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1. For any positive real numberx, let 〈x〉 denote the fractional part ofx, i.e. the unique element
of [0, 1) such thatx− 〈x〉 is an integer. IfN is a positive integer, thescalebased onx andN is
the set{0, 〈x〉, 〈2x〉, · · · , 〈Nx〉, 1}. This has at mostN +2 distinct elements, possibly fewer. If
we list the distinct elements of the scale in order,0 = s0 < s1 < · · · < sk = 1, theintervalsin
the scale are the differencess1 − s0, s2 − s1, · · · , sk − sk−1. Prove that there are at most three
different intervals.

Solution. The only way there could be fewer thanN + 2 elements in the scale is ifx is
rational and can be written in lowest terms asp

q
, with 1 ≤ q ≤ N . In this case, it is clear that

the scale based onp
q

andN is {0, 1
q
, 2

q
, · · · , q−1

q
, 1}, and all the intervals equal1

q
. In more detail:

for all 0 ≤ i ≤ q − 1, we have〈mp
q
〉 = i

q
wheneverm ≡ ip−1 modq, wherep−1 denotes the

multiplicative inverse ofp in Z/qZ (if q = 1, p−1 = 0). The set of values0 ≤ m ≤ N which
satisfy this congruence is of the form

mi, mi + q, mi + 2q, · · · , mi + ⌊N − mi

q
⌋q = m′

i,

wheremi is the smallest nonnegative integer congruent toip−1 mod q andm′
i is the largest

integer not exceedingN satisfying the same congruence. Note thatmi ≤ q − 1 < N and
m′

i ≥ N − q + 1. (Of coursem0 = 0 andm′
0 = ⌊N

q
⌋q.)

Now if x is not of the above form, we letp
q

be the largest number of the above form which is
less thanx, and writex = p

q
+ ǫ. For each0 ≤ i ≤ q − 1, we have a set of scale values

〈mix〉, 〈(mi + q)x〉, 〈(mi + 2q)x〉, · · · , 〈m′
ix〉

corresponding to the values which were equal toi
q

in the p
q

scale. Our claim is, firstly, that these
values equal

i

q
+ miǫ,

i

q
+ (mi + q)ǫ,

i

q
+ (mi + 2q)ǫ, · · · ,

i

q
+ m′

iǫ (1)

respectively, and, secondly, that the scale consists exactly of the concatenation of the ‘sub-
scales’ (1) fromi = 0 to i = q − 1 with no overlapping, followed by1. To see this, note
that the claim is certainly true forǫ sufficiently small; and asǫ increases, the ‘first time’ it fails
is when there is some coincidence of scale values. But such a coincidence means exactly that
p
q

+ ǫ = p′

q′
where1 ≤ q′ ≤ N , and our maximality assumption onp

q
ensures that we do not

reach this point.
So the possible intervals are as follows: within each sub-scale (1), all intervals equalqǫ; and

between the end of one sub-scale and (1 or) the beginning of the next, we have an interval

1

q
+ (mi+1 − m′

i)ǫ,
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where we setmq = 0 to cover the final interval also. Butmi+1 −m′
i ≡ p−1 modq, and we have

the bounds
−N ≤ mi+1 − m′

i ≤ q − 1 − (N − q + 1) = −N + 2q − 2.

Hence there are at most two possible valuesmi+1 − m′
i can take, and at most three possible

intervals all told.

2. Find the volume of the region inR3 defined by the inequalities

|x|2/3 + |y|2/3 ≤ 1, |x|2/3 + |z|2/3 ≤ 1, |y|2/3 + |z|2/3 ≤ 1.

Solution. Let Rα denote the region defined analogously but with2/3 replaced by a general
positive exponentα. It is clear thatRα contains the cube

Cα = {(x, y, z) ∈ R
3 | |x|, |y|, |z| ≤ 2−1/α}.

Moreover, if(x, y, z) ∈ Rα \ Cα, then exactly one of|x|, |y|, |z| exceeds2−1/α. SoRα \ Cα is
the disjoint union of six regions congruent to

{(x, y, z) ∈ R
3 | 2−1/α < x ≤ 1, |y|, |z| ≤ (1 − xα)1/α}.

Hence

vol(Rα) = vol(Cα) + 6

∫ 1

2−1/α

4(1 − xα)2/α dx

= 23−3/α +
24

α

∫ 1

1/2

u1/α−1(1 − u)2/α du,

where we have made the substitutionx = u1/α in the integral. In the case whenα = 2/3,

vol(R2/3) = 2−3/2 + 36

∫ 1

1/2

u1/2(1 − u)3 du

=

√
2

4
+ 36

[
2

3
u3/2 − 6

5
u5/2 +

6

7
u7/2 − 2

9
u9/2

]1

1/2

=
128 − 71

√
2

35
.

3. Let D be a regular dodecahedron with edges of length1. Find the shortest possible length of a
path on the surface ofD starting at one vertex and finishing at the antipodal vertex.

Solution. (Sketch.) It is easy to see from a picture or model that the only paths which
could feasibly be minimal are of two types: one type crossingfour faces and one type crossing
three. We can then unfold the relevant faces and picture themas regular pentagons in the plane;
the minimal length paths are now straight lines. Recall that, the edges being of length1, the
diagonals of the pentagons are of lengthτ =

√
5+1
2

. The first kind of path is part of a triangle
whose other sides are2τ and1, with opposite angle4π

5
; thus by the cosine rule its square is

4τ 2 + 1 − 4τ cos
4π

5
= 6τ + 7 ≈ 16 · 7.
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The other kind of path is part of a triangle whose other sides are τ + 1 andτ , with opposite
angle4π

5
; thus its square is

(τ + 1)2 + τ 2 − 2τ(τ + 1) cos
4π

5
= 7τ + 5 ≈ 16 · 3.

So the second kind of path is shorter, and the answer is
√

7τ + 5 =
√

7
√

5+17
2

.

4. In this problem, ‘number’ means positive integer. Suppose we consider two numbers to be
essentially equal(written ≈) if they become the same when all zeroes are deleted from their
decimal expression (for instance,1023 ≈ 120030). For consistency with multiplication, we had
better extend the notion of essential equality so that

a ≈ b ⇐⇒ a × c ≈ b × c, for any numbersa, b, c.

(For instance, the fact that2 × 6 = 12 ≈ 102 = 17 × 6 implies that2 ≈ 17.) Of course, we
also stipulate thata ≈ b andb ≈ c together implya ≈ c. Show that for any numbera, there is
another numberb such thata × b ≈ 1.

Solution. Consider the numbers1, 11, 111, etc. Since there are only finitely many congruence
classes moduloa, two of these numbers must be congruent; in other words,a has a multiple of
the form11 · · ·100 · · ·0. We will show that any number of the latter form is essentially equal
to 1; obviously we can forget about the string of zeroes.

We first prove byad hocmethods that various other numbers are essentially equal to1. From
15 × 7 = 105 ≈ 15 we see that7 ≈ 1. Then from11 × 13 ≈ 7 × 11 × 13 = 1001 ≈ 11
we see that13 ≈ 1. From2 ≈ 2 × 7 = 14 ≈ 104 = 8 × 13 we see that4 ≈ 1. But also
18 × 6 = 108 ≈ 18, so 6 ≈ 1. Thus6 ≈ 4, so 3 ≈ 2 and 9 = 3 × 3 ≈ 2 × 3 ≈ 1.
Similarly from 10 ≈ 1 ≈ 4 we get5 ≈ 2 and25 ≈ 1. Now 5 × 5 = 25 ≈ 205 = 5 × 41,
so41 ≈ 5 ≈ 2; also4 × 23 = 92 ≈ 902 = 2 × 41 × 11 ≈ 4 × 11, so23 ≈ 11. But also
23 ≈ 9 × 23 = 207 ≈ 27 ≈ 3 ≈ 2, so11 ≈ 2. From9 ≈ 81 ≈ 801 = 9 × 89 we get89 ≈ 1,
whence2 ≈ 2×89 = 178 ≈ 1078 = 2×11×49 ≈ 4×49 ≈ 1. This means that every number
mentioned in this paragraph is essentially equal to1.

We now note that

11 · · ·1 ≈ 11 · · ·1 × 2 × 41 = 911 · · ·102

≈ 911 · · ·12 × 9 = 8200 · · ·08

≈ 828 = 4 × 207 ≈ 1,

as required. It seems plausible that in fact all numbers are essentially equal to1.

5. Let n be a positive integer. Show that the average of the numbers(tan π
2n+1

)2, (tan 2π
2n+1

)2, · · · ,
(tan nπ

2n+1
)2 equals their product.

Solution. We will in fact prove an equality of polynomials:

(x + (tan
π

2n + 1
)2)(x + (tan

2π

2n + 1
)2) · · · (x + (tan

nπ

2n + 1
)2) =

n∑

j=0

(
2n + 1

2j

)
xn−j . (2)

From this equality it follows that the sum of the numbers in the question is
(
2n+1

2

)
= n(2n + 1)

(so their average is2n + 1), and their product is
(
2n+1
2n

)
= 2n + 1 also. To prove (2), let

P (x) denote the right-hand side. NowP (x) is certainly a monic polynomial of degreen, and
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the factors on the left-hand side are all different becausetan is increasing on(0, π
2
). So it

suffices to show, for each1 ≤ k ≤ n, thatP (−(tan kπ
2n+1

)2) = 0. But if we think in terms of
polynomials with complex coefficients,

P (−x2) =
n∑

j=0

(
2n + 1

2j

)
(ix)2n−2j =

1

2ix
((1 + ix)2n+1 − (1 − ix)2n+1).

So it suffices to show that(1 + i tan kπ
2n+1

)2n+1 = (1 − i tan kπ
2n+1

)2n+1. This holds because

1 + i tan kπ
2n+1

1 − i tan kπ
2n+1

=
1 − (tan kπ

2n+1
)2 + 2i tan kπ

2n+1

1 + (tan kπ
2n+1

)2

= cos2 kπ

2n + 1
− sin2 kπ

2n + 1
+ 2i sin

kπ

2n + 1
cos

kπ

2n + 1

= cos
2kπ

2n + 1
+ i sin

2kπ

2n + 1
,

which is one of the(2n + 1)th complex roots of1.

6. Fix positive integersn, k such thatk ≤ n − 1. A permutationa1, · · · , an of the numbers
1, 2, · · · , n is called ak-shuffleif 1, 2, · · · , k occur in the correct order andk + 1, k + 2, · · · , n
occur in the correct order. For example, the2-shuffles of1, 2, 3, 4 are those permutations where
1 precedes2 and3 precedes4, namely (omitting the commas)1234, 1324, 1342, 3124, 3142,
and3412. For any distinct complex numbersx1, · · · , xn, show that

∑

a1,··· ,an
ak-shuffle

1

(xa1
− xa2

)(xa2
− xa3

) · · · (xan−1
− xan)

= 0.

Solution. Let Sk(n) be the set of allk-shuffles of1, · · · , n. Clearly anyk-shuffle must end
either withk or with n; let Sk(n)′ andSk(n)′′ be the sets ofk-shuffles of these two kinds. It
suffices to show that

∑

a1,··· ,an

∈Sk(n)′

(xa1
− xa2

)−1 · · · (xan−1
− xan)−1

= (x1 − x2)
−1 · · · (xk−1 − xk)

−1(xk+1 − xk+2)
−1 · · · (xn−1 − xn)−1(xn − xk)

−1,
∑

a1,··· ,an

∈Sk(n)′′

(xa1
− xa2

)−1 · · · (xan−1
− xan)−1

= (x1 − x2)
−1 · · · (xk−1 − xk)

−1(xk+1 − xk+2)
−1 · · · (xn−1 − xn)−1(xk − xn)−1,

since the sum of the right-hand sides is clearly zero. We prove these equations by induction on
n (they are trivial whenn = 2). The two equations are related simply by replacingk by n − k
and swappingx1, · · · , xk andxk+1, · · · , xn, so it suffices to prove the second one. Ifk = n−1,
then the only element ofSk(n)′′ is the trivial permutation, and the claim is obvious. Otherwise,
a1, · · · , an is in Sk(n)′′ if and only if an = n anda1, · · · , an−1 is in Sk(n − 1). Hence by the
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induction hypothesis,
∑

a1,··· ,an

∈Sk(n)′′

(xa1
− xa2

)−1 · · · (xan−1
− xan)−1

=
∑

a1,··· ,an−1

∈Sk(n−1)′

(xa1
− xa2

)−1 · · · (xan−2
− xan−1

)−1(xk − xn)−1

+
∑

a1,··· ,an−1

∈Sk(n−1)′′

(xa1
− xa2

)−1 · · · (xan−2
− xan−1

)−1(xn−1 − xn)−1

= (x1 − x2)
−1 · · · (xk−1 − xk)

−1(xk+1 − xk+2)
−1 · · · (xn−2 − xn−1)

−1(xn−1 − xk)
−1(xk − xn)−1

+ (x1 − x2)
−1 · · · (xk−1 − xk)

−1(xk+1 − xk+2)
−1 · · · (xn−2 − xn−1)

−1(xk − xn−1)
−1(xn−1 − xn)−1.

The desired expression now follows from the identity

(xn−1 − xk)
−1(xk − xn)−1 + (xk − xn−1)

−1(xn−1 − xn)−1 = (xn−1 − xn)−1(xk − xn)−1.

7. Suppose we havem white balls andn black balls, indistinguishable apart from their colour. We
put them in a bag to hide the colour, and then draw outb of them + n balls, chosen at random.
For anya, let P (a; b, m, n) denote the probability that at leasta of theseb balls are white. On
the assumption thata andb are nonnegative integers satisfying0 ≤ b ≤ m + n, 0 ≤ a ≤ m,
and0 ≤ b − a ≤ n, prove that

P (a + 1; b, m, n) < P (a + 1; b + 1, m + 1, n + 1) < P (a; b, m, n).

Solution. This result is proved in the paper ‘On the comparison of two observed frequencies’
by M. Phipps and E. Seneta, Biometrical Journal 43 (2001), no. 1, pp. 23–43.

8. Let A be the set of rational numbersr such that0 < r < 1. It is well known thatA is countable,
i.e. the elements ofA can be listedr1, r2, r3, · · · so that every element appears exactly once on
the list. Given such a listing, we define a functionf : R → R by

f(x) =
∑

n≥1
rn≤x

2−n.

a) Show that there exists a listing ofA for which the corresponding functionf takes no
rational values other than0 and1.

b) Show that there exists a listing ofA for whichf takes infinitely many rational values.

Solution.
a) Express all the elements ofA as fractions in lowest terms, and then list them by order of

their denominators, and by order of numerators within ones with the same denominator:

1

2
,
1

3
,
2

3
,
1

4
,
3

4
,
1

5
,
2

5
,
3

5
,
4

5
,
1

6
,
5

6
,
1

7
,
2

7
,
3

7
,
4

7
,
5

7
,
6

7
, · · ·

Note that there areφ(q) numbers on this list with denominatorq. Let f be the correspond-
ing function. It is obvious thatf(x) = 0 for x ≤ 0, andf(x) =

∑
n≥1 2−n = 1 for



SUMS Problem Competition 2006 Page 6

x ≥ 1. So assume0 < x < 1, and suppose for a contradiction thatf(x) is rational. Then
the infinite binary expansion off(x) has some initial segment and then a repeating block
of lengthN (if f(x) = p

2kl
wheregcd(l, 2p) = 1, N is the multiplicative order of2 in

Z/lZ). But by definition off(x), thenth bit after the ‘binary point’ is1 if rn ≤ x and0
otherwise. Thus for our listing, the firstφ(2) = 1 bit determines whether1

2
≤ x; the next

φ(3) = 2 bits determine whether1
3
≤ x and 2

3
≤ x, and so on. Clearly ifq is prime, the

correspondingq − 1 bits consist of⌊qx⌋ ones followed byq − 1−⌊qx⌋ zeroes. Whenq is
sufficiently large both these numbers exceedN , contradicting the supposed periodicity.

b) Let a1 > a2 > a3 > · · · be any infinite decreasing sequence of irrational numbers inthe
interval (0, 1) whose limit is0. ThenA is the disjoint unionA1 ∪ A2 ∪ A3 ∪ · · · , where
A1 = A ∩ (a1, 1) andAj = A ∩ (aj , aj−1) for all j ≥ 2. Also Z

+ is the disjoint union
N1 ∪N2 ∪N3 ∪ · · · , whereNj = {n ∈ Z

+ |n ≡ 2j−1 mod2j}. It is clear that each setAj

andNj is countably infinite. Hence we can define bijectionsqj : Nj → Aj and put them
together to define a bijectionq : Z

+ → A (that is, a listing as in the problem). Iff is the
corresponding function, then for all integersk ≥ 1,

f(ak) =
∑

n≥1
q(n)∈Ak+1∪Ak+2∪···

2−n

=
∑

n≥1
n∈Nk+1∪Nk+2∪···

2−n

=
∑

n∈2kZ+

2−n

=
1

22k − 1
.

So the numbersf(ak) constitute the required set of infinitely many rational values off .

9. Fix a positive integern and letx1, · · · , xn be indeterminates. For any permutationa1, · · · , an

of 1, · · · , n, define a polynomial inx1, · · · , xn:

Πa1,··· ,an = (xa1
−xa2

)(xa1
+xa2

−xa3
)(xa1

+xa2
+xa3

−xa4
) · · · (xa1

+xa2
+· · ·+xan−1

−xan).

Prove that each of these polynomials is a linear combination, with integer coefficients, of the
polynomials attached to permutations wherea1 = 1.

Solution. We prove this by induction onn, it being trivial whenn = 1. First suppose that
1 = aj for 1 ≤ j ≤ n − 1. In this case we observe that

Πa1,··· ,an = Πa1,··· ,an−1
(xa1

+ xa2
+ · · ·+ xan−1

− xan).

By the result forn−1 applied to the indeterminatesx1, xa1
, · · · , x̂aj

, · · · , xan−1
, the polynomial

Πa1,··· ,an−1
is an integral linear combination of polynomialsΠ1,b2,··· ,bn−1

whereb2, · · · , bn−1 is a
permutation of{ai | 1 ≤ i ≤ n − 1, i 6= j}. For such polynomials we have

Π1,b2,··· ,bn−1
(xa1

+ xa2
+ · · · + xan−1

− xan) = Π1,b2,··· ,bn−1,an ,

so this gives the required linear combination. So we need only handle the case where1 = an; by
symmetry, it will suffice to show thatΠ2,3,··· ,n,1 is an integral linear combination of polynomials
Π1,b2,··· ,bn. This is obvious ifn = 2, so assumen ≥ 3. Now

Π2,3,··· ,n,1 = (x2 − x3) Π2,4,··· ,n,1|x2 7→x2+x3
,
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where on the right-hand side we have a polynomial in the indeterminatesx2, x4, · · · , xn, x1, but
with x2 + x3 substituted forx2. By the result forn − 1 again,Π2,4,··· ,n,1 is an integral linear
combination of polynomialsΠ1,c2,··· ,cn−1

where{c2, · · · , cn−1} = {2, 4, · · · , n}, and2 = ck say.
Now letX be the product of all the factors in such a polynomial exceptx1+xc2+· · ·+xck−1

−x2,
and letY denotex1 + xc2 + · · · + xck−1

. We have

(x2 − x3) Π1,c2,··· ,cn−1
|x2 7→x2+x3

= X|x2 7→x2+x3
(x2 − x3)(Y − x2 − x3)

= X|x2 7→x2+x3
(Y − x2)(Y + x2 − x3)

− X|x2 7→x2+x3
(Y − x3)(Y + x3 − x2)

= Π1,c2,··· ,ck−1,2,3,ck+1,··· ,cn−1
− Π1,c2,··· ,ck−1,3,2,ck+1,··· ,cn−1

,

which is of the required form.

10. Fix an integern ≥ 2. Determine for which real numbersc the following polynomial hasn real
roots (counting multiplicities):

xn + cxn−1 +

(
c

2

)
xn−2 +

(
c

3

)
xn−3 + · · ·+

(
c

n

)
,

where
(

c
s

)
meansc(c−1)(c−2)···(c−s+1)

s!
.

Solution. We will show that the set ofc satisfying this condition is as follows: ifn = 2,
it is the interval[0, 2]; if n = 3, it is the union{0} ∪ [1, 2] ∪ {3}; if n ≥ 4, it is the finite set
{0, 1, · · · , n}.

In then = 2 case, we just need to establish for whichc the quadraticx2 + cx + c(c−1)
2

has
real roots. The discriminant isc2 − 2(c2 − c) = c(2 − c), which is nonnegative precisely when
c ∈ [0, 2]. From now on we assumen ≥ 3. Denote the polynomial in question byfc.

Firstly, note that ifc ∈ {0, 1, · · · , n}, thenfc(x) = xn−c(x+1)c, so these values ofc definitely
work. So assume thatc /∈ {0, 1, · · · , n}. The key observation is the following equation of
polynomials:

(nx − c + n)fc(x) = x(x + 1)f ′
c(x) − c(c − 1) · · · (c − n)

n!
. (3)

One way to prove this is by comparingx−nfc(x) with the power series expansion of(1 + x−1)c

in the variablex−1. More directly, we can simply find the coefficients of the powers of x on
both sides of (3). Both sides have leading termnxn+1. The constant term on the left-hand side is
exactly the second term on the right-hand side, so constant terms also match. For0 ≤ s ≤ n−1,
the coefficient ofxn−s on the left-hand side is

n

(
c

s + 1

)
+ (−c + n)

(
c

s

)
=

1

s + 1

(
c

s

)
[n(c − s) + (−c + n)(s + 1)],

while the coefficient ofxn−s on the right-hand side is

(n − s − 1)

(
c

s + 1

)
+ (n − s)

(
c

s

)
=

1

s + 1

(
c

s

)
[(n − s − 1)(c − s) + (n − s)(s + 1)].

These are clearly the same.
Since we have assumed the constant term on the right-hand side of (3) is nonzero, we see

instantly thatfc and f ′
c have no common root, i.e.fc has no repeated root. By elementary
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calculus, ifx1 > x2 > · · · > xk are the real roots offc, we must havef ′
c(x1) > 0, f ′

c(x2) < 0,
f ′

c(x3) > 0, and so on. But (3) obviously implies that0 and−1 are not roots offc, and within
each interval(−∞,−1), (−1, 0), (0,∞), the sign off ′

c(x) is the same for all roots. We conclude
thatfc has at most3 roots (counting multiplicities). So forn ≥ 4, we do not get any values ofc
outside{0, 1, · · · , n}.

If n = 3 andc /∈ {0, 1, 2, 3} is such thatfc does have3 real roots, then by the above reason-
ing there must be one in each of the intervals(−∞,−1), (−1, 0), and(0,∞), and moreover
f ′

c(x1) > 0 wherex1 is the root in(0,∞). Equation (3) then implies thatc(c−1)(c−2)(c−3) >

0. Moreover,f ′
c(x) = 3x2 +2cx + c(c−1)

2
must have two real roots, so its discriminant2c(3− c)

is positive. We conclude that1 < c < 2. Conversely, assume1 < c < 2, and letu < v be the
roots off ′

c; we have

f ′
c(

c

3
− 1) = 3(

c

3
− 1)2 + 2c(

c

3
− 1) +

c(c − 1)

2
=

3

2
(c − 1)(c − 2) < 0,

sou < c
3
− 1 < v. Substitutingx = u in (3), we see that(3u − c + 3)fc(u) < 0, which means

thatfc(u) > 0; similarly,fc(v) < 0. Hencefc has three real roots.


