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1. Imagine an analogue watch with the usual hour hand, minute hand, and second hand. At how
many times each day are two of the hands pointing in exactly opposite directions?

Solution. To clarify the question, the tacit assumptions are that the hands all begin at the 12
o’clock position at midnight, and move continuously in a clockwise direction at constant speeds
(not ticking in discrete units, as real hands might). If we measure the direction of a hand by the
clockwise angle from 12 o’clock (in radians), and time in fractions of a day after midnight, then
the direction of the hour hand at timet is 4πt (two full revolutions every day), the direction of
the minute hand is48πt (24 full revolutions every day), and the direction of the secondhand is
2880πt (60 × 24 = 1440 full revolutions each day). To consider a single day, we restrict t to
the semi-closed interval[0, 1).

Now since the hour hand and minute hand start and finish the daytogether, and the minute
hand makes22 more revolutions, there must be22 times each day at which the hour hand and
minute hand point in opposite directions. Similarly, theremust be1438 times each day at which
the second hand and minute hand point in opposite directions, and1416 times each day at which
the second hand and hour hand point in opposite directions. But we cannot simply conclude
that the answer is22 + 1438 + 1416, because that would overcount any times at which two of
the hands were pointing in the same direction and the other hand was opposite.

To find these special times, note that two hands are pointing in opposite directions if and only
if the difference between their directions isπ + 2kπ for some integerk. So the hour hand and
minute hand are pointing in opposite directions exactly when 44πt = π + 2kπ for some integer
k, which means thatt is in the following set of times:

A =

{

2k + 1

44

∣

∣

∣

∣

k ∈ Z, 0 ≤ k ≤ 21

}

.

Similarly, the hour hand and the second hand are pointing in opposite directions at the following
times:

B =

{

2ℓ + 1

2876

∣

∣

∣

∣

ℓ ∈ Z, 0 ≤ ℓ ≤ 1437

}

,

and the minute hand and second hand are pointing in opposite directions at the following times:

C =

{

2m + 1

2832

∣

∣

∣

∣

m ∈ Z, 0 ≤ m ≤ 1415

}

.

Now we need to determine the intersections of these sets. We have

A ∩ B =

{

1

4
,
3

4

}

(i.e. 6am and 6pm),
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because2k+1
44

= 2ℓ+1
2876

simplifies to719(2k + 1) = 11(2ℓ + 1), which forces11 to divide2k + 1,
which only happens (in the stipulated range of values ofk) whenk = 5 or k = 16. By contrast,

A ∩ C = B ∩ C = ∅,

because2k+1
44

= 2m+1
2832

simplifies to708(2k + 1) = 11(2m + 1), which is impossible as the left-
hand side is even and the right-hand side is odd, and2ℓ+1

2876
= 2m+1

2832
simplifies to708(2ℓ + 1) =

719(2m + 1), which is impossible for the same reason. So the answer is

|A ∪ B ∪ C| = |A| + |B| + |C| − |A ∩ B ∩ C| = 22 + 1438 + 1416 − 2 = 2874.

2. A bee wants to fly on the real line from the point0 to the point1, visiting n flowers which
are positioned at the points1

n+1
, 2

n+1
, · · · , n

n+1
(heren is some fixed positive integer). The bee

chooses at random, with equal probabilities, one of then! possible orderings of the flowers. It
flies from0 to the first flower, from there to the second flower, and so on through all the flowers
in the chosen order, before flying on to1. What is the expected total distance it will fly?

Solution. Let X0 be the distance from0 to the first flower visited,Xi (i = 1, · · · , n − 1) the
distance from theith flower to the(i + 1)th flower, andXn the distance from the last flower
visited to1. We need to evaluate the expectationE(X0 + X1 + · · · + Xn), and the simple key
observation is that it equalsE(X0) + E(X1) + · · · + E(Xn). Each of then flowers is equally
likely to be the first one visited, soE(X0) is the average distance of the flowers from0, which
is 1

2
. Similarly,E(Xn) is the average distance of the flowers from1, which is also1

2
.

For anyi ∈ {1, 2, · · · , n − 1}, each of the
(

n

2

)

(unordered) pairs of flowers is equally likely
to be the pair consisting of theith and(i + 1)th, soE(Xi) is the average distance between a
pair of distinct flowers. Here is a way of finding this average distance without computation.
The choice of a pair of distinct flowersF andF ′, with F < F ′, divides the interval[0, 1] into
the three intervals[0, F ], [F, F ′] and[F ′, 1], the sum of whose lengths is1. If we imagine the
interval[0, 1] closed up into a circle (identify1 with 0), these are three arcs whose endpoints are
drawn from an evenly distributed set ofn + 1 points on the circumference. By symmetry, the
expected length of all three arcs is the same, henceE(Xi) = 1

3
.

Thus the answer to the question is1
2

+ (n − 1)1
3

+ 1
2

= n+2
3

.

3. The sisters Alice and Bess want to practise their arithmetic, so their father invents the following
game. He begins by choosing a composite numbern0 which is at least6. Alice and Bess then
take turns saying numbersn1, n2, n3, · · · (with Alice sayingn1, Bess sayingn2, Alice saying
n3, and so on) in such a way that at each step the new numberni is the sum of two integers≥ 2
of whichni−1 is the product. The winner is the first player to say a prime number. For example,
if n0 = 16, then Alice can say either8 or 10, because8 = 4 + 4 and10 = 2 + 8. Saying10
would be a bad move, because Bess would then win by saying7 (because7 = 2 + 5). So Alice
should say8, which forces Bess to say6, allowing Alice to say5 and win. Prove that there are
infinitely many starting numbersn0 for which Bess is guaranteed to win if she plays correctly,
no matter what Alice does.

Solution. Note that there are three famous conjectures which, if true,would imply this easily.
The Twin Prime Conjecture states that there are infinitely many primesp such thatp + 2 is
prime: for suchp, if n0 = p2 then Alice is forced to say2p and Bess can then win by saying
p+2. The Sophie Germain Prime Conjecture states that there are infinitely many primesp such
that2p + 1 is prime: for suchp, if n0 = p3 then Alice is forced to sayp + p2 = p(p + 1) and



SUMS Problem Competition 2008 Page 3

Bess can then win by saying2p + 1 = p + (p + 1). Finally, the Goldbach Conjecture states that
every even integer≥ 4 is the sum of two primes. If this is true, there must be an infinite number
of triples of primes(p, q, r) such thatq + r = 2p− 4. For such a triple, ifn0 = qr then Alice is
forced to sayq + r = 2(p − 2), and Bess can then win by sayingp.

In the absence of such results, one can argue as follows. It isclear that, givenn0 ≥ 6, the
sequencen0, n1, n2, · · · is strictly decreasing and bounded below by5; in particular, the game
must end in finite time. By a basic principle of game theory, itfollows that for everyn0, either
Alice has a guaranteed winning strategy or Bess has one. To prove this fact for this particular
game, we can use induction onn0, as follows. Ifn0 = 6, it is obvious thatn1 = 5 and Alice
wins. Suppose thatn0 > 6 and the claim is known for smaller values ofn0. The possible values
of n1 which Alice has to consider ared + n0/d, whered ranges over divisors ofn0 such that
1 < d < n0. If any of these numbers is prime, Alice can win straight away. If these numbers are
all composite, then they can be thought of as starting numbersn0 for different runs of the game,
with the roles of the players reversed so that Bess now moves first. By the induction hypothesis,
each choice comes with a guaranteed winning strategy for either Alice or Bess. If any of the
choices results in Alice being guaranteed to win, she can winby choosing that; if none of them
does, then Bess is guaranteed to win.

Now suppose, for a contradiction, that there are only finitely many numbersn0 for which
Bess has a guaranteed winning strategy. Then there must be a largest such number, sayN . But
then consider the casen0 = p2, wherep is a prime greater thanN/2: we must haven1 = 2p.
Since2p is a composite number greater thanN , our assumption means that if2p were chosen
asn0, Alice would have a guaranteed winning strategy. So when Alice is forced to choose it as
n1, Bess must have a guaranteed winning strategy. Son0 = p2 gives Bess a guaranteed winning
strategy, contradicting our assumption thatN was the largest such composite number.

4. Letn be an odd integer≥ 3, and letx1, x2, · · · , xn be any real numbers, not necessarily positive.
Prove that

(n − 1) max{x2
1, x

2
2, · · · , x2

n} + (x1 + x2 + · · · + xn)2 ≥ x2
1 + x2

2 + · · ·+ x2
n.

Solution. If all xi = 0, we clearly have equality. Moreover, if we multiply allxi by a
positive real numberλ, both sides of the inequality are multiplied byλ2. So we may assume
thatmax{x2

1, x
2
2, · · · , x2

n} = 1, in which case we must prove that
∑

i<j xixj ≥ 1−n
2

. We will in
fact show that this inequality holds for all(x1, x2, · · · , xn) in then-dimensional cube defined
by the inequalities−1 ≤ xi ≤ 1. Let f(x1, · · · , xn) denote

∑

i<j xixj . Since the cube is
compact (a closed and bounded region inRn) andf is continuous, there is definitely a point
(a1, a2, · · · , an) in the cube where the minimum value off is attained, and it suffices to show
thatf(a1, · · · , an) ≥ 1−n

2
. This question falls under the scope of various standard optimization

techniques, but we will give an elementary explanation.
We first observe that(a1, a2, · · · , an) is either a vertex of the cube (i.e. all its coordinates

equal±1) or lies on an edge of the cube (i.e. all but one of its coordinates equal±1). For
otherwise, we could permute the coordinates (which clearlyleavesf unchanged) to ensure that
−1 < a1 ≤ a2 < 1, and then it is easy to see that

f(a1, a2, a3, · · · , an) > f(a1 − ǫ, a2 + ǫ, a3, · · · , an)

for all ǫ > 0, contradicting the supposed minimality (because for sufficiently smallǫ, the point
(a1 − ǫ, a2 + ǫ, a3, · · · , an) still lies in the cube).
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Suppose that(a1, a2, · · · , an) is a vertex of the cube. Ifk of its co-ordinates are1 andn − k
are−1, then clearly

f(a1, · · · , an) =

(

k

2

)

+

(

n − k

2

)

− k(n − k) =
(2k − n)2 − n

2
≥ 1 − n

2
,

as required. (Here we have used the fact thatn is odd.)
The only remaining possibility is that(a1, a2, · · · , an) lies on an edge but is not a vertex.

Permuting coordinates, we can assume thata1 ∈ (−1, 1), a2 = a3 = · · · = ak+1 = 1, and
ak+2 = ak+3 = · · · = an = −1 for some0 ≤ k ≤ n − 1. We have

f(x, a2, · · · , an) = x(k − (n − 1 − k)) +

(

k

2

)

+

(

n − 1 − k

2

)

− k(n − 1 − k)

= (2k + 1 − n)x +
(2k + 1 − n)2 + 1 − n

2
,

and our assumption means that the minimum value of this constant or linear function ofx on the
interval[−1, 1] is attained at the interior pointa1. Clearly this can only happen if the function is
constant, so we must havek = n−1

2
, which means thatf(x, a2, · · · , an) = 1−n

2
. Again we have

the required inequality.

5. Let u1,u2, · · · ,un be unit vectors inR3: that is,|ui| = 1 for all i, where|w| denotes the length
of the vectorw. Assume that|u1+u2+· · ·+un| > n−2, and thatλ1u1+λ2u2+· · ·+λnun = 0
for some nonnegative real numbersλi. Prove thatλi = 0 for all i.

Solution. (Actually R3 could be replaced here byRd for anyd.) Suppose for a contradiction
that someλi is nonzero. By renumbering the vectors if necessary, we can assume thatλn =
max{λi} > 0. Then using the assumption that|∑n

i=1 ui| > n − 2 and the triangle inequality,
we deduce

(n − 2)λn < λn |
n

∑

i=1

ui| = |
n

∑

i=1

λnui|

= |
n−1
∑

i=1

(λn − λi)ui| (since
n

∑

i=1

λiui = 0)

≤
n−1
∑

i=1

|(λn − λi)ui| =
n−1
∑

i=1

(λn − λi),

which can be rearranged to give
∑n−1

i=1 λi < λn. But the triangle inequality also implies

λn = |λnun|

= |
n−1
∑

i=1

−λiui| (since
n

∑

i=1

λiui = 0)

≤
n−1
∑

i=1

| − λiui| =
n−1
∑

i=1

λi,

so we have the required contradiction.

6. Fix a positive integern ≥ 3. Let P1, P2, · · · , Pn be points which lie on a circleC of radius1,
and letDi denote the disc with centrePi and radius1. A possible picture whenn = 3 is:
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b

bb

P1

P2P3

D1

D2D3

C

Find the maximum possible area of the unionD1 ∪ D2 ∪ · · · ∪ Dn.

Solution. Note that the maximum possible area must exist, because the area is clearly a
continuous function ofP1, P2, · · · , Pn, each of which ranges over a closed and bounded set.

To find the maximum, we can assume thatP1, P2, · · · , Pn are distinct and numbered in con-
secutive anti-clockwise order. For ease of notation, setPn+1 = P1, Dn+1 = D1. Let O denote
the centre ofC; note thatO is on the boundary of all the discsDi. For any pointS, S ∈ Di if
and only ifPi lies in the intersection ofC with the disc of radius1 and centreS, which is some
arc of the circleC. So eitherS ∈ D1 ∩ · · · ∩ Dn, or there is a uniquei(S) such thatS ∈ Di(S),
S /∈ Di(S)+1.

Now D1 ∩ · · · ∩ Dn contains points other thanO if and only if P1, · · · , Pn all lie on one side
of some line throughO; this can be seen from the fact that apart fromO, all other points ofDi

lie on the same side asPi of the line throughO perpendicular toOPi. So we have two cases.
Case 1: P1, · · · , Pn do not all lie on one side of (or on) any line throughO. ThenD1∩· · ·∩Dn =
{O}, and the unionD1 ∪ · · · ∪ Dn can be written as the disjoint union

(D1 \ (D1 ∩ D2)) ∐ (D2 \ (D2 ∩ D3)) ∐ · · · ∐ (Dn \ (Dn ∩ D1)) ∐ {O}.

Case 2: P1, · · · , Pn all lie on one side of (or on) some line throughO. We renumber so that
P1 andPn are the outermost points; thenDn ∩ D1 is the same asD1 ∩ · · · ∩ Dn, so the union
D1 ∪ · · · ∪ Dn can be written as the disjoint union

(D1 \ (D1 ∩ D2)) ∐ (D2 \ (D2 ∩ D3)) ∐ · · · ∐ (Dn−1 \ (Dn−1 ∩ Dn)) ∐ Dn.

We must now calculate the area ofDi \ (Di ∩ Di+1). Let θi be the angle∠PiOPi+1. Let
Qi denote the other point which is at distance1 from both Pi and Pi+1, and letRi be the
midpoint of the line segmentPiPi+1, which is also the midpoint ofOQi. Clearly the angle
∠QiPiO = π − θi, so the area of the sector ofDi bounded byQiPi andOPi is π−θi

2
. Also the

distanceORi is 2 cos θi

2
and the distanceRiPi is sin θi

2
, so the area of the triangleQiPiO is sin θi

2
.

Hence the area of the segment ofDi bounded by the chordOQi is π−θi−sin θi

2
. This is half of the

overlapDi ∩ Di+1, whose area is thereforeπ − θi − sin θi, and the area ofDi \ (Di ∩ Di+1) is
θi + sin θi.

In Case 1, we have0 < θi < π for i = 1, 2, · · · , n, and
∑n

i=1 θi = 2π. By the above disjoint
union, the area ofD1 ∪ · · · ∪ Dn is:

n
∑

i=1

(θi + sin θi) = 2π +

n
∑

i=1

sin θi.

By basic methods in constrained optimization (e.g. Lagrange multipliers), the maximum value
of

∑n

i=1 sin θi subject to the constraints onθ is n sin 2π
n

, occurring when allθi = 2π
n

. So the



SUMS Problem Competition 2008 Page 6

maximum area in this case occurs when the pointsPi are equally spaced around the circleC,
and it is2π + n sin 2π

n
.

In Case 2, we have0 < θi < π for i = 1, 2, · · · , n − 1, and
∑n−1

i=1 θi ≤ π. By the above
disjoint union, the area ofD1 ∪ · · · ∪ Dn is:

π +

n−1
∑

i=1

(θi + sin θi).

For any fixed value of
∑n−1

i=1 θi, sayk, the maximum value of
∑n−1

i=1 sin θi is (n − 1) sin k
n−1

,
occurring whenθi = k

n−1
for all i = 1, 2, · · · , n−1. Moreover, sincesin is increasing on[0, π

2
],

we have

π + k + (n − 1) sin
k

n − 1
≤ π + π + (n − 1) sin

π

n − 1
.

So the maximum area in this case occurs whenP1 andPn are antipodal and the other pointsPi

are equally spaced around one of the semicircles between them, and it is2π+(n−1) sin π
n−1

. It
is easy to see that this is less than the maximum in Case 1: ifn = 3 the values can be computed
exactly, and forn ≥ 4 we havesin 2π

n
> sin π

n−1
> 0. So the overall maximum is2π+n sin 2π

n
.

7. For real numbersa, b, c, d with a 6= 0, consider the equationz = az3 + bz2 + cz + d, where the
unknownz is a complex number andz denotes the conjugate ofz. What are the minimum and
maximum number of solutions this equation can have, for different choices ofa, b, c, d?

Solution. We will show that the equationz = az3 + bz2 + cz + d always has between three
and seven solutions. We can see that these extremes are attained as follows:

• The equationz = z3 + z has solutions0,±
√

2i. These are the only solutions on the
imaginary axis, because whenz = iy, the equation becomesy3 − 2y = 0. If z were
a solution not on the imaginary axis, thenz3 = z − z would be purely imaginary, so
the principal argument ofz would have to be either±π

6
or ±5π

6
. But for each of these

arguments, it is easy to see thatz3 lies on the opposite half of the imaginary axis toz − z.
So there are exactly three solutions.

• The equationz = −z3 + 5
4
z has seven solutions, namely

0, ±1

2
, ±

√
13 +

√
3i

4
, and ±

√
13 −

√
3i

4
.

The verification that these are solutions is routine; that there are no more solutions is a
special case of Case 2 below.

We must now show that the number of solutions is always between three and seven. We will
use the known fact (easily derived from basic calculus) thatfor any real numbersp, q, the cubic
x3 + px + q has one real root if4p3 + 27q2 > 0, two real roots if4p3 + 27q2 = 0 (unless
p = q = 0, in which case0 is the unique root), and three real roots if4p3 + 27q2 < 0.

By replacing the variablez with z − b
3a

, we can remove thez2 term, i.e. we may assume that
b = 0. Moreover, by replacing the variablez with z√

|a|
, we can scale the coefficient ofz3 to

either1 or−1, i.e. we may assume thata = ±1.
Case 1: a = 1, so the equation isz = z3 + cz + d. The real solutions of this equation are

the roots of the cubicf(x) = x3 + (c − 1)x + d. To find non-real roots, we writez = x + iy
and equate real and imaginary parts, cancelling a common factor of y from the imaginary-parts
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equation (y 6= 0 becausez is to be non-real). This results in two equations forx andy:

x3 − 3xy2 + (c − 1)x + d = 0,

3x2 − y2 + (c + 1) = 0.

From the second equation we havey2 = 3x2 + (c + 1), sox is a root of the cubicg(x) =
x3 + c+2

4
x − d

8
and must satisfyx2 > − c+1

3
. For any suchx we have two possible values ofy

(reflecting the fact thatz is a solution if and only ifz is). To sum up, the number of solutions
of z = z3 + cz + d equalsA + 2B, whereA is the number of real roots off(x), andB is the
number of real roots ofg(x) which satisfyx2 > − c+1

3
. We must show that3 ≤ A + 2B ≤ 7.

The only way we could haveA + 2B < 3 is if A ≤ 2 andB = 0. To say thatB = 0 is to say

thatc ≤ −1 and all the real roots ofg(x) lie in the closed interval[−
√

− c+1
3

,
√

− c+1
3

]. This

implies thatg(−
√

− c+1
3

) ≤ 0 andg(
√

− c+1
3

) ≥ 0, which boil down to the inequalities:

−2 − c

12

√

−c + 1

3
≤ d

8
≤ 2 − c

12

√

−c + 1

3
.

From this we deduce that27d2 ≤ −4(c − 2)2(c + 1), so

4(c − 1)3 + 27d2 ≤ 12c − 20 ≤ −32,

which would imply thatA = 3, contradicting our assumption. SoA + 2B ≥ 3 is proved.
The only way we could haveA + 2B > 7 is if A ≥ 2 andB = 3. The fact thatg(x) has three

real roots implies that(c + 2)3 + 27d2

4
< 0, so in particularc < −2; we are moreover assuming

that all of these roots satisfyx2 > − c+1
3

, so there are no roots ofg(x) in the closed interval

[−
√

− c+1
3

,
√

− c+1
3

]. But on the other hand, there must be a root ofg(x) between the two

critical points±
√

− c+2
12

, which lie in this interval. This contradiction shows thatA + 2B ≤ 7,
concluding our analysis of Case 1.

Case 2: a = −1, so the equation isz = −z3 +cz+d. Proceeding as in Case 1, we see that the
number of solutions isA+2B whereA is the number of real roots off(x) = x3− (c−1)x−d,
andB is the number of real roots ofg(x) = x3 − c+2

4
x + d

8
which satisfyx2 > c+1

3
.

As in Case 1,A + 2B < 3 would imply B = 0, soc ≥ −1 and all the real roots ofg(x) lie

in the closed interval[−
√

c+1
3

,
√

c+1
3

]. This implies thatg(−
√

c+1
3

) ≤ 0 andg(
√

c+1
3

) ≥ 0,
which boil down to the inequalities:

−c − 2

12

√

c + 1

3
≤ −d

8
≤ c − 2

12

√

c + 1

3
.

Hence we havec ≥ 2 and27d2 ≤ 4(c − 2)2(c + 1), so

−4(c − 1)3 + 27d2 ≤ −12c + 20 ≤ −4,

which implies thatA = 3, contradicting our assumption.
Finally, A + 2B > 7 would implyA ≥ 2 andB = 3. The fact thatf(x) has more than one

real root implies that−4(c−1)3 +27d2 ≤ 0, so in particularc ≥ 1. The fact that all the roots of

g(x) satisfyx2 > c+1
3

implies that there are no roots in the closed interval[−
√

c+1
3

,
√

c+1
3

]. But
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there must be a root ofg(x) between the two critical points±
√

c+2
12

, which lie in this interval.
This gives the required contradiction.

If instead of cubic polynomials we had considered polynomials of degreen, wheren > 1, the
minimum number of solutions would have beenn and the maximum would have been3n − 2
(see L. Geyer, ‘Sharp bounds for the valence of certain harmonic polynomials’, Proc. Amer.
Math. Soc. 136 (2008), no. 2, 549–555). Allowing the coefficients of the polynomial to be
complex would not have made any difference.

8. A famous theorem in algebra says that anyn × n integer matrixA can be written as a matrix
productXDY , whereX andY are integer matrices with determinant±1, andD is a diagonal
matrix with nonnegative integer diagonal entriesd1, d2, · · · , dn such thatdi+1 is a multiple ofdi

for all 1 ≤ i ≤ n − 1. The numbersd1, d2, · · · , dn are uniquely determined and are called the
invariant factors of A. Find the invariant factors of the matrixA = (aij)

n
i,j=1, whereaij = ij .

Solution. We have the identity

ij =
∑

k≤i,j

(

i

k

)

k! S(j, k),

whereS(j, k) denotes the Stirling number of the second kind, i.e. the number of ways of par-
titioning a set withj elements intok blocks. The proof is that the left-hand side counts all
functionsf : {1, · · · , j} → {1, · · · , i}, and the number of functions whose image is a fixed
subsetK is |K|! S(j, |K|).

HenceA = XDY whereX is the lower-triangular matrix whose(i, k)-entry is
(

i

k

)

, D is
the diagonal matrix whose(k, k)-entry isk!, andY is the upper-triangular matrix whose(k, j)-
entry isS(j, k). SinceX andY have all diagonal entries1, det(X) = det(Y ) = 1. Moreover,
it is clear that(i + 1)! is a multiple ofi! for all 1 ≤ i ≤ n − 1, so the invariant factors ofA are
1!, 2!, 3!, · · · , n!.

9. In the complex vector spaceC2 we define an inner product by

(z1, z2) · (w1, w2) = z1w1 + z2w2, for all z1, z2, w1, w2 ∈ C.

An element(z1, z2) ∈ C2 is aunit vector if (z1, z2) · (z1, z2) = 1. Show that it is impossible to
have five unit vectors(z(a)

1 , z
(a)
2 ), a = 1, 2, 3, 4, 5, no two of which are scalar multiples of each

other, such that|(z(a)
1 , z

(a)
2 ) · (z(b)

1 , z
(b)
2 )| is the same for all pairs(a, b) with a 6= b.

Solution. Assume for a contradiction that we have five non-proportional unit vectors
(z

(a)
1 , z

(a)
2 ), a = 1, 2, 3, 4, 5, satisfying the condition in the question; letc denote the com-

mon value of|(z(a)
1 , z

(a)
2 ) · (z

(b)
1 , z

(b)
2 )| for all a 6= b. Clearly c is a nonnegative real number,

andc ≤ 1 by the Cauchy-Schwarz Inequality. Since the inner product is a sesquilinear form,
we can multiply each unit vector by a scalar (complex number)of modulus1 without affecting
anything.

LetSU2 denote the group of2×2 complex matrices of the form( α β

−β α
), where|α|2+|β|2 = 1.

For any such matrix, we have

(z1, z2)(
α β

−β α
) · (w1, w2)(

α β

−β α
) = (αz1 − βz2, βz1 + αz2) · (αw1 − βw2, βw1 + αw2)

= (|α|2z1w1 − αβz1w2 − αβz2w1 + |β|2z2w2) + (|β|2z1w1 + αβz1w2 + αβz2w1 + |α|2z2w2)

= z1w1 + z2w2

= (x1, x2) · (y1, y2).
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So multiplication by an element ofSU2 preserves the property of being a unit vector, and would
preserve the supposed property of the 5 unit vectors we are investigating. Moreover,SU2 acts
transitively on the set of unit vectors, because the orbit of(1, 0) consists of all the top rows
of matrices inSU2, i.e. all unit vectors(α, β). So we may assume that the last of our five
unit vectors is(1, 0). Hence we have|z(a)

1 | = c for a = 1, 2, 3, 4. As noted above, we can
multiply each unit vector by a complex number of modulus1, so we can assume thatz

(a)
1 = c

for a = 1, 2, 3, 4. Hence|z(a)
2 | =

√
1 − c2 for a = 1, 2, 3, 4. Since the vectors are distinct, we

cannot havec = 1, so we must havec < 1.
At this stage the remaining equations are that

|c2 + z
(a)
2 z

(b)
2 | = c, for all 1 ≤ a 6= b ≤ 4.

If we setz(a)
2 =

√
1 − c2 eiθa for a = 1, 2, 3, 4, where without loss of generality0 ≤ θ1 < θ2 <

θ3 < θ4 < 2π, then these equations become

(c2 + (1 − c2)ei(θa−θb))(c2 + (1 − c2)ei(θb−θa)) = c2, for all 1 ≤ a 6= b ≤ 4,

which simplifies to

cos(θa − θb) = 1 − 1

2c2
, for all 1 ≤ a 6= b ≤ 4.

The casec = 0 gets ruled out along the way in this simplification, and we nowsee that in fact
c ≥ 1

2
. Let x = cos−1(1 − 1

2c2
), soπ/3 < x ≤ π. Then for all1 ≤ b < a ≤ 4, we know

thatθa − θb is eitherx or 2π − x. Thus the equation(θ2 − θ1) + (θ3 − θ2) = θ3 − θ1 must be
eitherx + x = 2π − x or (2π − x) + (2π − x) = x, and the second leads tox = 4π which is
impossible, sox = 2π/3 andθ2 − θ1 = θ3 − θ2 = 2π/3. Similarly we find thatθ4 − θ3 = 2π/3,
but thenθ4 − θ1 = 2π is neitherx nor2π − x, which gives the desired contradiction. The proof
is finished.

Incidentally, this argument has produced four unit vectorswhich do have the required prop-
erty, namely

(1, 0), (
1√
3
,

√
2√
3
), (

1√
3
,− 1√

6
+

1√
2
i), (

1√
3
,− 1√

6
− 1√

2
i).

These form the vertices of a regular tetrahedron. The maximum number of such “equiangular”
unit vectors inCd for generald is unknown.

10. Imagine placing infinitely many identical coins at integer points on the real line (at most one
coin at each integer). Call such a placementallowable if, for all sufficiently large positive
integersN , there is a coin at−N but not atN . Thus every allowable placement has a contiguous
block of coins on the left, and there is some integera (the “first gap”) which is minimal among
those where there is no coin. Call an allowable placementwell-spaced if there are no two coins
at positionsb, b + 1 whereb > a (i.e. no adjacent coins to the right of the first gap). By amove
from one allowable placement to another, we mean a move of a single coin two places to the
right, i.e. removing a coin ati and replacing it at the previously empty positioni+2 for somei.

For any integersm andn, define an allowable placementPm,n in which the coins are placed
at the odd integers≤ 2m − 1 and the even integers≤ 2n. Here is a picture ofP2,−1:

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6
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Let f(m, n, w) be the number of well-spaced placements which can be obtained from Pm,n by
a sequence of exactlyw moves (the intermediate placements do not have to be well-spaced).
Prove thatf(m, n, w) is independent ofm andn.

Solution. In fact, f(m, n, w) is equal to the number of partitions ofw, i.e. ways to writew
as a sum of positive integers (with repetition allowed, and without considering order). This is a
special case of a major combinatorial result, known as Chung’s Conjecture before it was proved
in 1952 (see G. D. James, ‘Some combinatorial results involving Young diagrams’, Math. Proc.
Camb. Phil. Soc. 83 (1978), 1–10).

It is clear that replacingm andn with m + c andn + c for any integerc would not change
the problem, since it would merely shift all coins2c places. Sof(m, n, w) = g(m − n, w)
for some functiong of two integer variables (the second of which is nonnegative). Similarly,
shifting all coins one place to the right corresponds to replacing (m, n) with (n + 1, m), so
f(m, n, w) = f(n + 1, m, w), showing thatg(d, w) = g(1 − d, w). To complete the proof that
g is independent of its first variable, it suffices to show thatg(d, w) = g(−d, w), or equivalently
f(m, n, w) = f(n, m, w). (Having proved the independence, it is easy to see that the common
value off(m, n, w) for all m, n is the number of partitions ofw, because in the case thatm−n
is much larger thanw, the placement resulting from thew moves is well-spaced if and only if
all the moves involved coins at odd positions.)

To prove thatf(m, n, w) = f(n, m, w), it is enough to construct a bijection between the well-
spaced placements obtained fromPm,n by w moves and the well-spaced placements obtained
from Pn,m by w moves. It is convenient to rephrase the definition of these sets using some
further notation.

To any allowable placementP we attach a triple of integers(a(P ), b(P ), c(P )) as follows.
Definea(P ) by the rule that for all sufficiently large integersN ,

a(P ) = #{coins at odd positions> −2N} − #{coins at even positions> −2N}.

(It is clear that for largeN this quantity is independent ofN .) Defineb(P ) by the requirement
that if we were to move all coins inP as far left as they would go (irrespective of parity), they
would occupy exactly the positions· · · , b(P ) − 2, b(P ) − 1, b(P ). Finally, let c(P ) be the
number of pairs(i, i′) ∈ Z2 wherei < i′ andP has a coin ati′ but not ati.

Suppose thatP ′ is obtained fromP by a move of a single coin two places to the right as in
the question. Then it is easy to see thata(P ′) = a(P ), b(P ′) = b(P ), andc(P ′) = c(P ) + 2.
Moreover, a short calculation gives

a(Pm,n) = m − n, b(Pm,n) = m + n, andc(Pm,n) =

(

m − n

2

)

.

Here
(

x

2

)

meansx(x−1)
2

, whetherx is positive or negative.
It is clear that every allowable placementP is obtained from some initial placementPm,n

by moves as in the question. Since thea andb values are left unchanged by the moves, this
initial placement is in fact uniquely determined: we must have m = 1

2
(a(P ) + b(P )) and

n = 1
2
(b(P ) − a(P )). Moreover, the number of moves must be1

2
(c(P ) −

(

a(P )
2

)

) (in particular,
c(P ) must be greater than or equal to

(

a(P )
2

)

and of the same parity). So the allowable placements
P obtained fromPm,n by w moves are exactly those for whicha(P ) = m − n, b(P ) = m + n,
and c(P ) =

(

m−n

2

)

+ 2w, and those obtained fromPn,m by w moves are those for which
a(P ) = n − m, b(P ) = m + n, andc(P ) =

(

n−m

2

)

+ 2w = m − n +
(

m−n

2

)

+ 2w.
It will therefore suffice if we can construct an involution (i.e. a self-inverse permutation)

P 7→ P of the set of well-spaced placements which has the followingproperties:



SUMS Problem Competition 2008 Page 11

a) a(P ) = −a(P ),

b) b(P ) = b(P ),

c) c(P ) = c(P ) + a(P ).

The following definition of such an involution is adapted from one given in the paper by A. Las-
coux, B. Leclerc, and J.-Y. Thibon, ‘Hecke algebras at rootsof unity and crystal bases of quan-
tum affine algebras’, Commun. Math. Phys. 181 (1996), 205–263.

Let (i1 < · · · < is) be the sequence of positions of all coins inP not in the contiguous block,
except that we include the rightmost coin in the contiguous block if its position is odd. Since
P is well-spaced,ij + 1 < ij+1 for all 1 ≤ j ≤ s − 1. Now defineǫ1, · · · , ǫs by the rule that
ǫj = 1 if ij is odd andǫj = −1 if ij is even. Note thatǫ1 + · · · + ǫs = a(P ). If a(P ) = 0 (i.e.
there are equal numbers of1s and(−1)s), defineP = P ; otherwise, proceed as follows. From
the sequence1 < · · · < s, eliminate any consecutive pairj < j′ with the property thatij = −1
andij′ = 1; then eliminate such consecutive pairs from the remaining sequence, and continue
in this way until what remains is a sequencej1 < · · · < jt such thatij1 = · · · = ijk

= 1,
ijk+1

= · · · = ijt
= −1 for some0 ≤ k ≤ t. We havek− (t− k) = a(P ) 6= 0. If k > t− k, we

defineP to be the placement obtained fromP by moving the coin onijt−k+1
to ijt−k+1

+ 1, the
coin onijt−k+1+1 to ijt−k+1+1 + 1, and so on, up to the coin onijk

to ijk
+ 1. (Note that these are

not moves of the type considered in the question.) Ifk < t−k, we defineP to be the placement
obtained fromP by moving the coin onijk+1

to ijk+1
− 1, the coin onijk+2

to ijk+2
− 1, and

so on, up to the coin onijt−k
to ijt−k

− 1. It is straightforward to check thatP is well-spaced.

Moreover, the two cases are inverse to each other, so we always haveP = P . ThusP 7→ P
gives an involution of the set of well-spaced placements. Itis easy to see from the definition
that the three properties are satisfied.


