sequence p = (pi) one to the right, obtaining a new sequence q = (qi). Then qi = pi−1 for all i.
Hence

α(q) =
∑

i≤0

qi =
∑

i≤0

pi−1 =
∑

i≤−1

pi = α(p) − p0,

and

β(q) =
∑

i≥1

(1 − qi) =
∑

i≥1

(1 − pi−1) =
∑

i≥0

(1 − pi) = β(p) + 1 − p0,

so that γ(q) = (α(p) − p0) − (β(p) + 1 − p0) = γ(p) − 1.
It follows that if r ∈ Z, and if we translate p ∈ S by r to the right (which means by |r| to the left when

r is negative), then the resultant sequence τr(p) satisfies γ(τr(p)) = γ(p) − r.
We are interested in the set S∗, say, of p ∈ S for which γ(p) = 0. The above shows that for any p ∈ S,

τr(p) ∈ S∗ for r = γ(p). Moreover, if p and q are in S∗ and q = τr(p) for some r ∈ Z, then r = 0. In other
words, each p ∈ S is the translate of exactly one q ∈ S∗.

On the other hand, if we translate the sequence p = (pi) one to the right, then it is easy to see that
q = τ1(p) has the same weight as p. Hence τr(p) and p have the same weight for each r ∈ Z.

The bijection between partitions of n and path sequences of weight n in S∗ is constructed as follows:
Given a partition a1 ≥ a2 ≥ · · · ak ≥ 1 of n, form the following finite string of 0’s and 1’s:

ak 1′s
︷ ︸︸ ︷

1 · · · 1 0

ak−1−ak 1′s
︷ ︸︸ ︷

1 · · · 1 0 · · · 0
a1−a2 1′s
︷ ︸︸ ︷

1 · · · 1 0

Form a doubly infinite string of 0’s and 1’s from this by preceding it by infinitely many 0’s and following it
by infinitely many 1’s, and by indexing the resultant sequence so that the first 1 is in position i = 0, say.
Finally, let p be the unique element of S∗ obtained from this string by translating it by the appropriate
integer. The weight of p is the weight of the untranslated string, namely

ak + ak−1 + · · · + a1 = n.



Conversely, if we are given a string p in S∗ of weight n, obtain a finite string of 0’s and 1’s by discarding
the infinitely many 0’s before the first 1, and the infinitely many 1’s following the last 0. Since p has weight
n ≥ 1, there is at least one 1 and at least one 0 left. Suppose that there are k 0’s left. Let m1 denote the
number of 1’s up to the first 0, let m2 denote the number of 1’s between the first and the second 0, and so
on: for j = 2, . . . , k, mj is the number of 1’s between the (j − 1)-st and the j-th 0:

m1 1′s
︷ ︸︸ ︷

1 · · · 1 0

m2 1′s
︷ ︸︸ ︷

1 · · ·1 0 · · · 0
mk 1′s
︷ ︸︸ ︷

1 · · ·1 0.

Now m1 + · · · + mj is the number of 1’s before the j-th 0, and so the weight n of p is

m1 + (m1 + m2) + · · · + (m1 + m2 + · · · + mk) = km1 + (k − 1)m2 + · · · + mk.

We form the numbers a1, . . . , ak by setting

a1 = m1 + m2 + · · · + mk−1 + mk

a2 = m1 + m2 + · · · + mk−1

... =
...

ak−1 = m1 + m2

ak = m1

Then a1 ≥ a2 ≥ · · · ≥ ak > 0, and a1 + · · · + ak = n. So we get a partition of n from p.
It is evident that the procedures described above are mutually inverse, and give a bijection between the

partitions of n and the elements of S∗ having weight n.

Now suppose that p ∈ S∗ has weight n, and assume that a < b, pa = 1 and pb = 0. Let p′ be as in the
question. If a, b ≤ 0, then α(p′) = α(p) because the number of i’s such that i ≤ 0 and p′

i = 1 is the same as
the number of i’s such that i ≤ 0 and pi = 1. Similarly β(p′) = β(p). Therefore

γ(p′) = α(p′) − β(p′) = α(p) − β(p) = γ(p) = 0, (1)

and so p′ is in S∗. The same is true if a, b ≥ 1. So suppose that a ≤ 0 and b ≥ 1. Then α(p′) = α(p) − 1
and β(p′) = β(p) − 1, so again (1) holds. Therefore p′ ∈ S∗.

Let a′
1 ≥ · · · ≥ a′

k′ ≥ 1 be the partition which corresponds to p′. Suppose that pb is the t-th 0 to
the right of the initial infinite string of 0’s in p. Suppose that pa is between the (s − 1)-st and the s-th 0,
counting in the same way. Then s ≤ t. From the block of ms 1’s between the original (s− 1)-st and the s-th
0’s, we have turned a 1 into a 0, leaving u 1’s to the left of this 0 and v to the right, so that u + v = ms − 1.
In the new string p′, the first s − 1 0’s to the right of the initial infinite string of 0’s are the same as in p.
Then the s-th 0 of p′ is u to the right of the (s − 1)-st 0, and the i-th 0 of p′ is the same as the (i − 1)-st
0 of p for i = s + 1, . . . , t. Then the t-th 0 of p has been turned into a 1, so the (t + 1)-st 0 of p′ is the
same as the (t + 1)-st 0 of p, and indeed the i-th 0 of p′ is the same as the i-th 0 of p for i = t + 1, . . . , k.
The numbers m′

i of 1’s between successive 0’s in p′ satisfy m′
i = mi for i = 1, . . . , s − 1, m′

s = u, m′
s+1 = v,

m′
i = mi−1 for i = s + 2, . . . , t, m′

t+1 = mt + mt+1 + 1, and finally, m′
i = mi for i = t + 2, . . . , k.

One calculates that the partition a′
1 ≥ · · · ≥ a′

k′ ≥ 1 corresponding to p′ satisfies k′ = k, and is given
by

a′
i = ai+1 − 1 for i = k − t + 1, . . . , k − s, and that a′

k−s+1 = ak−s+2 + u,

and that a′
i = ai for all other i’s.

10. Let n be a positive integer. Let a1 ≥ a2 ≥ · · · ≥ am be a partition of n (see the last question). Represent
this partition as a left-justified array of boxes, with a1 boxes in the first row, a2 in the second, and so on,
and label the boxes with 1 and −1 in a chess-board pattern, starting with a 1 in the top-left corner. Let c



be the sum of these labels. For instance, if n = 11 and the partition is 4, 3, 3, 1, then c = −1, as one sees by
summing the labels in the diagram:
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1 −1 1 −1

−1 1 −1

1 −1 1

−1

Prove that n ≥ c(2c − 1), and determine when equality occurs.

Solution. Suppose that c ∈ Z. Then there is an integer n and a partition of n whose label sum is c. For if
c = 0, we can take n = 2, whose partition 1 ≥ 1 has label sum 0. If c > 0, let n = c(2c − 1), which has the
partition 2c − 1 > 2c − 2 > · · · > 2 > 1 having label sum c. If c < 0, again let n = c(2c − 1) = |c|(2|c| + 1),
which has the partition 2|c| > 2|c| − 1 > · · · > 2 > 1 having label sum −|c| = c.

So for given c, the set Sc of integers n ≥ 1 admitting a partition with label sum c is non-empty, and so
has a minimal element. Choose n ∈ Sc minimal, and choose a partition a1 ≥ a2 ≥ · · · ≥ am ≥ 1 of n with
label sum c.

If ai = ai+1 for some i < m, then the labels in the i-th and (i+1)-st rows add to 0, and so deleting these
two rows, we get a partition of n − ai − ai+1 which still has label sum c. This contradicts the minimality
of n in Sc. Hence ai > ai+1 for each i < m.

If ai ≥ ai+1 + 2 for some i < m, then deleting the last two boxes from the i-th row corresponds to
taking the partition a1 ≥ · · · ≥ ai−1 ≥ ai − 2 ≥ ai+1 ≥ · · · ≥ am of n − 2. The two boxes deleting have one
label of each sign, and so the label sum of the above partition of n − 2 is still c. This again contradicts the
minimality of n in Sc. Hence ai ≤ ai+1 + 1 for each i < m. Therefore ai = ai+1 + 1 for i = 1, . . . , m − 1.

If am ≥ 2, then deleting the last two boxes from the m-th row corresponds to taking the partition
a1 ≥ · · · ≥ am−1 ≥ am − 2 of n − 2. Again the label sum remains equal to c, and the minimality of n is
contradicted. Hence am = 1.

So the partition a1 ≥ a2 ≥ · · · ≥ am must be the partition m > m − 1 > · · · > 2 > 1, and so n must
be m(m + 1)/2. The label sum is then −m/2 if m is even, and (m + 1)/2 if m is odd. Hence m = −2c if
c < 0 and m = 2c− 1 if c > 0. In both cases n = m(m + 1)/2 equals c(2c− 1). By minimality of n in Sc, we
see that n′ ≥ n = c(2c − 1) for any integer n′ in Sc. This is what we wanted to prove. We have seen above
that there is only one partition of n = c(2c − 1) which has label sum c.

The case c = 0 is a little special. Clearly n = 2 is the smallest positive integer admitting a partition
with label sum 0, and in fact both partitions of 2 have label sum 0. It would perhaps be natural to allow
n = 0, and the empty partition of 0, and decree that the label sum of this partition is 0. Then it is also true
for c = 0 that there is a unique smallest integer n ≥ 0 admitting a partition of n with label sum c, and the
partition is unique.


