

The University of Sydney School of Mathematics and Statistics NSW 2006 Australia

SUMS Problem Competition 2006

For any positive real number x, let ⟨x⟩ denote the fractional part of x, i.e. the unique element of [0, 1) such that x - ⟨x⟩ is an integer. If N is a positive integer, the *scale* based on x and N is the set {0, ⟨x⟩, ⟨2x⟩, ..., ⟨Nx⟩, 1}. This has at most N + 2 distinct elements, possibly fewer. If we list the distinct elements of the scale in order, 0 = s₀ < s₁ < ... < s_k = 1, the *intervals* in the scale are the differences s₁ - s₀, s₂ - s₁, ..., s_k - s_{k-1}. Prove that there are at most three different intervals.

Solution. The only way there could be fewer than N + 2 elements in the scale is if x is rational and can be written in lowest terms as $\frac{p}{q}$, with $1 \le q \le N$. In this case, it is clear that the scale based on $\frac{p}{q}$ and N is $\{0, \frac{1}{q}, \frac{2}{q}, \cdots, \frac{q-1}{q}, 1\}$, and all the intervals equal $\frac{1}{q}$. In more detail: for all $0 \le i \le q - 1$, we have $\langle m \frac{p}{q} \rangle = \frac{i}{q}$ whenever $m \equiv ip^{-1} \mod q$, where p^{-1} denotes the multiplicative inverse of p in $\mathbb{Z}/q\mathbb{Z}$ (if $q = 1, p^{-1} = 0$). The set of values $0 \le m \le N$ which satisfy this congruence is of the form

$$m_i, m_i + q, m_i + 2q, \cdots, m_i + \lfloor \frac{N - m_i}{q} \rfloor q = m'_i,$$

where m_i is the smallest nonnegative integer congruent to $ip^{-1} \mod q$ and m'_i is the largest integer not exceeding N satisfying the same congruence. Note that $m_i \leq q - 1 < N$ and $m'_i \geq N - q + 1$. (Of course $m_0 = 0$ and $m'_0 = \lfloor \frac{N}{q} \rfloor q$.)

 $m'_i \ge N - q + 1$. (Of course $m_0 = 0$ and $m'_0 = \lfloor \frac{N}{q} \rfloor q$.) Now if x is not of the above form, we let $\frac{p}{q}$ be the largest number of the above form which is less than x, and write $x = \frac{p}{q} + \epsilon$. For each $0 \le i \le q - 1$, we have a set of scale values

$$\langle m_i x \rangle, \langle (m_i + q) x \rangle, \langle (m_i + 2q) x \rangle, \cdots, \langle m'_i x \rangle$$

corresponding to the values which were equal to $\frac{i}{q}$ in the $\frac{p}{q}$ scale. Our claim is, firstly, that these values equal

$$\frac{i}{q} + m_i \epsilon, \frac{i}{q} + (m_i + q)\epsilon, \frac{i}{q} + (m_i + 2q)\epsilon, \cdots, \frac{i}{q} + m'_i \epsilon$$
(1)

respectively, and, secondly, that the scale consists exactly of the concatenation of the 'subscales' (1) from i = 0 to i = q - 1 with no overlapping, followed by 1. To see this, note that the claim is certainly true for ϵ sufficiently small; and as ϵ increases, the 'first time' it fails is when there is some coincidence of scale values. But such a coincidence means exactly that $\frac{p}{q} + \epsilon = \frac{p'}{q'}$ where $1 \le q' \le N$, and our maximality assumption on $\frac{p}{q}$ ensures that we do not reach this point.

So the possible intervals are as follows: within each sub-scale (1), all intervals equal $q\epsilon$; and between the end of one sub-scale and (1 or) the beginning of the next, we have an interval

$$\frac{1}{q} + (m_{i+1} - m'_i)\epsilon,$$

where we set $m_q = 0$ to cover the final interval also. But $m_{i+1} - m'_i \equiv p^{-1} \mod q$, and we have the bounds

$$-N \le m_{i+1} - m'_i \le q - 1 - (N - q + 1) = -N + 2q - 2.$$

Hence there are at most two possible values $m_{i+1} - m'_i$ can take, and at most three possible intervals all told.

2. Find the volume of the region in \mathbb{R}^3 defined by the inequalities

$$|x|^{2/3} + |y|^{2/3} \le 1, \ |x|^{2/3} + |z|^{2/3} \le 1, \ |y|^{2/3} + |z|^{2/3} \le 1.$$

Solution. Let R_{α} denote the region defined analogously but with 2/3 replaced by a general positive exponent α . It is clear that R_{α} contains the cube

$$C_{\alpha} = \{(x, y, z) \in \mathbb{R}^3 \mid |x|, |y|, |z| \le 2^{-1/\alpha} \}.$$

Moreover, if $(x, y, z) \in R_{\alpha} \setminus C_{\alpha}$, then exactly one of |x|, |y|, |z| exceeds $2^{-1/\alpha}$. So $R_{\alpha} \setminus C_{\alpha}$ is the disjoint union of six regions congruent to

$$\{(x, y, z) \in \mathbb{R}^3 \mid 2^{-1/\alpha} < x \le 1, \ |y|, |z| \le (1 - x^{\alpha})^{1/\alpha} \}.$$

Hence

$$\operatorname{vol}(R_{\alpha}) = \operatorname{vol}(C_{\alpha}) + 6 \int_{2^{-1/\alpha}}^{1} 4(1-x^{\alpha})^{2/\alpha} \, \mathrm{d}x$$
$$= 2^{3-3/\alpha} + \frac{24}{\alpha} \int_{1/2}^{1} u^{1/\alpha-1} (1-u)^{2/\alpha} \, \mathrm{d}u,$$

where we have made the substitution $x = u^{1/\alpha}$ in the integral. In the case when $\alpha = 2/3$,

$$\operatorname{vol}(R_{2/3}) = 2^{-3/2} + 36 \int_{1/2}^{1} u^{1/2} (1-u)^3 \, \mathrm{d}u$$
$$= \frac{\sqrt{2}}{4} + 36 \left[\frac{2}{3} u^{3/2} - \frac{6}{5} u^{5/2} + \frac{6}{7} u^{7/2} - \frac{2}{9} u^{9/2} \right]_{1/2}^{1}$$
$$= \frac{128 - 71\sqrt{2}}{35}.$$

3. Let *D* be a regular dodecahedron with edges of length 1. Find the shortest possible length of a path on the surface of *D* starting at one vertex and finishing at the antipodal vertex.

Solution. (Sketch.) It is easy to see from a picture or model that the only paths which could feasibly be minimal are of two types: one type crossing four faces and one type crossing three. We can then unfold the relevant faces and picture them as regular pentagons in the plane; the minimal length paths are now straight lines. Recall that, the edges being of length 1, the diagonals of the pentagons are of length $\tau = \frac{\sqrt{5}+1}{2}$. The first kind of path is part of a triangle whose other sides are 2τ and 1, with opposite angle $\frac{4\pi}{5}$; thus by the cosine rule its square is

$$4\tau^2 + 1 - 4\tau \cos\frac{4\pi}{5} = 6\tau + 7 \approx 16 \cdot 7.$$

The other kind of path is part of a triangle whose other sides are $\tau + 1$ and τ , with opposite angle $\frac{4\pi}{5}$; thus its square is

$$(\tau+1)^2 + \tau^2 - 2\tau(\tau+1)\cos\frac{4\pi}{5} = 7\tau + 5 \approx 16 \cdot 3.$$

So the second kind of path is shorter, and the answer is $\sqrt{7\tau+5} = \sqrt{\frac{7\sqrt{5}+17}{2}}$.

4. In this problem, 'number' means positive integer. Suppose we consider two numbers to be essentially equal (written ≈) if they become the same when all zeroes are deleted from their decimal expression (for instance, 1023 ≈ 120030). For consistency with multiplication, we had better extend the notion of essential equality so that

 $a \approx b \iff a \times c \approx b \times c$, for any numbers a, b, c.

(For instance, the fact that $2 \times 6 = 12 \approx 102 = 17 \times 6$ implies that $2 \approx 17$.) Of course, we also stipulate that $a \approx b$ and $b \approx c$ together imply $a \approx c$. Show that for any number a, there is another number b such that $a \times b \approx 1$.

Solution. Consider the numbers 1, 11, 111, etc. Since there are only finitely many congruence classes modulo a, two of these numbers must be congruent; in other words, a has a multiple of the form $11 \cdots 100 \cdots 0$. We will show that any number of the latter form is essentially equal to 1; obviously we can forget about the string of zeroes.

We first prove by *ad hoc* methods that various other numbers are essentially equal to 1. From $15 \times 7 = 105 \approx 15$ we see that $7 \approx 1$. Then from $11 \times 13 \approx 7 \times 11 \times 13 = 1001 \approx 11$ we see that $13 \approx 1$. From $2 \approx 2 \times 7 = 14 \approx 104 = 8 \times 13$ we see that $4 \approx 1$. But also $18 \times 6 = 108 \approx 18$, so $6 \approx 1$. Thus $6 \approx 4$, so $3 \approx 2$ and $9 = 3 \times 3 \approx 2 \times 3 \approx 1$. Similarly from $10 \approx 1 \approx 4$ we get $5 \approx 2$ and $25 \approx 1$. Now $5 \times 5 = 25 \approx 205 = 5 \times 41$, so $41 \approx 5 \approx 2$; also $4 \times 23 = 92 \approx 902 = 2 \times 41 \times 11 \approx 4 \times 11$, so $23 \approx 11$. But also $23 \approx 9 \times 23 = 207 \approx 27 \approx 3 \approx 2$, so $11 \approx 2$. From $9 \approx 81 \approx 801 = 9 \times 89$ we get $89 \approx 1$, whence $2 \approx 2 \times 89 = 178 \approx 1078 = 2 \times 11 \times 49 \approx 4 \times 49 \approx 1$. This means that every number mentioned in this paragraph is essentially equal to 1.

We now note that

$$11 \cdots 1 \approx 11 \cdots 1 \times 2 \times 41 = 911 \cdots 102$$
$$\approx 911 \cdots 12 \times 9 = 8200 \cdots 08$$
$$\approx 828 = 4 \times 207 \approx 1.$$

as required. It seems plausible that in fact all numbers are essentially equal to 1.

5. Let n be a positive integer. Show that the average of the numbers $(\tan \frac{\pi}{2n+1})^2$, $(\tan \frac{2\pi}{2n+1})^2$, \cdots , $(\tan \frac{n\pi}{2n+1})^2$ equals their product.

Solution. We will in fact prove an equality of polynomials:

$$\left(x + \left(\tan\frac{\pi}{2n+1}\right)^2\right)\left(x + \left(\tan\frac{2\pi}{2n+1}\right)^2\right) \cdots \left(x + \left(\tan\frac{n\pi}{2n+1}\right)^2\right) = \sum_{j=0}^n \binom{2n+1}{2j} x^{n-j}.$$
 (2)

From this equality it follows that the sum of the numbers in the question is $\binom{2n+1}{2} = n(2n+1)$ (so their average is 2n + 1), and their product is $\binom{2n+1}{2n} = 2n + 1$ also. To prove (2), let P(x) denote the right-hand side. Now P(x) is certainly a monic polynomial of degree n, and

the factors on the left-hand side are all different because tan is increasing on $(0, \frac{\pi}{2})$. So it suffices to show, for each $1 \le k \le n$, that $P(-(\tan \frac{k\pi}{2n+1})^2) = 0$. But if we think in terms of polynomials with complex coefficients,

$$P(-x^2) = \sum_{j=0}^{n} \binom{2n+1}{2j} (ix)^{2n-2j} = \frac{1}{2ix} ((1+ix)^{2n+1} - (1-ix)^{2n+1}).$$

So it suffices to show that $(1 + i \tan \frac{k\pi}{2n+1})^{2n+1} = (1 - i \tan \frac{k\pi}{2n+1})^{2n+1}$. This holds because

$$\frac{1+i\tan\frac{k\pi}{2n+1}}{1-i\tan\frac{k\pi}{2n+1}} = \frac{1-(\tan\frac{k\pi}{2n+1})^2 + 2i\tan\frac{k\pi}{2n+1}}{1+(\tan\frac{k\pi}{2n+1})^2}$$
$$= \cos^2\frac{k\pi}{2n+1} - \sin^2\frac{k\pi}{2n+1} + 2i\sin\frac{k\pi}{2n+1}\cos\frac{k\pi}{2n+1}$$
$$= \cos\frac{2k\pi}{2n+1} + i\sin\frac{2k\pi}{2n+1},$$

which is one of the (2n + 1)th complex roots of 1.

6. Fix positive integers n, k such that $k \le n - 1$. A permutation a_1, \dots, a_n of the numbers $1, 2, \dots, n$ is called a *k-shuffle* if $1, 2, \dots, k$ occur in the correct order and $k + 1, k + 2, \dots, n$ occur in the correct order. For example, the 2-shuffles of 1, 2, 3, 4 are those permutations where 1 precedes 2 and 3 precedes 4, namely (omitting the commas) 1234, 1324, 1342, 3124, 3142, and 3412. For any distinct complex numbers x_1, \dots, x_n , show that

$$\sum_{\substack{a_1,\cdots,a_n\\ a \ k-\text{shuffle}}} \frac{1}{(x_{a_1} - x_{a_2})(x_{a_2} - x_{a_3})\cdots(x_{a_{n-1}} - x_{a_n})} = 0.$$

Solution. Let $S_k(n)$ be the set of all k-shuffles of $1, \dots, n$. Clearly any k-shuffle must end either with k or with n; let $S_k(n)'$ and $S_k(n)''$ be the sets of k-shuffles of these two kinds. It suffices to show that

$$\sum_{\substack{a_1,\cdots,a_n\\\in S_k(n)'}} (x_{a_1} - x_{a_2})^{-1} \cdots (x_{a_{n-1}} - x_{a_n})^{-1}$$

= $(x_1 - x_2)^{-1} \cdots (x_{k-1} - x_k)^{-1} (x_{k+1} - x_{k+2})^{-1} \cdots (x_{n-1} - x_n)^{-1} (x_n - x_k)^{-1},$
$$\sum_{\substack{a_1,\cdots,a_n\\\in S_k(n)''}} (x_{a_1} - x_{a_2})^{-1} \cdots (x_{a_{n-1}} - x_{a_n})^{-1}$$

= $(x_1 - x_2)^{-1} \cdots (x_{k-1} - x_k)^{-1} (x_{k+1} - x_{k+2})^{-1} \cdots (x_{n-1} - x_n)^{-1} (x_k - x_n)^{-1},$

since the sum of the right-hand sides is clearly zero. We prove these equations by induction on n (they are trivial when n = 2). The two equations are related simply by replacing k by n - k and swapping x_1, \dots, x_k and x_{k+1}, \dots, x_n , so it suffices to prove the second one. If k = n - 1, then the only element of $S_k(n)''$ is the trivial permutation, and the claim is obvious. Otherwise, a_1, \dots, a_n is in $S_k(n)''$ if and only if $a_n = n$ and a_1, \dots, a_{n-1} is in $S_k(n-1)$. Hence by the

induction hypothesis,

$$\sum_{\substack{a_1,\dots,a_n\\\in S_k(n)''}} (x_{a_1} - x_{a_2})^{-1} \cdots (x_{a_{n-1}} - x_{a_n})^{-1}$$

$$= \sum_{\substack{a_1,\dots,a_{n-1}\\\in S_k(n-1)'}} (x_{a_1} - x_{a_2})^{-1} \cdots (x_{a_{n-2}} - x_{a_{n-1}})^{-1} (x_k - x_n)^{-1}$$

$$+ \sum_{\substack{a_1,\dots,a_{n-1}\\\in S_k(n-1)''}} (x_{a_1} - x_{a_2})^{-1} \cdots (x_{a_{n-2}} - x_{a_{n-1}})^{-1} (x_{n-1} - x_n)^{-1}$$

$$= (x_1 - x_2)^{-1} \cdots (x_{k-1} - x_k)^{-1} (x_{k+1} - x_{k+2})^{-1} \cdots (x_{n-2} - x_{n-1})^{-1} (x_{n-1} - x_k)^{-1} (x_k - x_n)^{-1}$$

$$+ (x_1 - x_2)^{-1} \cdots (x_{k-1} - x_k)^{-1} (x_{k+1} - x_{k+2})^{-1} \cdots (x_{n-2} - x_{n-1})^{-1} (x_k - x_{n-1})^{-1} (x_{n-1} - x_n)^{-1}.$$

The desired expression now follows from the identity

$$(x_{n-1} - x_k)^{-1}(x_k - x_n)^{-1} + (x_k - x_{n-1})^{-1}(x_{n-1} - x_n)^{-1} = (x_{n-1} - x_n)^{-1}(x_k - x_n)^{-1}.$$

7. Suppose we have m white balls and n black balls, indistinguishable apart from their colour. We put them in a bag to hide the colour, and then draw out b of the m + n balls, chosen at random. For any a, let P(a; b, m, n) denote the probability that at least a of these b balls are white. On the assumption that a and b are nonnegative integers satisfying $0 \le b \le m + n$, $0 \le a \le m$, and $0 \le b - a \le n$, prove that

$$P(a+1; b, m, n) < P(a+1; b+1, m+1, n+1) < P(a; b, m, n).$$

Solution. This result is proved in the paper 'On the comparison of two observed frequencies' by M. Phipps and E. Seneta, Biometrical Journal 43 (2001), no. 1, pp. 23–43.

8. Let A be the set of rational numbers r such that 0 < r < 1. It is well known that A is *countable*, i.e. the elements of A can be listed r_1, r_2, r_3, \cdots so that every element appears exactly once on the list. Given such a listing, we define a function $f : \mathbb{R} \to \mathbb{R}$ by

$$f(x) = \sum_{\substack{n \ge 1\\r_n \le x}} 2^{-n}.$$

- a) Show that there exists a listing of A for which the corresponding function f takes no rational values other than 0 and 1.
- b) Show that there exists a listing of A for which f takes infinitely many rational values.

Solution.

a) Express all the elements of A as fractions in lowest terms, and then list them by order of their denominators, and by order of numerators within ones with the same denominator:

$$\frac{1}{2}, \frac{1}{3}, \frac{2}{3}, \frac{1}{4}, \frac{3}{4}, \frac{1}{5}, \frac{2}{5}, \frac{3}{5}, \frac{4}{5}, \frac{1}{6}, \frac{5}{6}, \frac{1}{7}, \frac{2}{7}, \frac{3}{7}, \frac{4}{7}, \frac{5}{7}, \frac{6}{7}, \cdots$$

Note that there are $\phi(q)$ numbers on this list with denominator q. Let f be the corresponding function. It is obvious that f(x) = 0 for $x \leq 0$, and $f(x) = \sum_{n>1} 2^{-n} = 1$ for

 $x \ge 1$. So assume 0 < x < 1, and suppose for a contradiction that f(x) is rational. Then the infinite binary expansion of f(x) has some initial segment and then a repeating block of length N (if $f(x) = \frac{p}{2^{k_l}}$ where gcd(l, 2p) = 1, N is the multiplicative order of 2 in $\mathbb{Z}/l\mathbb{Z}$). But by definition of f(x), the nth bit after the 'binary point' is 1 if $r_n \le x$ and 0 otherwise. Thus for our listing, the first $\phi(2) = 1$ bit determines whether $\frac{1}{2} \le x$; the next $\phi(3) = 2$ bits determine whether $\frac{1}{3} \le x$ and $\frac{2}{3} \le x$, and so on. Clearly if q is prime, the corresponding q - 1 bits consist of $\lfloor qx \rfloor$ ones followed by $q - 1 - \lfloor qx \rfloor$ zeroes. When q is sufficiently large both these numbers exceed N, contradicting the supposed periodicity.

b) Let $a_1 > a_2 > a_3 > \cdots$ be any infinite decreasing sequence of irrational numbers in the interval (0, 1) whose limit is 0. Then A is the disjoint union $A_1 \cup A_2 \cup A_3 \cup \cdots$, where $A_1 = A \cap (a_1, 1)$ and $A_j = A \cap (a_j, a_{j-1})$ for all $j \ge 2$. Also \mathbb{Z}^+ is the disjoint union $N_1 \cup N_2 \cup N_3 \cup \cdots$, where $N_j = \{n \in \mathbb{Z}^+ \mid n \equiv 2^{j-1} \mod 2^j\}$. It is clear that each set A_j and N_j is countably infinite. Hence we can define bijections $q_j : N_j \to A_j$ and put them together to define a bijection $q : \mathbb{Z}^+ \to A$ (that is, a listing as in the problem). If f is the corresponding function, then for all integers $k \ge 1$,

$$f(a_k) = \sum_{\substack{n \ge 1 \\ q(n) \in A_{k+1} \cup A_{k+2} \cup \dots}} 2^{-n}$$

=
$$\sum_{\substack{n \ge 1 \\ n \in N_{k+1} \cup N_{k+2} \cup \dots}} 2^{-n}$$

=
$$\sum_{n \in 2^k \mathbb{Z}^+} 2^{-n}$$

=
$$\frac{1}{2^{2^k} - 1}.$$

So the numbers $f(a_k)$ constitute the required set of infinitely many rational values of f.

9. Fix a positive integer n and let x_1, \dots, x_n be indeterminates. For any permutation a_1, \dots, a_n of $1, \dots, n$, define a polynomial in x_1, \dots, x_n :

$$\Pi_{a_1,\cdots,a_n} = (x_{a_1} - x_{a_2})(x_{a_1} + x_{a_2} - x_{a_3})(x_{a_1} + x_{a_2} + x_{a_3} - x_{a_4})\cdots(x_{a_1} + x_{a_2} + \cdots + x_{a_{n-1}} - x_{a_n}).$$

Prove that each of these polynomials is a linear combination, with integer coefficients, of the polynomials attached to permutations where $a_1 = 1$.

Solution. We prove this by induction on n, it being trivial when n = 1. First suppose that $1 = a_j$ for $1 \le j \le n - 1$. In this case we observe that

$$\Pi_{a_1,\dots,a_n} = \Pi_{a_1,\dots,a_{n-1}} (x_{a_1} + x_{a_2} + \dots + x_{a_{n-1}} - x_{a_n}).$$

By the result for n-1 applied to the indeterminates $x_1, x_{a_1}, \dots, \widehat{x_{a_j}}, \dots, x_{a_{n-1}}$, the polynomial $\prod_{a_1,\dots,a_{n-1}}$ is an integral linear combination of polynomials $\prod_{1,b_2,\dots,b_{n-1}}$ where b_2,\dots,b_{n-1} is a permutation of $\{a_i \mid 1 \le i \le n-1, i \ne j\}$. For such polynomials we have

$$\Pi_{1,b_2,\cdots,b_{n-1}}(x_{a_1}+x_{a_2}+\cdots+x_{a_{n-1}}-x_{a_n})=\Pi_{1,b_2,\cdots,b_{n-1},a_n}$$

so this gives the required linear combination. So we need only handle the case where $1 = a_n$; by symmetry, it will suffice to show that $\prod_{2,3,\dots,n,1}$ is an integral linear combination of polynomials \prod_{1,b_2,\dots,b_n} . This is obvious if n = 2, so assume $n \ge 3$. Now

$$\Pi_{2,3,\cdots,n,1} = (x_2 - x_3) \,\Pi_{2,4,\cdots,n,1}|_{x_2 \mapsto x_2 + x_3},$$

where on the right-hand side we have a polynomial in the indeterminates $x_2, x_4, \dots, x_n, x_1$, but with $x_2 + x_3$ substituted for x_2 . By the result for n - 1 again, $\prod_{2,4,\dots,n,1}$ is an integral linear combination of polynomials $\prod_{1,c_2,\dots,c_{n-1}}$ where $\{c_2,\dots,c_{n-1}\} = \{2,4,\dots,n\}$, and $2 = c_k$ say. Now let X be the product of all the factors in such a polynomial except $x_1 + x_{c_2} + \dots + x_{c_{k-1}} - x_2$, and let Y denote $x_1 + x_{c_2} + \dots + x_{c_{k-1}}$. We have

$$\begin{aligned} (x_2 - x_3) \, \Pi_{1,c_2,\cdots,c_{n-1}} |_{x_2 \mapsto x_2 + x_3} &= X |_{x_2 \mapsto x_2 + x_3} (x_2 - x_3) (Y - x_2 - x_3) \\ &= X |_{x_2 \mapsto x_2 + x_3} (Y - x_2) (Y + x_2 - x_3) \\ &- X |_{x_2 \mapsto x_2 + x_3} (Y - x_3) (Y + x_3 - x_2) \\ &= \Pi_{1,c_2,\cdots,c_{k-1},2,3,c_{k+1},\cdots,c_{n-1}} - \Pi_{1,c_2,\cdots,c_{k-1},3,2,c_{k+1},\cdots,c_{n-1}}, \end{aligned}$$

which is of the required form.

10. Fix an integer $n \ge 2$. Determine for which real numbers c the following polynomial has n real roots (counting multiplicities):

$$x^{n} + cx^{n-1} + {\binom{c}{2}}x^{n-2} + {\binom{c}{3}}x^{n-3} + \dots + {\binom{c}{n}}$$

where $\binom{c}{s}$ means $\frac{c(c-1)(c-2)\cdots(c-s+1)}{s!}$.

Solution. We will show that the set of c satisfying this condition is as follows: if n = 2, it is the interval [0,2]; if n = 3, it is the union $\{0\} \cup [1,2] \cup \{3\}$; if $n \ge 4$, it is the finite set $\{0, 1, \dots, n\}$.

In the n = 2 case, we just need to establish for which c the quadratic $x^2 + cx + \frac{c(c-1)}{2}$ has real roots. The discriminant is $c^2 - 2(c^2 - c) = c(2 - c)$, which is nonnegative precisely when $c \in [0, 2]$. From now on we assume $n \ge 3$. Denote the polynomial in question by f_c .

Firstly, note that if $c \in \{0, 1, \dots, n\}$, then $f_c(x) = x^{n-c}(x+1)^c$, so these values of c definitely work. So assume that $c \notin \{0, 1, \dots, n\}$. The key observation is the following equation of polynomials:

$$(nx - c + n)f_c(x) = x(x + 1)f'_c(x) - \frac{c(c - 1)\cdots(c - n)}{n!}.$$
(3)

One way to prove this is by comparing $x^{-n}f_c(x)$ with the power series expansion of $(1 + x^{-1})^c$ in the variable x^{-1} . More directly, we can simply find the coefficients of the powers of x on both sides of (3). Both sides have leading term nx^{n+1} . The constant term on the left-hand side is exactly the second term on the right-hand side, so constant terms also match. For $0 \le s \le n-1$, the coefficient of x^{n-s} on the left-hand side is

$$n\binom{c}{s+1} + (-c+n)\binom{c}{s} = \frac{1}{s+1}\binom{c}{s}[n(c-s) + (-c+n)(s+1)],$$

while the coefficient of x^{n-s} on the right-hand side is

$$(n-s-1)\binom{c}{s+1} + (n-s)\binom{c}{s} = \frac{1}{s+1}\binom{c}{s}[(n-s-1)(c-s) + (n-s)(s+1)].$$

These are clearly the same.

Since we have assumed the constant term on the right-hand side of (3) is nonzero, we see instantly that f_c and f'_c have no common root, i.e. f_c has no repeated root. By elementary

calculus, if $x_1 > x_2 > \cdots > x_k$ are the real roots of f_c , we must have $f'_c(x_1) > 0$, $f'_c(x_2) < 0$, $f'_c(x_3) > 0$, and so on. But (3) obviously implies that 0 and -1 are not roots of f_c , and within each interval $(-\infty, -1)$, (-1, 0), $(0, \infty)$, the sign of $f'_c(x)$ is the same for all roots. We conclude that f_c has at most 3 roots (counting multiplicities). So for $n \ge 4$, we do not get any values of c outside $\{0, 1, \cdots, n\}$.

If n = 3 and $c \notin \{0, 1, 2, 3\}$ is such that f_c does have 3 real roots, then by the above reasoning there must be one in each of the intervals $(-\infty, -1)$, (-1, 0), and $(0, \infty)$, and moreover $f'_c(x_1) > 0$ where x_1 is the root in $(0, \infty)$. Equation (3) then implies that c(c-1)(c-2)(c-3) > 0. Moreover, $f'_c(x) = 3x^2 + 2cx + \frac{c(c-1)}{2}$ must have two real roots, so its discriminant 2c(3-c) is positive. We conclude that 1 < c < 2. Conversely, assume 1 < c < 2, and let u < v be the roots of f'_c ; we have

$$f_c'(\frac{c}{3}-1) = 3(\frac{c}{3}-1)^2 + 2c(\frac{c}{3}-1) + \frac{c(c-1)}{2} = \frac{3}{2}(c-1)(c-2) < 0,$$

so $u < \frac{c}{3} - 1 < v$. Substituting x = u in (3), we see that $(3u - c + 3)f_c(u) < 0$, which means that $f_c(u) > 0$; similarly, $f_c(v) < 0$. Hence f_c has three real roots.