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1. The sisters Alice, Bess, and Cath have become proficient at factorizing numbers, so their father
David invents a puzzle for them. He chooses three secret integersa, b, c, all greater than1, and
then puts a sticker on Alice’s forehead showing the numberbc (the product ofb andc), one on
Bess’ forehead showingac, and one on Cath’s forehead showingab. Each of the girls can see
her sisters’ stickers but not her own, and must try to work outthe number on her own sticker,
knowing how the numbers were derived. After a few seconds’ thought, Alice says smugly “I
know my number”. Bess then says “I wasn’t sure about my numberat first, but knowing that
Alice knows hers, I know mine”. Even after hearing her sisters’ comments, Cath can’t work out
the number on her sticker; but when David gives her the hint that it is even, she can. What isa?

Solution. Note that for Alice, knowing the numbersab andac, the knowledge of her numberbc

is equivalent to the knowledge ofa, sincea =
√

(ab)(ac)
bc

. The fact that she was able to determine
a knowing onlyab andac means thata is the unique common proper divisor ofab andac which
is greater than1. Hence eithergcd(ab, ac) is prime and different fromab andac, or gcd(ab, ac)
is the square of a prime and equal to eitherab or ac. Sincegcd(ab, ac) = a gcd(b, c), there are
three cases:
(i) a is prime andgcd(b, c) = 1;
(ii) a is prime,b = a, anda | c; or
(iii) a is prime,c = a, anda | b.
But if case (ii) held, thenb would be the unique common proper divisor ofab andbc which is
greater than1, so Bess would have been able to work out her number right fromthe beginning,
without needing to hear Alice’s comment. Similarly, if case(iii) held, Cath would have been
able to work out her number right from the beginning. So case (i) must hold. Moreover, after
Alice and Bess make their comments, Cath knows every fact we have used so far, so she can
deduce that case (i) must hold.

Cath also knows the numbersu = ac andv = bc. If u ∤ v, thengcd(u, v) must bec, sincea
is prime; in this case Cath would be able to work out her number. So it must be thatu | v, i.e.
a | b; sincegcd(b, c) = 1, this implies thata ∤ c. This fully explains Bess’ ability to work out
her number, knowing (as she did by that point)ab andbc and the fact thata is prime. Note that it
is not possible thata = b, because then Bess would have seen the same two numbers that Alice
saw, and would have been able to work out her number right fromthe beginning. Conversely,
the fact thata 6= b explains Bess’ inability to work out her number when she knewonly ab and
bc, whose greatest common divisor is composite and different fromab andbc (being equal tob,
although Bess didn’t know that originally).

So Cath is faced with two composite numbersu andv, whereu | v andu 6= v; equivalently,
one composite numberu and one numberx greater than1 (setx = v/u). She needs to find a
prime divisorp of u such thatp ∤ u/p (i.e. p occurs only once in the prime factorization ofu),
andgcd(u/p, x) = 1; the secret numbers are thena = p, b = px, andc = u/p, and Cath’s own
number isp2x. Since she cannot work out her number based on this information, there must be
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more than one primep satisfying these requirements. However, the information thatp2x is even
is enough to specify it completely; sox cannot itself be even, and we must havep = 2. So the
answer to the question is thata = 2. (There is not enough information to determineb andc, but
it could be, for example, thatb = 10 andc = 3; the sticker numbers would then be30 for Alice,
6 for Bess, and20 for Cath, and events could transpire as stated in the question.)

2. In this problem, aword is a finite string of capital letters (not necessarily meaningful in English)
in which no letter occurs in two consecutive positions. ThusAFARSFA andBEGEB are words,
butABBA is not. A word ispalindromic if, like BEGEB, it reads the same backwards as forwards
(a single letter counts as a palindromic word, but the empty word does not). We say that a word
W is contained in another wordW ′ if the letters ofW occur in the right order among the letters
of W ′, not necessarily consecutively. For instance,AFRFA, S andFASF are all contained in
AFARSFA (as isAFARSFA itself), butSRA is not. Prove that if a wordW is n letters long,
there are at leastn palindromic words which are contained inW .

Solution. Let W be the stringa1a2 · · ·an. If n = 0 (i.e. W is the empty word), then the
statement is vacuously true; ifn = 1 (i.e. W is a single letter), thenW itself is palindromic.
Whenn ≥ 2, we may assume by induction that there are at leastn − 1 palindromic words
contained ina1a2 · · ·an−1, so it suffices to find a palindromic word which is contained inW but
not ina1a2 · · ·an−1. Suppose thatan is the letterX andan−1 is the letterY: by assumption,Y is
different fromX. Let V be the longest word contained inW which has the formXYXYX· · ·YX
(possibly the length is just1, andV consists of the single letterX). If V were contained in
a1a2 · · ·an−1, then it would have to be contained ina1a2 · · ·an−2 since it does not end with
a Y; so we could attachan−1an to V to create a longer word of the same form, contradicting
maximality. SoV is the desired palindromic word contained inW but not ina1a2 · · ·an−1.

We can go a bit further and describe which wordsW of lengthn contain exactlyn palindromic
words. Suppose thatW = a1a2 · · ·an has this property. Then there must be exactly one
palindromic word contained ina1a2 · · ·ak which is not contained ina1a2 · · ·ak−1, for all k =
3, 4, · · · , n. This would certainly be the case if the letterak does not occur ina1a2 · · ·ak−1.
If ak is the letterX and does occur ina1a2 · · ·ak−1, then the wordV constructed as above
usingak−1 asY is one palindromic word contained ina1a2 · · ·ak which is not contained in
a1a2 · · ·ak−1, andV has length≥ 3. If ak−2 is a letterZ different fromX, then we would
get another such wordV ′ of the formXZXZX· · ·ZX, contrary to assumption. Soak−2 must be
the same letterX asak. Hence the occurrences of each letter inW must be in a sequence of
positionsas, as+2, as+4, · · · , as+2m which are consecutive among the positions of that parity. It
is not hard to see that this condition is also sufficient forW to contain exactlyn palindromic
words.
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3. A repeating number is a positive integer whose decimal expression consists of two or more
occurrences of the same block of digits: examples are44, 575757, and616616. Show that there
is no repeating number whose square is also a repeating number.

Solution. Suppose for a contradiction thatm is a repeating number such thatm2 is also a
repeating number. By definition, we havem = (10(p−1)k + 10(p−2)k + · · ·+ 10k + 1)n, wheren
is ak-digit number which is the repeating block, andp ≥ 2 is the number of occurrences of the
block. Note thatm haspk digits, som2 must have either2pk − 1 or 2pk digits. Sincem2 is a
repeating number, it is divisible by some number of the form10(q−1)ℓ +10(q−2)ℓ + · · ·+10ℓ +1,
whereqℓ is the number of digits ofm2 andq ≥ 2. That is, we have

10qℓ − 1

10ℓ − 1

∣

∣

∣

∣

∣

(

10pk − 1

10k − 1

)2

n2. (1)

We now distinguish two cases and find a contradiction in each.
Case 1: qℓ = 2pk − 1 (which rules outq = 2). In this case, since

10qℓ − 1 = 10pk−1(10pk − 1) + (10pk−1 − 1) and

10pk − 1 = 10(10pk−1 − 1) + 9,

the Euclidean algorithm says thatgcd(10qℓ − 1, 10pk − 1) = 9. Hence

gcd

(

10qℓ − 1

9
,
10pk − 1

9

)

= 1, which impliesgcd

(

10qℓ − 1

10ℓ − 1
,
10pk − 1

10k − 1

)

= 1.

Combining this with (1), we conclude that
10qℓ − 1

10ℓ − 1
dividesn2. But

10qℓ − 1

10ℓ − 1
> 10(q−1)ℓ ≥ 10

2

3
(2pk−1) ≥ 102k > n2,

so we have a contradiction.
Case 2: qℓ = 2pk. In this case, we have10qℓ − 1 = (10pk + 1)(10pk − 1). Note that10pk + 1 is
coprime to10pk − 1, since they differ by2 and are odd. So from (1) we conclude that

10pk + 1

∣

∣

∣

∣

10ℓ − 1

(10k − 1)2
n2

But sincen ≤ 10k − 1,

10ℓ − 1

(10k − 1)2
n2 ≤ 10ℓ − 1 ≤ 10

qℓ

2 − 1 = 10pk − 1 < 10pk + 1,

so we have a contradiction.

4. Let a1, a2, a3, · · · be positive real numbers such that
∞
∑

n=1

an = 1. Show that
∞
∑

n=1

(a1a2 · · ·an)1/n

converges to a value strictly less thane.
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Solution. Setbn =
(n + 1)n

nn−1
for all positive integersn, so thatb1b2 · · · bn = (n+1)n. Then we

have the following chain of equalities and inequalities (where the convergence of each infinite
series follows from that of the next):

∞
∑

n=1

(a1a2 · · ·an)1/n =

∞
∑

n=1

(a1b1a2b2 · · ·anbn)1/n

(b1b2 · · · bn)1/n

≤

∞
∑

n=1

1
n
(a1b1 + a2b2 + · · ·+ anbn)

n + 1
(AM–GM inequality)

=
∞
∑

m=1

ambm

∞
∑

n=m

1

n(n + 1)

=
∞
∑

m=1

ambm
1

m

=
∞
∑

m=1

am

(

m + 1

m

)m

< e

(

∞
∑

m=1

am

)

= e,

because(m+1
m

)m is an increasing function ofm which tends toe asm → ∞.

5. Let An be then × n matrix whose(i, j)-entry is1 if n ≤ i + j ≤ n + 1 and zero otherwise.
Find the eigenvalues ofAn.

Solution. Let Pn(x) = det(x1n − An) denote the characteristic polynomial ofAn; we
need to find the roots of this polynomial. Considering small values ofn, we haveP0(x) = 1
(the only reasonable definition of determinant of an empty matrix), andP1(x) = x − 1, with
root 1. Now suppose thatn ≥ 2. Expanding the determinant along the last row, we have
Pn(x) = xPn−1(x)−(−1)n+1Qn−1(x), whereQn−1(x) is the determinant of the matrix obtained
from x1n − An by deleting itsnth row and1st column. Expanding the latter determinant along
its last column, we find thatQn−1(x) = −(−1)1+(n−1)Pn−2(x), so

Pn(x) = xPn−1(x) − Pn−2(x), for all n ≥ 2.

Now we claim that

Pn(2 cos θ) =
cos (2n+1)θ

2

cos θ
2

,

for all n ≥ 0 and0 ≤ θ < π. Then = 0 andn = 1 cases are easy, so assume thatn ≥ 2 and
that the claim is known forn − 1 andn − 2. Then

Pn(2 cos θ) =
2 cos θ cos (2n−1)θ

2
− cos (2n−3)θ

2

cos θ
2

=
cos (2n+1)θ

2

cos θ
2

,

proving the claim by induction. It follows thatPn(x) = 0 whenx = 2 cos (2k+1)π
(2n+1)

for k =

0, 1, 2, · · · , n − 1. Sincecos is strictly decreasing on[0, π), thesen values ofx are all distinct,
and hence they are all the roots ofPn(x).
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6. Peg solitaire is sometimes played with an array of pegs whichform an equilateral triangle,
except that initially there is one position left empty. A move consists of jumping a peg over an
adjacent peg into an empty position on the other side, where the line of motion is parallel to one
of the sides of the triangle; the peg which was jumped over is then removed. The aim is to have
only one peg remaining at the end. (Videos of such a ‘Peg Puzzle’ can be found online.)

By contrast, the four-dimensional beings in the neighbouring universe play solitaire with an
array of pegs forming a regular tetrahedron, initially withone peg missing. A move now affects
four consecutive positions rather than three: it consists of jumping a peg over an adjacent peg
and over a third peg on the other side of that, into an empty position on the other side of the
third peg, where the line of motion is parallel to one of the edges of the tetrahedron;both pegs
which were jumped over are then removed. The aim is to have only one peg or two adjacent
pegs remaining at the end. Show that if the initial empty position is in the exact centre of the
tetrahedron, this aim cannot be achieved.

Solution. The positions in the tetrahedral array can be labelled by the4-tuples(a1, a2, a3, a4)
of nonnegative integers such thata1 + a2 + a3 + a4 = n − 1, wheren is the number of
positions along each edge (we can obviously assume thatn ≥ 2). The number of such4-
tuples is

(

n+2
3

)

= n(n+1)(n+2)
6

. Two positions are adjacent if their difference is(1,−1, 0, 0) or
(1, 0,−1, 0) or any other rearrangement of those coordinates.

The four vertex positions are(n − 1, 0, 0, 0), (0, n − 1, 0, 0), (0, 0, n − 1, 0), (0, 0, 0, n − 1).
For the centre of the tetrahedron to be an integral position,we must haven = 4k + 1 for
some positive integerk; the centre is then(k, k, k, k). The initial number of pegs is then
32k3 + 48k2 + 22k

3
, which is even. Since two pegs are removed in every move, the number

of pegs must remain even, so it is impossible to finish with onepeg. We need to rule out the
possibility of finishing with two adjacent pegs.

We define quantitiesm1, m2, m3, m4 (which change as the game progresses) by

mi = number of pegs in a position with oddith coordinate

− number of pegs in a position with evenith coordinate.

Since the total number of pegs is always even, eachmi is always even. Consider the effect on
thesemi’s of a move in the direction of the vector(1,−1, 0, 0). If the initial position of the
moving peg has an even1st coordinate, then its final position has an odd1st coordinate, and
of the two pegs which are removed, one has an even1st coordinate and one has an odd1st
coordinate. Som1 would increase by2 in this case; if on the other hand the initial position of
the moving peg had an odd1st coordinate, thenm1 would decrease by2. Similarly, the effect
of the move onm2 is either to increase it by2 or to decrease it by2. Since all the positions
involved have the same3rd coordinate, the effect of the move onm3 is either to increase it by
2 or to decrease it by2, depending on whether that coordinate is even or odd; similarly for m4.
The upshot is that if we consider the4-tuple(m1, m2, m3, m4) modulo4, then every move adds
(2, 2, 2, 2) to it.

Now the initial configuration of pegs is symmetric under permutations of the coordinates, so
the initial value of(m1, m2, m3, m4) modulo4 is either(0, 0, 0, 0) or (2, 2, 2, 2) (which of the
two it is depends on the parity ofk). Hence it must always be either(0, 0, 0, 0) or (2, 2, 2, 2).
But for a configuration of just two adjacent pegs,(m1, m2, m3, m4) modulo4 obviously consists
of two 0’s (corresponding to the coordinates which are the same for the two pegs) and two2’s
(corresponding to the coordinates which are different for the two pegs). So we have our desired
contradiction.
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7. Define a sequence of integersa0, a1, a2, · · · by the initial conditiona0 = 1 and the recurrence

relationan =
n
∑

k=1

(

n − 1

k − 1

)

k! an−k for n ≥ 1. Prove thatan − 1 is always a multiple ofn.

Solution. We claim thatan equals the number of ways to splitn objects into ordered lists:
in other words, the number of ways to partition{1, 2, · · · , n} into disjoint nonempty subsets
and then order each of these subsets (without putting an ordering on the set of subsets). For
example,a3 = 13, and there are thirteen ways to split{1, 2, 3} into ordered lists:

123, 132, 213, 231, 312, 321, 12|3, 21|3, 13|2, 31|2, 23|1, 32|1, 1|2|3,

where the vertical lines mark off a new list. We can prove thisby induction onn (then = 0
base case is clear). In a partition of{1, 2, · · · , n} as above, the sizek of the subset containing
the numbern can be anything from1 to n. For fixedk, the number of ways to choose the other
k − 1 elements of the subset is

(

n−1
k−1

)

, the number of ways to order the subset isk!, and the
number of ways to partition the remainingn − k elements into disjoint ordered subsets isan−k

by the induction hypothesis. Hence the number of ways to partition {1, 2, · · · , n} into disjoint

ordered subsets is
n
∑

k=1

(

n − 1

k − 1

)

k! an−k = an, and the claim is proved.

We can now find a (non-closed) formula foran by considering the sizes of the subsets in a
partition of{1, 2, · · · , n}; these sizes form a partition of the numbern. For any fixed partition
n = k1 + k2 + · · ·+ kℓ (where theki’s are positive integers, in no specific order), we can count
the partitions of{1, 2, · · · , n} into ordered subsets of these sizes: choosing the elements of the
subset of sizek1, then the elements of the subset of sizek2, and so forth would result inn!, but
this overcounts by a factor of

∏

a≥1 ma(k•)!, wherema(k•) is the number of times the number
a occurs among theki’s, because we do not want to have a specified order on the set ofsubsets.
Hence

an =
∑

partitionk• of n

n!
∏

a≥1 ma(k•)!
,

where every fraction in the sum is in fact an integer. Now the denominator
∏

a≥1 ma(k•)! always
divides(

∑

a≥1 ma(k•))! (the quotient of the latter by the former is a multinomial coefficient).
So it always divides(n − 1)!, except in the sole case for which

∑

a≥1 ma(k•) ≥ n, namely the
case of the partitionn = 1 + 1 + · · ·+ 1. So aside from this termn!

n!
, every term is a multiple of

n, and thusan − 1 is a multiple ofn.

8. A regular polygon may be defined as a convex polygon whose vertices all lie on a circle and
whose edges all have the same length. Asemi-regular polygon is a convex polygon which has
an even number of vertices all lying on a circle, such that thelengths of its edges, in clockwise
order, area, b, a, b, · · · , a, b for somea 6= b. (For instance, a non-square rectangle is semi-
regular.) Prove that, given any regular polygonP , it is possible to construct with straightedge
and compass a semi-regular polygonQ which has the same perimeter-length asP and encloses
the same area asP .

Solution. For any polygonX, let σ(X) denote the quantity
perimeter(X)2

area(X)
, which is clearly

unchanged after scalingX. It suffices to construct a semi-regularQ such thatσ(Q) = σ(P ),
because there are then well-known methods (using similar triangles) of re-scalingQ so that it
has the same perimeter asP , and hence also the same area. We may as well stipulate that the
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vertices ofQ lie on a circle of radius1. Here we can take any constructible length (such as the
edge-length ofP , for example) as the unit of measurement.

Now if P hasn vertices (wheren ≥ 3) and circumradiusr, its perimeter is2nr sin(π
n
) and its

area is1
2
nr2 sin(2π

n
), so

σ(P ) =

(

2nr sin(π
n
)
)2

1
2
nr2 sin(2π

n
)

= 4n tan(
π

n
).

This is a strictly decreasing function ofn which tends to4π (i.e. theσ-value of a circle) asn
tends to infinity, becausetan(x)

x
is an increasing function on(0, π

2
) which tends to1 asx → 0.

Suppose thatQ is semi-regular with2k vertices (for somek ≥ 2) and circumradius1, and leta
andb denote its two edge-lengths, as in the question; assume thata < b. Thena = 2 sin( π

2k
−θ)

andb = 2 sin( π
2k

+ θ) for a unique angleθ satisfying0 < θ < π
2k

. We have

σ(Q) =
k2(2 sin( π

2k
− θ) + 2 sin( π

2k
+ θ))2

k(1
2
sin(π

k
− 2θ) + 1

2
sin(π

k
+ 2θ))

=
k2(4 sin( π

2k
) cos θ)2

k sin(π
k
) cos 2θ

= 8k tan(
π

2k
)
cos2 θ

cos 2θ

= 4k tan(
π

2k
) (1 + sec 2θ).

Thusσ(Q) is a strictly increasing continuous function ofθ, which tends to8k tan( π
2k

) (theσ-
value of a regular2k-gon) asθ → 0 and tends to4k tan(π

k
) (theσ-value of a regulark-gon) as

θ → π
2k

. We conclude that ifk < n < 2k, there is a unique value ofθ for whichσ(Q) = σ(P ).
We are now free to choosek in a convenient way. Ifn is not a power of2, there is a unique

power of2, namelyk = 2⌊log2(n)⌋, such thatk < n < 2k; if n is a power of2, thenk = 3n
4

has
the property thatk < n < 2k. In either case, the angleπ

2k
is constructible by straightedge and

compass, because squares and equilateral triangles are constructible, and angles can be bisected.
Since there are standard ways of adding, multiplying, and dividing lengths, and constructing a
length equal to the area of a given triangle, it is possible toconstruct the lengthσ(P ), and hence
the angleθ = 1

2
sec−1( σ(P )

4k tan( π
2k

)
− 1) necessary to makeσ(Q) equal toσ(P ). Thus one can

constructQ as required.

9. Let F = {0, 1, · · · , p− 1} be the field of integers modulo a primep 6= 2. Let X be a nonempty
subset ofF d = {(x1, x2, · · · , xd) | xi ∈ F} for some positive integerd. Prove that there exist
a1, a2, · · · , ad, b ∈ F such that the equationa1x1 + a2x2 + · · · + adxd = b has an odd number
of solutions(x1, x2, · · · , xd) in X.

Solution. If we let V denote the vector spaceF d, the dual vector spaceV ∗ consists ofF -
linear functionsf : V → F , which are precisely those functions of the form(x1, x2, · · · , xd) 7→
a1x1 + a2x2 + · · · + adxd for ai ∈ F . So we have to prove that there existf ∈ V ∗ andb ∈ F
such that|{v ∈ X | f(v) = b}| is odd. Suppose for a contradiction that this quantity is even for
all f andb.

Let ζ be a primitive complexpth root of1. Then fora ∈ F , it makes sense to speak ofζa.
Recall that the minimal polynomial ofζ overQ is xp−1 + xp−2 + · · ·+ x + 1, so1, ζ, · · · , ζp−2
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are linearly independent overQ, and
∑

a∈F ζa = 0. The latter fact implies that for anyv ∈ V ,

∑

f∈V ∗

ζf(v) =

{

|V ∗|, if v = 0,

0, otherwise.

We deduce that for anyw ∈ X,

∑

f∈V ∗

ζ−f(w)

(

∑

v∈X

ζf(v)

)

=
∑

v∈X

∑

f∈V ∗

ζf(v−w)

= |V ∗|.

However, our assumption means that
∑

v∈X

ζf(v) =
∑

b∈F

|{v ∈ X | f(v) = b}| ζb

is a linear combination of1, ζ, · · · , ζp−2 with coefficients which are even integers. Hence the
same is true for|V ∗|, contradicting the fact that|V ∗| is a power ofp and hence odd.

10. For any positive integern, prove that
n
∑

a=0

(

n

a

)

an−a(n − a)a ≤
1

2
nn.

Solution. We can interpret both sides of the inequality combinatorially in terms of trees
(connected graphs with no loops, multiple edges or cycles).Let V = {v1, v2, · · · , vn} be fixed,
and letTV be the set of trees with vertex setV . By a famous result of Cayley, the number
of elements ofTV is nn−2, sonn equals the number of triples(v, w, T ) wherev, w ∈ V and
T ∈ TV . Let T ∗

V denote the set of such triples.
For anya,

(

n
a

)

is the number of subsetsI ⊆ V such that|I| = a. For any such subsetI, the
number of treesT ∈ TV such thatI∪(V \I) is a bipartite decomposition of the vertices ofT (i.e.
every edge ofT joins an element ofI with one ofV \ I) is an−a−1(n− a)a−1. (This calculation
is equivalent to finding the number of spanning trees of the complete bipartite graphKa,n−a,
which can be done using Prüfer sequences or Kirchhoff’s Matrix–Tree Theorem.) So the left-
hand side of our inequality equals the number of quadruples(v, w, T, I) where(v, w, T ) ∈ T ∗

V ,
I ⊆ V , v ∈ I, w ∈ V \ I, andI ∪ (V \ I) is a bipartite decomposition forT .

Now for any treeT ∈ TV andv ∈ V , there is a uniqueI ⊆ V such thatv ∈ I andI∪(V \I) is
a bipartite decomposition forT : namely,I consists of all verticesv′ ∈ V such thatdT (v, v′) is
even, wheredT (v, v′) denotes the distance fromv to v′ in the treeT (i.e. the number of edges in
the unique minimal path between these vertices). So the left-hand side of our inequality equals
the number of triples(v, w, T ) ∈ T ∗

V such thatdT (v, w) is odd, and we need to prove that this
is less than or equal to half the total number of triples.

Hence it suffices to prove that for allT ∈ TV ,

|{(v, w) ∈ V × V | dT (v, w) is odd}| ≤ |{(v, w) ∈ V × V | dT (v, w) is even}|. (2)

We will do this by showing that the right-hand side of (2) minus the left-hand side equals a
square:

∑

v,w∈V

(−1)dT (v,w) =

(

∑

v∈V

(−1)dT (v,vn)

)2

. (3)



SUMS Problem Competition 2009 Page 9

To prove (3), we use induction onn (then = 1 case is trivial). Assume thatn ≥ 2 and that
the result is known for trees with fewer vertices. Let1 ≤ i1 < i2 < · · · < is ≤ n − 1 be such
thatvi1 , vi2, · · · , vis are the vertices ofT adjacent tovn, and letT1, T2, · · · , Ts with vertex sets
V1, V2, · · · , Vs be the connected components ofT \ {vn} containing these vertices respectively;
these are all trees to which the induction hypothesis applies. Note that ifv, w ∈ Vp, then
dT (v, w) = dTp

(v, w), because the minimal path betweenv andw in Tp is also minimal inT . If
v ∈ Vp andw ∈ Vq wherep 6= q, then the minimal path betweenv andw in T passes through
vip, vn, andviq , sodT (v, w) = dTp

(v, vip) + dTq
(w, viq) + 2. Thus

∑

v,w∈V

(−1)dT (v,w) = 1 + 2
∑

v∈V \{vn}

(−1)dT (v,vn) +
∑

v,w∈V \{vn}

(−1)dT (v,w)

= 1 + 2
∑

v∈V \{vn}

(−1)dT (v,vn) +
s
∑

p=1

∑

v,w∈Vp

(−1)dTp (v,w)

+
∑

1≤p 6=q≤s

∑

v∈Vp

w∈Vq

(−1)dTp (v,vip )+dTq (w,viq )

= 1 + 2
∑

v∈V \{vn}

(−1)dT (v,vn) +

s
∑

p=1





∑

v∈Vp

(−1)dTp (v,vip )





2

+
∑

1≤p 6=q≤s

∑

v∈Vp

w∈Vq

(−1)dTp (v,vip )+dTq (w,viq )

= 1 + 2
∑

v∈V \{vn}

(−1)dT (v,vn) +





s
∑

p=1

∑

v∈Vp

(−1)dTp (v,vip )





2

= 1 + 2
∑

v∈V \{vn}

(−1)dT (v,vn) +



−
∑

v∈V \{vn}

(−1)dT (v,vn)





2

=



1 +
∑

v∈V \{vn}

(−1)dT (v,vn)





2

=

(

∑

v∈V

(−1)dT (v,vn)

)2

,

completing the induction step.


