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1. Let A1, A2, · · · , A2n be the vertices of a convex (2n)-gon in the plane, listed in clockwise order

(here n ≥ 3). Suppose that opposite edges of the (2n)-gon are parallel (that is, A1A2 is parallel

to An+2An+1, A2A3 is parallel to An+3An+2, and so on until AnAn+1 is parallel to A1A2n).

Prove that the main diagonals (A1An+1, A2An+2, · · · , AnA2n) intersect in a single point if and

only if opposite edges of the (2n)-gon have equal length.

Solution. For convenience, we define A2n+j to equal Aj for 1 ≤ j < 2n.

For 1 ≤ i ≤ 2n, let Pi be the point of intersection of the main diagonals AiAn+i and

Ai+1An+i+1. (Thus, we actually have Pn+i = Pi for 1 ≤ i ≤ n.) Since AiAi+1 is parallel

to An+i+1An+i, the triangles AiAi+1Pi and An+iAn+i+1Pi are similar, so

|AiPi|/|PiAn+i| = |Ai+1Pi|/|PiAn+i+1| = |AiAi+1|/|An+i+1An+i|. (1)

Now the main diagonals intersect in a single point if and only if all Pi are equal. Since both

Pi and Pi+1 lie in the interval Ai+1An+i+1 (here we define P2n+1 to be P1), this happens if

and only if |Ai+1Pi|/|PiAn+i+1| = |Ai+1Pi+1|/|Pi+1An+i+1| for all 1 ≤ i ≤ 2n. Using (1),

we conclude that the main diagonals intersect in a single point if and only if all the ratios

|AiAi+1|/|An+i+1An+i| are the same, for 1 ≤ i ≤ 2n. The latter condition implies that, for

1 ≤ i ≤ n, the ratio |AiAi+1|/|An+i+1An+i| equals its inverse |An+iAn+i+1|/|Ai+1Ai|, forcing

both to equal 1. So the main diagonals intersect in a single point if and only if opposite edges

AiAi+1 and An+i+1An+i have equal length. Note that, if this is the case, (1) shows that the

diagonals bisect each other.

2. Anna is playing a mathematical computer game. The computer is hiding a polynomial P ; the

degree and coefficients of P are unknown to Anna, but she does know that the coefficients are

strictly positive real numbers. In each move, Anna inputs a real number a and the computer

outputs P (a). This is repeated until Anna can determine what P must be.

For any strategy S used by Anna, denote by S(P ) the number of moves needed to determine

P . Call a strategy S optimal if S(P ) ≤ S ′(P ) for all possible strategies S ′ and all polynomials

P with strictly positive real coefficients. Does there exist an optimal strategy?

Solution. Yes, the following strategy S is optimal: Choose the positive integers 1, 2, 3, · · ·
in ascending order. Furthermore, this strategy gives S(P ) = deg(P ) + 2 for all allowable

polynomials P (where “allowable” is short for “with strictly positive real coefficients”). To

prove this, it suffices to prove the following two claims:

(i) S(P ) ≤ deg(P ) + 2 for all allowable polynomials P ,

(ii) S ′(P ) ≥ deg(P ) + 2 for all possible strategies S ′ and all allowable polynomials P .

We prove (i) by induction on n = deg(P ). In the base case where n = 0, P is a constant

polynomial c for some c > 0, and our claim amounts to saying that if Q is an allowable poly-

nomial such that Q(1) = Q(2) = c, then Q must be the constant polynomial c. This is clear,

because if Q were not constant, then Q(1) < Q(2) because all the coefficients are positive.
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Now suppose that n is positive, and assume that (i) is true for polynomials of degree n − 1.

Our claim amounts to saying that if Q is an allowable polynomial such that Q(i) = P (i) for all

i ∈ {1, 2, · · · , n+ 2}, then Q = P . Consider the polynomials ∆P and ∆Q defined by

∆P (x) = P (x+ 1)− P (x) and ∆Q(x) = Q(x+ 1)−Q(x).

These are both allowable (this follows from the fact that (x+1)d−xd has positive coefficients),

and ∆Q(i) = ∆P (i) for all i ∈ {1, 2, · · · , n + 1}. Since deg(∆P ) = n− 1, we can conclude

from the inductive hypothesis that ∆Q = ∆P . So Q−P is a polynomial with the property that

(Q− P )(x+ 1) = (Q−P )(x) for all x, forcing Q− P to be constant; since Q(1) = P (1), we

have Q = P as required. This completes the proof of (i).

We prove (ii) by contradiction. Suppose that there was a strategy S ′ and an allowable poly-

nomial P of degree n such that S ′(P ) ≤ n+1. Let the first n+1 moves of S ′ be a1, · · · , an+1.

Since P has strictly positive coefficients, there exists some ǫ > 0 such that the coefficients of

R(x) = P (x) + ǫ(x− a1) · · · (x− an+1)

are strictly positive. The polynomials P and R are different, but they agree on a1, · · · , an+1.

This contradicts our assumption that P could be determined after the moves a1, · · · , an+1.

3. For any positive integer n, let Pn(x) be the polynomial defined by

Pn(x) = xn + 2xn−1 + 3xn−2 + · · ·+ nx+ (n + 1).

Show that, if either n+1 or n+2 is prime, then Pn(x) is irreducible (that is, it cannot be written

as a product of two non-constant polynomials with integer coefficients).

Solution. Note that we have the following expressions:

(x− 1)Pn(x) = xn+1 + xn + xn−1 + · · ·+ x2 + x− (n + 1),

(x− 1)2Pn(x) = xn+2 − (n+ 2)x+ (n+ 1).

First suppose that n+ 1 is prime. For a contradiction, assume that Pn(x) = Q(x)R(x) where

Q(x), R(x) are non-constant polynomials with integer coefficients. Then n + 1 = Pn(0) =
Q(0)R(0), so without loss of generality we have Q(0) = ±1. Now Q(0) is (up to sign) the

product of the complex roots of Q(x), so this means that there must be some complex root z of

Q(x) with |z| ≤ 1. This z is also a root of Pn(x). But then the equation (z− 1)Pn(z) = 0 gives

n + 1 = |zn+1 + zn + · · ·+ z2 + z| ≤ |zn+1|+ |zn|+ · · ·+ |z2|+ |z| ≤ n+ 1,

where we first use the triangle inequality and then the fact that |z| ≤ 1. So both ≤ signs

are equalities: thus |z| = 1, and since equality holds in the use of the triangle inequality, all of

z, z2, · · · , zn+1 have the same argument, so z = 1. But clearly Pn(1) = 1+2+· · ·+(n+1) 6= 0,

giving the desired contradiction.

Next suppose that n + 2 is prime. Define a polynomial S(x) = Pn(x+ 1); then it suffices to

prove that S(x) is irreducible. But

x2S(x) = (x+ 1)n+2 − (n + 2)(x+ 1) + (n+ 1)

= (x+ 1)n+2 − (n + 2)x− 1

=

n
∑

j=0

(

n+ 2

j

)

xn+2−j ,
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so S(x) =
∑n

j=0

(

n+2
j

)

xn−j . The leading coefficient 1 of S(x) is not divisible by the prime

n + 2; every other coefficient
(

n+2
j

)

(for 1 ≤ j ≤ n) is divisible by n + 2 (since n + 2 divides

(n + 2)! and not j!(n + 2 − j)!); and the constant term
(

n+2
n

)

= (n+2)(n+1)
2

is not divisible by

(n+ 2)2. Thus S(x) is irreducible by Eisenstein’s Criterion.

4. a) Show that the zero function is the only continuous function f : R → R satisfying

∫ a2

a

f(x) dx = 0, for all a ∈ R.

b) Show that there exists a nonzero continuous function f : R → R satisfying

∫ a2+1

a

f(x) dx = 0, for all a ∈ R.

Solution. Suppose that f : R → R is continuous and satisfies the integral condition in (a).

By the Fundamental Theorem of Calculus, g(y) =
∫ y

0
f(x) dx is a differentiable (and hence

continuous) function of y with derivative g′(y) = f(y). The assumption implies that

g(a2) = g(a), for all a ∈ R. (2)

Therefore, to prove (a), it suffices to prove that any continuous function g : R → R satisfying (2)

is constant. Note that for any a > 0, repeated application of (2) gives that g(a) = g(a1/2
n

) for

all positive integers n; since a1/2
n → 1 as n → ∞, we conclude by continuity that g(a) = g(1).

Then from (2) it follows that g(a) = g(1) for any a < 0, and continuity then implies that

g(0) = g(1) also. This completes the solution to part (a).

The solution to part (b) begins in the same way. A continuous function f : R → R satisfies

the condition in (b) if and only if its antiderivative function g : R → R, defined by g(y) =
∫ y

0
f(x) dx, satisfies

g(a2 + 1) = g(a), for all a ∈ R. (3)

Since both sides of (3) are differentiable functions of a, they agree everywhere if and only if

they agree at a = 0 and their derivatives agree everywhere. In other words, (3) is equivalent to

the following two conditions on f :

∫ 1

0

f(x) dx = 0 and 2af(a2 + 1) = f(a), for all a ∈ R. (4)

The second condition in (4) clearly implies that f(0) = 0, that f(−a) = −f(a) for all a > 0,

and that f(a2 + 1) = f(a)
2a

for all a > 0. Conversely, if f : [0,∞) → R is a continuous

function such that f(0) = 0 and f(a2 + 1) = f(a)
2a

for all a > 0, then we can extend it to a

continuous function f : R → R by setting f(−a) = −f(a) for all a > 0, and this will satisfy

the second condition in (4). Therefore it suffices to construct a nonzero continuous function

f : [0,∞) → R satisfying

∫ 1

0

f(x) dx = 0, f(0) = 0 and f(a2 + 1) =
f(a)

2a
, for all a > 0. (5)

Let a0, a1, a2 be the (obviously increasing) sequence defined by a0 = 0 and an = a2n−1 + 1
for all n ≥ 1. Thus, a1 = 1, a2 = 2, a3 = 5, a4 = 26, etc. For any n ≥ 1, we have a continuous
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bijection from the interval [an−1, an] to the interval [an, an+1] given by sending x to x2 + 1; its

inverse, also continuous, sends x to
√
x− 1.

If we have already defined f on the domain [0, an] for some n ≥ 1 and we want to extend

it to a function on the domain [0, an+1], we are forced to define f on the semi-closed interval

(an, an+1] by the rule

f(x) =
f(
√
x− 1)

2
√
x− 1

for an < x ≤ an+1,

in order to ensure that the third condition in (5) holds. (Note that x > an implies
√
x− 1 > 0.)

In this way we can start with a function f defined on [0, 1] and recursively define f on the whole

of [0,∞). If f is continuous on the domain [0, an], then the extension to the domain [0, an+1] is

clearly continuous everywhere except possibly at the point an. For continuity at an, we require

lim
x→a+n

f(
√
x− 1)

2
√
x− 1

= f(an). (6)

Note that when n ≥ 2, the left-hand side of (6) is
f(an−1)
2an−1

= f(an) by the assumed continuity of

f on [0, an] and the continuity of x 7→
√
x− 1. So we only need to ensure (6) when n = 1.

The conclusion is that, to construct our desired f : R → R, it suffices to construct a nonzero

continuous function f : [0, 1] → R such that

∫ 1

0

f(x) dx = 0, f(0) = 0 and lim
x→0+

f(x)

2x
= f(1). (7)

Such functions are plentiful; one example is f(x) = 8x3 − 9x2 + 2x for 0 ≤ x ≤ 1.

5. Find all pairs (a, b) of positive integers such that 2a divides b2 + 1 and b divides 2a2 + 1.

Solution. The set of solutions is

{(P2n+1, H2n), (P2n+1, H2n+2) |n ≥ 0} (8)

where Pn is the nth Pell number and Hn is the nth half-companion Pell number (following the

terminology of Wikipedia). These numbers are the unique integers satisfying

(1 +
√
2)n = Hn + Pn

√
2 and hence also (1−

√
2)n = Hn − Pn

√
2,

for all n ≥ 0. Equivalently, they can be defined by the closed formulae:

Pn =
(1 +

√
2)n − (1−

√
2)n

2
√
2

, Hn =
(1 +

√
2)n + (1−

√
2)n

2
.

Incidentally, the pairs (Hn, Pn) are the unique nonnegative integer solutions (x, y) of the equa-

tion x2 − 2y2 = ±1, but that fact is not used in the following proof.

Easy calculations from the above formulae show that

H2
n + (−1)n = 2Pn+1Pn−1 for all n ≥ 1, (9)

and that

2P 2
n − (−1)n = Hn+1Hn−1 for all n ≥ 1. (10)

For each of the pairs (a, b) in the above list (8), the fact that 2a divides b2+1 follows immediately

from (9) while the fact that b divides 2a2 + 1 follows immediately from (10).



SUMS Problem Competition 2014 Page 5

We must now show that any pair (a, b) satisfying the desired divisibility properties belongs

to the list (8). We prove this by induction on the sum a + b. The smallest this sum can be is

2, when a = b = 1; the pair (1, 1) satisfies the divisibility properties, and is indeed on the list,

since (1, 1) = (P1, H0). Having settled this base case, we can assume that (a, b) 6= (1, 1).
We now construct a new pair (a′, b′) according to the following rules:

(i) if b >
√
2a, let (a′, b′) = (a, (2a2 + 1)/b);

(ii) if b <
√
2a, let (a′, b′) = ((b2 + 1)/(2a), b).

It is simple to check that in both cases the new pair (a′, b′) satisfies the required divisibility

properties, i.e. that 2a′ divides b′2 + 1 and b′ divides 2a′2 + 1. We claim that a′ + b′ < a + b.
In case (i) this claim amounts to saying that 2a2 + 1 < b2, and we have assumed that 2a2 < b2,

so the only possibility we have to rule out is that 2a2 + 1 = b2; but this would imply that 2a
divides 2a2 + 2, forcing a = 1 and then b2 = 3, a contradiction. Similarly, in case (ii) the claim

amounts to saying that b2+1 < 2a2, and the possibility we have to rule out is that b2+1 = 2a2;
but this would imply that b divides b2 + 2, forcing b ∈ {1, 2} and a contradiction in either case.

By the induction hypothesis, we know that (a′, b′) belongs to the list (8). If we are in case (i)

and (a′, b′) = (P2n+1, H2n+1±1), then (a, b) = (P2n+1, H2n+1∓1) by (10). If we are in case (ii)

and (a′, b′) = (P2n±1, H2n) for n ≥ 1, then (a, b) = (P2n∓1, H2n) by (9). If we are in case (ii)

and (a′, b′) = (P1, H0), then (a, b) = (1, 1). Some of these conclusions contradict our previous

assumptions (that is, not all cases can actually occur), but in any case it is now certain that (a, b)
belongs to the list (8). This completes the inductive step.

6. For which connected finite simple graphs can one label each vertex v with a positive integer f(v)
in such a way that, for every v, the sum of the labels of the vertices adjacent to v is 2f(v)− 1?

Solution. The list of solutions is as follows (here we replace the vertices by their labels):

a (2a− 1) · · · (ka−
(

k
2

)

) · · · ((2a)a−
(

2a
2

)

)

kth vertex

OO

1
2

(

a+1
2

)

a (2a− 1) · · · (ka−
(

k
2

)

) · · · ((a− 1)a−
(

a−1
2

)

)

♦♦♦♦♦♦♦♦♦♦♦♦

PP
PP

PP
PP

PP
PP

kth vertex

OO

1
2

(

a+1
2

)

8 15 21 15 8 and

11
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29 57 84 110 135 91 46

68

A graph of the first kind (a path) has 2a vertices, where a can be any positive integer. A graph

of the second kind has a+1 vertices, where a ≥ 3 is an integer such that either a ≡ 3 (mod 4)

or a ≡ 0 (mod 4). (These conditions ensure that 1
2

(

a+1
2

)

= a(a+1)
4

is an integer.) The third and

fourth kinds only have the examples shown, with 6 and 8 vertices. These graphs are some of

the so-called ‘finite Dynkin diagrams’, and their names as Dynkin diagrams are A2a, Da+1, E6

and E8 respectively (the subscript indicates the number of vertices). For each of these graphs,

the labelling depicted above is the only one satisfying the stated property.

To prove these assertions, we suppose that we have a graph and a labelling with the stated

property. We first note that the graph must be a tree, i.e. it cannot contain a cycle of vertices

v1, · · · , vn (n ≥ 3) where vi is adjacent to vi±1 for all 1 ≤ i ≤ n (subscripts taken modulo n).

For if it did, and va was a vertex in the cycle with the minimum value of f(va), then the sum

of the labels of adjacent vertices would be at least f(va−1) + f(va+1) ≥ 2f(va), contrary to

assumption.

Next, this tree can have at most one branch vertex (i.e. vertex of degree ≥ 3). For suppose

there were two branch vertices v1 and vn, with v2, · · · , vn−1 being the other vertices on the

unique path joining v1 and vn (this path is unique since the graph is a tree). For the same

reason as in the previous paragraph, the minimum value of f(vi) cannot be attained at any of

i = 2, · · · , n−1, so it must be attained at either i = 1 or i = n. In particular, we must have either

f(v1) < f(v2) or f(vn) < f(vn−1); without loss of generality (because we could just swap the

numbering of v1 and vn otherwise), we can assume that f(vn) < f(vn−1). Since vn is a branch

vertex, it is adjacent to at least two other vertices vn+1 and vn+2 as well as to vn−1. We then have

f(vn) < 2f(vn+1) and f(vn) < 2f(vn+2) by considering the condition at these other vertices.

So the sum of the labels of vertices adjacent to vn is at least f(vn−1) + f(vn+1) + f(vn+2) >
f(vn) +

1
2
f(vn) +

1
2
f(vn) = 2f(vn), contrary to assumption.

Furthermore, the tree cannot have a vertex of degree ≥ 4. For if v1 were adjacent to all of

v2, v3, v4, v5, then the sum of the labels of vertices adjacent to v1 is at least f(v2) + f(v3) +
f(v4) + f(v5) > 4× 1

2
f(v1) = 2f(v1), contrary to assumption.

Note that so far we have not used the fact that the labels are integers, only that they are

positive real numbers; and we have used the property on the labelling only in the weaker form

that the sum of the labels of vertices adjacent to v is less than 2f(v). We could go further in this

generality (eventually proving that the graph must be a finite Dynkin diagram of type A, D or

E), but it is more convenient instead to use the actual property with 2f(v)− 1.

If the tree has no branch vertices, then it is a path, and the vertices can be numbered v1, · · · , vn
in order. If f(v1) = a, then f(v2) = 2a− 1; hence f(v3) = 2(2a− 1)− 1− a = 3a− 3, and by

an easy induction one shows that f(vk) = ka−
(

k
2

)

for all k ≤ n. Considering the final vertex

then gives 2na− 2
(

n
2

)

− 1 = (n− 1)a−
(

n−1
2

)

, which rearranges to give n = 2a. This gives the

first (type A2a) solution listed above. Notice that the labels are not only positive but symmetric

under a reflection of the whole path, because ka−
(

k
2

)

= k(2a−k+1)
2

.

If the tree has a branch vertex, we know that this branch vertex must have degree 3. Suppose

that the three branches have lengths k ≥ ℓ ≥ m, as measured by the number of vertices in each

branch not including the branch vertex, and that the labels of the end vertices of the branches

are a, b, c respectively. Then the labels of the other vertices of each branch can be determined in
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terms of a, b, c just as in the path case, and the label d of the branch vertex must be simultanously

equal to
(k + 1)(2a− k)

2
=

(ℓ+ 1)(2b− ℓ)

2
=

(m+ 1)(2c−m)

2
.

We conclude that k + 1, ℓ+ 1, m+ 1 must all be divisors of 2d, and that

a =
k

2
+

d

k + 1
, b =

ℓ

2
+

d

ℓ+ 1
, c =

m

2
+

d

m+ 1
.

Moreover, the condition at the branch vertex is that

2d− 1 =
k(2a− k + 1)

2
+

ℓ(2b− ℓ+ 1)

2
+

m(2c−m+ 1)

2
,

=
k

k + 1
d+

ℓ

ℓ+ 1
d+

m

m+ 1
d+

k + ℓ+m

2
.

This implies that k
k+1

+ ℓ
ℓ+1

+ m
m+1

< 2, which forces m
m+1

< 2
3

and hence m = 1. Then
k

k+1
+ ℓ

ℓ+1
< 3

2
forces ℓ = 1 or ℓ = 2; if ℓ = 2, we have k

k+1
< 5

6
which forces k ∈ {2, 3, 4}.

In the ℓ = 1 case, the above equation becomes

2d− 1 =
k

k + 1
d+ d+

k + 2

2
,

which rearranges to give d = (k+1)(k+4)
2

. We then have a = k + 2 and b = c = 1
2
(d + 1) =

1
2

(

k+3
2

)

= 1
2

(

a+1
2

)

, which gives the second (type Da+1) solution listed above, with a ≥ 3 and

either a ≡ 3 (mod 4) or a ≡ 0 (mod 4).
In the ℓ = 2 case where k ∈ {2, 3, 4}, the above equation becomes

2d− 1 =
k

k + 1
d+

7

6
d+

k + 3

2
,

which rearranges to give d = 3(k+5)(k+1)
5−k

. If k = 2 we get d = 21 and then a = b = 8,

c = 11, leading to the third (type E6) solution listed above. If k = 3 we get d = 48 and then

a contradiction because a = 27
2

is not an integer. If k = 4 we get d = 135 and then a = 29,

b = 46, c = 68, leading to the fourth (type E8) solution listed above.

7. Say that a function f : Z → {1, 0,−1} is a perturbed sign function if it satisfies the following

properties for a ≫ 0 (i.e., there is some N ≥ 0 such that these equations hold for all a ≥ N):

f(a) = 1, f(−a) = −1,
a

∑

i=−a

f(i) = 0.

Given such a perturbed sign function f , let its degeneracy d(f) be the number of a ∈ Z such

that f(a) = 0, and let its weight w(f) be the number of pairs (a, b) ∈ Z
2 such that a < b and

f(a) > f(b). Find a formula for the power series
∑

xw(f) where the sum is over all perturbed

sign functions f of fixed degeneracy d.

Solution. First note that a perturbed sign function f as defined in this problem must have odd

degeneracy, because for a ≫ 0 the set [−a, a] contains all d(f) numbers b such that f(b) = 0,

and hence
∑a

i=−a f(i) has parity equal to that of 2a + 1 − d(f). So the answer to the question

would be 0 if d is even. However, for the following solution it is convenient to give a different

definition which allows even degeneracy.
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Instead of functions f : Z → {1, 0,−1}, we want to consider doubly infinite sequences of 1s,

0s and (−1)s without a specification of which is the 0th term, which is the 1st term, and so on;

more formally, this means that we consider equivalence classes of functions f : Z → {1, 0,−1}
where two functions f, f ′ are equivalent if there is some m ∈ Z such that f ′(a) = f(a+m) for

all a ∈ Z. We say that such a sequence S is a perturbed sign sequence if the sequence ends with

an infinite sequence of 1s and begins with an infinite sequence of (−1)s; in terms of equivalence

classes of functions, this means that for some (hence any) representative f : Z → {1, 0,−1} of

the equivalence class we have f(a) = 1 and f(−a) = −1 for all a ≫ 0. Define the degeneracy

d(S) of such a sequence to be the number of 0s (this is clearly finite), and define its weight w(S)
to be the number of pairs of terms of the sequence where the first is bigger than the second.

With this definition, it is easy to see that if d(S) is odd, then S has a unique representative

function f : Z → {1, 0,−1} satisfying the condition in the question that
∑a

i=−a f(i) = 0 for all

a ≫ 0 (in other words, there is a unique way to specify which is the 0th term of the sequence so

that the signs are balanced around that term). So for odd degeneracy, the concepts of perturbed

sign function and perturbed sign sequence are effectively the same. We will thus be solving a

slightly more general problem if we find a formula for the power series
∑

xw(S) where the sum

is over all perturbed sign sequences S of fixed degeneracy d, and d is any nonnegative integer.

We consider the d = 0 case first. In this case we are considering a sequence of 1s and −1s

only. Every 1 that occurs in the sequence before a −1 contributes to the weight; its contribution

is the number of (−1)s to the right of it. Reading these contributions from left to right gives a

weakly decreasing sequence of positive integers, or in other words a partition; the weight of the

sequence is the size (sum of the parts) of the partition. It is easy to see that this gives a bijection

between perturbed sign sequences of degeneracy 0 and partitions, so the power series we seek

is Euler’s generating function for partitions:

∑

S
d(S)=0

xw(S) =
1

(1− x)(1− x2)(1− x3) · · · =
∞
∏

m=1

1

1− xm
.

Recall that Euler’s formula is proved by expanding 1
1−xm

as x0m + x1m + x2m + x3m + · · · ; the

choice of the xim term from this factor of the product specifies that the partition should have i
parts equal to m.

Now consider the general case. Given a perturbed sign sequence S of arbitrary degeneracy,

we can create two perturbed sign sequences S ′, S ′′ of degeneracy 0, as follows. We obtain S ′

from S simply by changing all 0s to 1s. We obtain S ′′ from S by deleting all (−1)s so that only

0s and 1s remain and the sequence is infinite only to the right, then changing all 0s to (−1)s and

making the sequence doubly infinite once more by starting with an infinite sequence of (−1)s.

This construction is designed so that the weight of S is the sum of the weights of S ′ and S ′′: the

sequence S ′ captures the contributions to the weight of S made by pairs of terms where the first

is a 1, and the sequence S ′′ captures the contribution made by pairs of terms where the first is

a 0. Notice that if S has degeneracy d, then every 1 in the sequence S ′′ has at most d (−1)s to

the right of it (because these (−1)s must originally have been 0s of S). Thus, S ′ and S ′′ each

correspond to some partition, and the partition corresponding to S ′′ has no parts bigger than d.

Conversely, suppose we are given two perturbed sign sequences S ′ and S ′′ of degeneracy 0,

and a nonnegative integer d such that every 1 in the sequence S ′′ has at most d (−1)s to the right

of it. We claim that there is a unique perturbed sign sequence S of degeneracy d which gives

rise to S ′ and S ′′ in the manner described above. Indeed, one is forced to construct S from S ′

by changing d of the 1s to 0s, where the positions among all 1s in S ′ of those 1s which must be

changed to 0 are the same as the positions among the 1s in S ′′ of the d right-most (−1)s.
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We conclude that perturbed sign sequences of degeneracy d are in bijection with ordered pairs

of partitions of which the second has no parts bigger than d, and this bijection is such that the

weight of the sequence is the sum of the sizes of the partitions. Using Euler’s formula and its

obvious modification to handle partitions with parts bounded above by d, we find the desired

formula:
∑

S
d(S)=d

xw(S) =

∞
∏

m=1

1

1− xm

d
∏

m=1

1

1− xm
.

8. Let n denote a positive integer. The symmetric group Sn is the group of permutations of the set

{1, 2, · · · , n}. This group acts naturally on the set Pn of all subsets of {1, 2, · · · , n}: if σ ∈ Sn

and I ∈ Pn, then σ(I) has the usual meaning of {σ(i) | i ∈ I}. We regard Sn as a subgroup of

Sn+1 or of Sn+2 in the obvious way, i.e. Sn is identified with the subgroup of Sn+1 consisting of

permutations that fix n + 1, and with the subgroup of Sn+2 consisting of permutations that fix

n+ 1 and n + 2.

a) Show that the action of Sn on Pn extends to Sn+1 (that is, there is an action of Sn+1 on Pn

which, when restricted to Sn, coincides with the aforementioned action of Sn on Pn).

b) For which n does the action of Sn on Pn extend to Sn+2?

Solution. In this solution, we denote the set {1, 2, · · · , n} by [n].
Consider the set Qn+1 of unordered pairs {I, J} of subsets of [n + 1] such that I ∩ J = ∅

and I ∪ J = [n + 1]. The group Sn+1 naturally acts on Qn+1: if τ ∈ Sn+1 and {I, J} ∈ Qn+1,

then τ({I, J}) has the obvious meaning {τ(I), τ(J)}. There is a map f : Qn+1 → Pn sending

{I, J} to the unique one of the subsets I and J that does not contain n + 1. This map is a

bijection: its inverse f−1 : Pn → Qn+1 sends I to {I, [n+1]\I}. So we can transport the Sn+1-

action on Qn+1 to Pn via f : explicitly, if τ ∈ Sn+1 and I ∈ Pn, we define τ · I = f(τ(f−1(I)),
or in other words

τ · I =

{

τ(I), if n+ 1 /∈ τ(I),

τ([n+ 1] \ I), if n+ 1 ∈ τ(I).

It is clear that this Sn+1-action on Pn extends the original Sn-action, finishing part (a).

The answer to (b) is that the Sn-action on Pn extends to Sn+2 if and only if n = 1 or n is

even. Our proof of this will actually determine the existence of an extension to Sn+k for any

positive integer k. Namely, we will show that:

• if n = 1 or 2, the Sn-action on Pn extends to Sn+k for all positive integers k;

• if n ≥ 3 and n is odd, the Sn-action on Pn extends to Sn+1 but not to Sn+2 (and hence not

to Sn+k for any k ≥ 3);

• if n ≥ 4 and n is even, the Sn-action on Pn extends to Sn+2 but not to Sn+3 (and hence

not to Sn+k for any k ≥ 4).

The n = 1 case is trivial: S1 is the trivial group, so the claim is just that Sk+1 has an action

on the (two-element) set P1, which is obvious. In fact, there are two possibilities for the Sk+1-

action on P1: it could either be the trivial action, or the action in which odd permutations swap

the two elements and even permutations fix them. (Henceforth, we will not attempt to classify

all the extended actions; we just consider whether they exist.)

The n = 2 case is also easy: S2 is the group with two elements, and the nontrivial element

(1 2) fixes the elements ∅ and [2] of P2, while swapping the elements {1} and {2}. We can
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extend this to Sk+2 by letting odd permutations act in the same way as (1 2) while even permu-

tations act trivially.

We have already seen a general way to extend the Sn-action on Pn to Sn+1. If n is even,

we can extend this action further to Sn+2, as follows. The key observation is that in the set

Qn+1 defined above, every element {I, J} consists of one subset of even size and one subset

of odd size, since n + 1 is odd. We thus have a bijection between Qn+1 and the set Rn+2 of

unordered pairs {I, J} of subsets of [n + 2] such that I ∩ J = ∅, I ∪ J = [n + 2] and |I| and

|J | are both even: the map g : Rn+2 → Qn+1 simply deletes the element n+ 2, and the inverse

g−1 : Qn+1 → Rn+2 adds the element n+2 to whichever of the two subsets has odd size. So we

can transport the natural Sn+2-action on Rn+2 to Pn via f ◦ g: that is, if τ ∈ Sn+2 and I ∈ Pn,

we define τ · I = f(g(τ(g−1(f−1(I))))). Since the bijection f : Qn+1 → Pn is Sn-equivariant

(checked in part (a) above), and the bijection g : Rn+2 → Qn+1 is Sn+1-equivariant (just as

clear), the bijection f ◦ g : Rn+2 → Pn is Sn-equivariant, or in other words the Sn+2-action

on Pn we have defined does indeed extend the original Sn-action. One can easily write out an

explicit formula for this Sn+2-action on Pn like the above formula for the Sn+1-action, but since

it has eight cases rather than two, we will omit it. (It is worth noting that, instead of Rn+2, we

could have used the set R′
n+2 defined similarly but with |I| and |J | required to be odd.)

Now suppose that n ≥ 3 and we have an Sn+2-action on Pn extending the natural Sn-action;

we want to show that n must be even. The proof we will give focuses on the transposition

τ := (n+ 1 n+ 2) ∈ Sn+2, which has the useful property that it commutes with every element

of Sn. If I ∈ Pn, the stabilizer of I in Sn is the subgroup of Sn consisting of permutations

that preserve I and thus also preserve its complement Ī := [n] \ I (if |I| = k, this stabilizer is

isomorphic to Sk × Sn−k). Apart from I , the only other element of Pn with this same stabilizer

in Sn is Ī . However, from the fact that τ commutes with Sn, it easily follows that τ · I and I
have the same stabilizer in Sn; we conclude that, for all I ∈ Pn, either τ · I = I or τ · I = Ī .

Moreover, two subsets I, I ′ ∈ Pn with the same number of elements are in the same Sn-orbit;

again using the fact that τ commutes with Sn, it follows that τ · I = I if and only if τ · I ′ = I ′.
So there is some subset K of {0, 1, 2, · · · , n} such that for all I ∈ Pn,

τ · I =

{

I, if |I| ∈ K,

Ī, if |I| /∈ K.

Moreover, since τ is self-inverse, τ · I = Ī if and only if τ · Ī = ¯̄I , so i ∈ K if and only if

n− i ∈ K. For notational convenience, let δK : {0, 1, · · · , n} → {0, 1} be the function defined

by δK(i) = 1 if i ∈ K and 0 otherwise; then we have δK(n− i) = δK(i).
Now let j be any positive integer with j ≤ n−2, and let σ denote the transposition (n−1 n) ∈

Sn. We have a subgroup Sj × 〈σ〉 of Sn, and the fixed points of this subgroup in its action on

Pn are the subsets I ∈ Pn such that either I contains all elements of [j] or it contains none of

them, and either I contains both of n− 1, n or it contains neither of them; this means that there

are 4× 2n−2−j = 2n−j such fixed points. Now in the larger group Sn+2, the subgroup Sj × 〈σ〉
is conjugate to Sj × 〈τ〉, and it follows that Sj × 〈τ〉 also has 2n−j fixed points in Pn. But the

fixed points of Sj × 〈τ〉 are the subsets I ∈ Pn such that either I contains all elements of [j] or

it contains none of them, and |I| ∈ K. Hence we have

∑

i∈K

(

n− j

i− j

)

+

(

n− j

i

)

= 2n−j, (11)

where we use the standard convention that
(

n−j
a

)

= 0 if a < 0 or a > n− j. The left-hand side
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of (11) can be rewritten as

∑

j≤i≤n

δK(i)

(

n− j

i− j

)

+
∑

0≤i≤n−j

δK(i)

(

n− j

i

)

.

Making the change of variables i ↔ n− i in the first sum and using δK(n− i) = δK(i) and the

fact that
(

n−j
a

)

=
(

n−j
n−j−a

)

, it becomes equal to the second sum. So we have

∑

0≤i≤n−j

δK(i)

(

n− j

i

)

= 2n−j−1. (12)

Setting j = n− 2 in (12) gives that

δK(0) + 2δK(1) + δK(2) = 2,

which obviously forces one of the following two cases: either δK(0) = δK(2) = 1 and δK(1) =
0, or δK(0) = δK(2) = 0 and δK(1) = 1. In either case, successively setting j = n − 3,

j = n − 4, . . . , j = 1 in (12) allows the unique determination of the unknowns δK(3), δK(4),
. . . , δK(n−1) in turn, so there can be at most two functions δK : {0, 1, · · · , n−1} → {0, 1} that

satisfy the equations (12). But two such functions are well known: considering the binomial

theorem applied to (1 + (−1))n−j = 0, we have

∑

0≤i≤n−j
i even

(

n− j

i

)

=
∑

0≤i≤n−j
i odd

(

n− j

i

)

= 2n−j−1.

We conclude that, for i ∈ {0, 1, · · · , n − 1}, either δK(i) = 1 if i is even and 0 if i is odd, or

vice versa. For this to be consistent with δK(n− 1) = δK(1), n must be even, as claimed.

Now suppose that n ≥ 4 and n is even, and assume for a contradiction that we have an Sn+3-

action on Pn extending the natural Sn-action. The preceding argument determines the action of

τ = (n + 1 n + 2) up to a choice of two possibilities: we must have

either τ · I =

{

I, if |I| is even,

Ī , if |I| is odd,
or τ · I =

{

I, if |I| is odd,

Ī , if |I| is even.

Exactly the same applies to τ ′ = (n+2 n+3). If τ ′ ·I were given by the opposite formula to τ ·I ,

then we would have (ττ ′) · I = Ī for all I , which is impossible since ττ ′ = (n+1 n+2 n+3)
has order 3 and cannot act as an involution. Hence τ ′ · I is given by the same formula as τ · I , so

the fixed points in Pn for the subgroup 〈τ, τ ′〉 are either the subsets of even size or the subsets

of odd size; in either case, there are 2n−1 fixed points. But this subgroup is conjugate in Sn+3 to

the subgroup S3, which has 2n−2 fixed points in Pn, giving the desired contradiction.


