

Sydney University Mathematical Society Problem Competition 2015

1. Let \mathbb{Z}^{+}denote the set of positive integers. If $f: \mathbb{Z}^{+} \rightarrow \mathbb{Z}^{+}$is a function and $m \in \mathbb{Z}^{+}$, let $f^{(m)}$ denote the composite function $f \circ f \circ \cdots \circ f$ (with m copies of f). Find all functions $f: \mathbb{Z}^{+} \rightarrow \mathbb{Z}^{+}$with the property that $f^{(m)}(n)=f(m n)$ for all $m, n \in \mathbb{Z}^{+}$.
Solution. Observe first that there are certainly going to be infinitely many solutions, since all constant functions f have this property.
Suppose $f: \mathbb{Z}^{+} \rightarrow \mathbb{Z}^{+}$satisfies the desired property. Setting $n=1$, we see that $f^{(m)}(1)=$ $f(m)$ for all $m \in \mathbb{Z}^{+}$. Hence for any $m, n \in \mathbb{Z}^{+}$with $m \geq 2$ we have $f(m)=f(f(m-1))$, and also

$$
f(m n)=f^{(m)}(n)=f^{(m-1)}(f(n))=f^{(m-1)}\left(f^{(n)}(1)\right)=f^{(m+n-1)}(1)=f(m+n-1) .
$$

We claim that these properties force $f(n)=f(3)$ for all $n \geq 3$. To show this it suffices to show that $f(n+1)=f(n)$ for all $n \geq 3$, for which we use induction. The base case holds because

$$
f(4)=f(2 \times 2)=f(2+2-1)=f(3),
$$

and if $n \geq 4$ and we assume that $f(n)=f(n-1)$, then $f(n+1)=f(f(n))=f(f(n-1))=$ $f(n)$ as required.
Now write $A=f(1), B=f(2), C=f(n)$ for all $n \geq 3$. We must determine which choices of $A, B, C \in \mathbb{Z}^{+}$satisfy the desired property. Note that we always have $B=f(A)$ and $C=f(B)$. We separate into cases.
Case 1: $C=1$. Then we have $A=f(C)=f(f(3))=f(4)=1$ and $B=f(A)=f(1)=$ $A=1$ also, so f is in fact the constant function with value 1 .
Case 2: $C=2$. Then we have $B=f(C)=f(f(3))=f(4)=2$ also, and $2=f(A)$ which forces $A \neq 1$. We can in fact let $A=f(1)$ be any number bigger than 1 , and set $f(n)=2$ for $n \geq 2$; it is easy to see that the desired property is satisfied.
From now on, $C \geq 3$ so the desired property $f^{(m)}(n)=f(m n)$ is automatic when $n \geq 3$, both sides equalling C. Its non-automatic content when $n \leq 2$ is simply the requirements $B=f(A)$ and $C=f(B)$ that we have already observed; so it is enough to ensure that these hold.

Case 3: $C \geq 3, B=1$. Then the requirement $C=f(B)$ says that $A=C$, and the requirement $B=f(A)$ gives a contradiction.
Case 4: $C \geq 3, B=2$. Then the requirement $C=f(B)$ gives a contradiction.
Case 5: $C \geq 3$ and $B=C$. Then the requirement is just that $C=f(A)$, which holds exactly when $A>1$.
Case 6: $C \geq 3, B \geq 3$, and $B \neq C$. Then the requirement $C=f(B)$ is automatic, and the requirement that $B=f(A)$ holds exactly when $A=2$.

To sum up, the possible values of the triple (A, B, C) are as follows:

$$
(1,1,1),(2,2,2),(a, 2,2),(a, c, c), \text { and }(2, b, c),
$$

where a, b, c denote integers ≥ 3 (not necessarily distinct).
2. Let n be a positive integer. Prove the inequality

$$
\sum_{k=1}^{n} \sqrt{n^{2}-k^{2}} \sqrt{n^{2}-(k-1)^{2}}<\frac{2 n^{3}+n}{3} .
$$

Solution. In fact, one can easily prove smaller upper bounds for the left-hand side, hereafter denoted LHS. Many entrants used the AM-GM inequality to do this; the Cauchy-Schwarz inequality, as used below, gives a better bound.
Note that the $k=n$ term in LHS is zero, so we can rewrite it:

$$
\text { LHS }=\sum_{k=1}^{n-1} \sqrt{n^{2}-k^{2}} \sqrt{n^{2}-(k-1)^{2}} .
$$

We can now apply the Cauchy-Schwarz inequality

$$
\left(\sum_{k=1}^{n-1} a_{k} b_{k}\right)^{2} \leq\left(\sum_{k=1}^{n-1} a_{k}^{2}\right)\left(\sum_{k=1}^{n-1} b_{k}^{2}\right)
$$

to find that

$$
\operatorname{LHS}^{2} \leq\left(\sum_{k=1}^{n-1} n^{2}-k^{2}\right)\left(\sum_{k=1}^{n-1} n^{2}-(k-1)^{2}\right)
$$

In fact, for $n \geq 3$ the inequality is strict, because equality holds in the Cauchy-Schwarz inequality only when $\left(a_{1}, \cdots, a_{n-1}\right)$ and $\left(b_{1}, \cdots, b_{n-1}\right)$ are proportional $(n-1)$-tuples, which it is easy to see does not hold here.
Using the well-known formula $1^{2}+2^{2}+\cdots+m^{2}=\frac{m(m+1)(2 m+1)}{6}$, our upper bound becomes

$$
\begin{aligned}
\text { LHS }^{2} & \leq\left((n-1) n^{2}-\frac{(n-1) n(2 n-1)}{6}\right)\left((n-1) n^{2}-\frac{(n-2)(n-1)(2 n-3)}{6}\right) \\
& =\left(\frac{(n-1) n(4 n+1)}{6}\right)\left(\frac{(n-1)\left(4 n^{2}+7 n-6\right)}{6}\right) \\
& =\frac{(n-1)^{2} n(4 n+1)\left(4 n^{2}+7 n-6\right)}{36} \\
& =\frac{16 n^{6}-65 n^{4}+60 n^{3}-5 n^{2}-6 n}{36} .
\end{aligned}
$$

It is easy to see that this upper bound for LHS 2 is less than the square of $\frac{2 n^{3}+n}{3}$.
3. Let n be a positive integer. A composition of n is an ordered k-tuple ($n_{1}, n_{2}, \cdots, n_{k}$) of positive integers satisfying $n_{1}+n_{2}+\cdots+n_{k}=n$. Let $\mathcal{C}(n)$ be the set of all compositions of n, where the length k of the tuple is allowed to vary (it can be anything from 1 to n). Prove that

$$
\sum_{\left(n_{1}, n_{2}, \cdots, n_{k}\right) \in \mathcal{C}(n)}(-1)^{n-k} 1^{n_{1}} 2^{n_{2}} \cdots k^{n_{k}}=1
$$

Solution. It is convenient to prove a more general statement depending on two positive integers, m and n :

$$
\sum_{\left(n_{1}, n_{2}, \cdots, n_{k}\right) \in \mathcal{C}(n)}(-1)^{n-k} m^{n_{1}}(m+1)^{n_{2}} \cdots(m+k-1)^{n_{k}}=m .
$$

The original problem is the $m=1$ case.
Our proof is by induction on n (treating all m simultaneously). The $n=1$ base case simply says that $m=m$, so we can assume that $n \geq 2$ and that the result is known when n is replaced by $n-1$. The idea of the inductive step is to write $\mathcal{C}(n)$ as the disjoint union of two subsets $\mathcal{C}(n)^{\prime}$ and $\mathcal{C}(n)^{\prime \prime}$, where $\mathcal{C}(n)^{\prime}$ consists of those compositions $\left(n_{1}, n_{2}, \cdots, n_{k}\right)$ where $n_{1} \geq 2$ and $\mathcal{C}(n)^{\prime}$ consists of those compositions ($n_{1}, n_{2}, \cdots, n_{k}$) where $n_{1}=1$. We clearly have a bijection $\mathcal{C}(n)^{\prime} \rightarrow \mathcal{C}(n-1)$ sending $\left(n_{1}, n_{2}, \cdots, n_{k}\right)$ to $\left(n_{1}-1, n_{2}, \cdots, n_{k}\right)$, and another bijection $\mathcal{C}(n)^{\prime \prime} \rightarrow \mathcal{C}(n-1)$ sending $\left(n_{1}, n_{2}, \cdots, n_{k}\right)$ to $\left(n_{2}, n_{3}, \cdots, n_{k}\right)$, which is well defined because k cannot equal 1 in the latter case (since $n \geq 2$). These bijections, incidentally, show that $|\mathcal{C}(n)|=2|\mathcal{C}(n-1)|$, which with the base case $|\mathcal{C}(1)|=1$ clearly implies that $|\mathcal{C}(n)|=2^{n-1}$. For the present problem, the bijections and the induction hypothesis show that

$$
\begin{aligned}
\sum_{\left(n_{1}, n_{2}, \cdots, n_{k}\right) \in \mathcal{C}(n)^{\prime}} & (-1)^{n-k} m^{n_{1}}(m+1)^{n_{2}} \cdots(m+k-1)^{n_{k}} \\
& =-m \sum_{\left(n_{1}-1, n_{2}, \cdots, n_{k}\right) \in \mathcal{C}(n-1)}(-1)^{(n-1)-k} m^{n_{1}-1}(m+1)^{n_{2}} \cdots(m+k-1)^{n_{k}} \\
& =-m^{2}, \\
\sum_{\left(n_{1}, n_{2}, \cdots, n_{k}\right) \in \mathcal{C}(n)^{\prime \prime}} & (-1)^{n-k} m^{n_{1}}(m+1)^{n_{2}} \cdots(m+k-1)^{n_{k}} \\
& =m \sum_{\left(n_{2}, \cdots, n_{k}\right) \in \mathcal{C}(n-1)}(-1)^{(n-1)-(k-1)}(m+1)^{n_{2}} \cdots(m+k-1)^{n_{k}} \\
& =m(m+1),
\end{aligned}
$$

so the total sum is $-m^{2}+m(m+1)=m$, as required to complete the inductive step.
4. If P is a convex polygon in the plane, let $M(P)$ be the convex polygon whose vertices are the midpoints of the edges of P. Say that P is periodic if $M^{k}(P)$ is similar to P for some positive integer k, where M^{k} denotes k applications of the operation M. For example, every triangle T is periodic, because $M(T)$ is similar to T; every parallelogram Q is periodic, because $M^{2}(Q)$ is similar to Q. Show that there is a periodic pentagon in which no two edges have the same length.
Solution. In fact, we will show that there are infinitely many similarity classes of pentagons P with the property that no two edges have the same length and $M(P)$ is similar to P.
Identify the plane with the set of complex numbers. A convex pentagon P can be specified (non-uniquely) by listing its vertices in (say) anti-clockwise order, starting from an arbitrarily chosen vertex. This gives a 5 -tuple of complex numbers $\left(a_{1}, \cdots, a_{5}\right)$. Note that not every 5 tuple of complex numbers corresponds to a convex pentagon. However, any scalar multiple $\left(a a_{1}, \cdots, a a_{5}\right)$ of $\left(a_{1}, \cdots, a_{5}\right)$ with $a \neq 0$ (another complex number) does correspond to a convex pentagon, and one which is similar to P. To see this, write $a=r e^{i \theta}$; multiplying by a has the effect of dilating by a factor of r and rotating by θ.
If the 5 -tuple associated to P as above is $\left(a_{1}, \cdots, a_{5}\right)$, the 5 -tuple associated to $M(P)$ (or rather one of the 5 -tuples associated to $M(P)$, namely that obtained by choosing as the first vertex the midpoint opposite the first vertex of P) is

$$
T\left(a_{1}, \cdots, a_{5}\right):=\left(\frac{a_{3}+a_{4}}{2}, \frac{a_{4}+a_{5}}{2}, \frac{a_{1}+a_{5}}{2}, \frac{a_{1}+a_{2}}{2}, \frac{a_{2}+a_{3}}{2}\right) .
$$

Hence, if $\left(a_{1}, \cdots, a_{5}\right)$ is an eigenvector of this linear transformation T of \mathbb{C}^{5} for a nonzero eigenvalue, i.e. $T\left(a_{1}, \cdots, a_{5}\right)=a\left(a_{1}, \cdots, a_{5}\right)$ with $a \neq 0$, then $M(P)$ is similar to P.

A straightforward calculation shows that the characteristic polynomial of T is

$$
\frac{16 x^{5}-20 x^{3}+5 x-1}{16}=\frac{(x-1)\left(4 x^{2}+2 x-1\right)^{2}}{16}
$$

To find this factorization, it helps to realize that 1 is an eigenvalue of T because $T(1,1,1,1,1)=$ $(1,1,1,1,1)$. We conclude that the other eigenvalues of T are $\frac{-1 \pm \sqrt{5}}{4}$, each repeated. If we let ϕ denote the golden ratio $\frac{1+\sqrt{5}}{2}$ as is customary, then these other eigenvalues of T can be written $-\phi / 2$ and $\phi^{-1} / 2$.
One can see directly that $-\phi / 2$ is an eigenvalue of T, because if we start with a regular pentagon with centre at the origin, we find that indeed $T\left(a_{1}, \cdots, a_{5}\right)=(-\phi / 2)\left(a_{1}, \cdots, a_{5}\right)$ (this uses the fact that $\cos (\pi / 5)=\phi / 2$). For example, this holds for the pentagon P_{0} with vertices equal to the five complex 5th roots of 1 , namely $1, \zeta, \zeta^{2}, \bar{\zeta}^{2}, \bar{\zeta}$ where $\zeta=e^{2 \pi i / 5}$. Of course, this is not a solution to the problem, because all edges of P_{0} have equal length. However, the fact that $\left(1, \zeta, \zeta^{2}, \bar{\zeta}^{2}, \bar{\zeta}\right)$ is an eigenvector of T for the (real) eigenvalue $-\phi / 2$ implies that so is the complex conjugate vector $\left(1, \bar{\zeta}, \bar{\zeta}^{2}, \zeta^{2}, \zeta\right)$, and hence so is any linear combination of the form

$$
\left(1, \zeta, \zeta^{2}, \bar{\zeta}^{2}, \bar{\zeta}\right)+\epsilon\left(1, \bar{\zeta}, \bar{\zeta}^{2}, \zeta^{2}, \zeta\right)
$$

where ϵ is a nonzero complex number. If ϵ is sufficiently small, then the resulting 5 -tuple must still correspond to a convex pentagon P with vertices listed in anti-clockwise order, which is only a "small perturbation" of the regular pentagon P_{0}. It is easy to see that for generic values of ϵ, P will have no two edges of the same length, so it solves the problem.
Notice that this solution pentagon P is obtained from the regular pentagon P_{0} by applying the transformation $z \mapsto z+\epsilon \bar{z}$ of the complex plane, which is a linear transformation of the plane thought of as a real vector space.
5. Let F be the field of integers modulo p, where p is a prime number. Define a finite set

$$
X=\left\{(x, y, z) \in F^{3} \mid x^{6}+y^{3}+z^{2}=0\right\} .
$$

Show that $|X|=p^{2}$ if and only if $p \not \equiv 1(\bmod 6)$.
Solution. Assume that $p \not \equiv 1(\bmod 6)$. Then $p \not \equiv 1(\bmod 3)$, since there are clearly no primes congruent to 4 modulo 6 . The $p-1$ nonzero elements of F form a group F^{\times}under multiplication (in fact, a cyclic group), with identity element 1_{F}. The fact that $3 \nmid p-1$ means that the only $y \in F$ such that $y^{3}=1_{F}$ is $y=1_{F}$ itself. So the group homomorphism $F^{\times} \rightarrow F^{\times}: y \mapsto y^{3}$ has trivial kernel and therefore must be injective, hence bijective because its codomain and domain have the same finite size; this means that the map $F \rightarrow F: y \mapsto y^{3}$ is also bijective. So X is in bijection with the set

$$
X^{\prime}=\left\{\left(x, y^{\prime}, z\right) \in F^{3} \mid x^{6}+y^{\prime}+z^{2}=0\right\}
$$

via the map $X \rightarrow X^{\prime}:(x, y, z) \mapsto\left(x, y^{3}, z\right)$. It is clear that X^{\prime} is in bijection with F^{2} via the map $X^{\prime} \rightarrow F^{2}:\left(x, y^{\prime}, z\right) \mapsto(x, z)$, so $|X|=\left|X^{\prime}\right|=\left|F^{2}\right|=p^{2}$.
If $p \equiv 1(\bmod 6)$, then consider the following element of the field F :

$$
S=\sum_{(x, y, z) \in F^{3}}\left(x^{6}+y^{3}+z^{2}\right)^{p-1} .
$$

On the one hand, for any nonzero $a \in F$ we have $a^{p-1}=1_{F}$, so

$$
S=\left(p^{3}-|X|\right) \cdot 1_{F} \quad\left(\text { meaning } 1_{F}+1_{F}+\cdots+1_{F} \text { with } p^{3}-|X| \text { terms }\right) .
$$

In other words, S is the integer $-|X|$ interpreted modulo p.
On the other hand, we can expand the trinomial and obtain

$$
\begin{aligned}
S & =\sum_{\substack{(x, y, z) \in F^{3}}} \sum_{\substack{a, b, c \in \mathbb{N} \\
a+b+c=p-1}}\binom{p-1}{a, b, c} \cdot x^{6 a} y^{3 b} z^{2 c} \\
& =\sum_{\substack{a, b, c \in \mathbb{N} \\
a+b+c=p-1}}\binom{p-1}{a, b, c} \cdot\left(\sum_{x \in F} x^{6 a}\right)\left(\sum_{y \in F} y^{3 b}\right)\left(\sum_{z \in F} z^{2 c}\right) .
\end{aligned}
$$

Now $\sum_{x \in F} x^{0}=p \cdot 1_{F}=0$. If $1 \leq e \leq p-2$, we claim that $\sum_{x \in F} x^{e}=0$ also. The simplest proof is that, since F^{\times}is cyclic, there exists some $y \in F^{\times}$such that $y^{e} \neq 1_{F}$, whereas we have

$$
\left(y^{e}-1_{F}\right) \sum_{x \in F} x^{e}=\sum_{x \in F}(x y)^{e}-\sum_{x \in F} x^{e}=\sum_{x^{\prime} \in F}\left(x^{\prime}\right)^{e}-\sum_{x \in F} x^{e}=0 .
$$

So the product of the three sums $\sum_{x \in F} x^{6 a}, \sum_{y \in F} y^{3 b}, \sum_{z \in F} z^{2 c}$ can only be nonzero if

$$
a \geq \frac{p-1}{6}, b \geq \frac{p-1}{3}, \text { and } c \geq \frac{p-1}{2} .
$$

The constraint that $a+b+c=p-1$ then forces $a=\frac{p-1}{6}, b=\frac{p-1}{3}$, and $c=\frac{p-1}{2}$; since $p \equiv 1$ $(\bmod 6)$, these are indeed all integers. Note that $\sum_{x \in F} x^{p-1}=(p-1) \cdot 1_{F}=-1_{F}$. We conclude that

$$
S=\binom{p-1}{\frac{p-1}{6}, \frac{p-1}{3}, \frac{p-1}{2}} \cdot\left(-1_{F}\right)^{3},
$$

and hence

$$
|X| \equiv\binom{p-1}{\frac{p-1}{6}, \frac{p-1}{3}, \frac{p-1}{2}}(\bmod p) .
$$

The trinomial coefficient here is a divisor of $(p-1)$!, which is not divisible by p. Thus $|X| \not \equiv 0$ $(\bmod p)$, which obviously implies $|X| \neq p^{2}$ as required.
6. Define a function $f:(-\infty, 1) \rightarrow \mathbb{R}$ by

$$
f(x)=\int_{0}^{1} \frac{\sqrt{2-x}}{\sqrt{1-s^{2}} \sqrt{1-x s^{2}}} d s
$$

Show that $f(x)$ has a global minimum at $x=0$.
Solution. (Due to entrant Terence Harris, University of New South Wales). Fix $x \in(-\infty, 1)$. The change of variable $s=\sin \frac{\pi t}{2}$ gives

$$
f(x)=\frac{\pi \sqrt{2-x}}{2} \int_{0}^{1}\left(1-x\left(\sin \frac{\pi t}{2}\right)^{2}\right)^{-1 / 2} d t
$$

Notice that $1-x\left(\sin \frac{\pi t}{2}\right)^{2}>0$, so $\left(1-x\left(\sin \frac{\pi t}{2}\right)^{2}\right)^{-1 / 2}$ is well defined. Since the function $y \mapsto y^{-1 / 2}$ is convex on its domain $(0, \infty)$, we can apply the integral version of Jensen's
inequality to obtain

$$
\begin{aligned}
f(x) & \geq \frac{\pi \sqrt{2-x}}{2}\left(\int_{0}^{1} 1-x\left(\sin \frac{\pi t}{2}\right)^{2} d t\right)^{-1 / 2} \\
& =\frac{\pi \sqrt{2-x}}{2}\left(1-\frac{x}{2} \int_{0}^{1} 1-\cos \pi t d t\right)^{-1 / 2} \\
& =\frac{\pi \sqrt{2-x}}{2}\left(1-\frac{x}{2}\right)^{-1 / 2} \\
& =\frac{\pi \sqrt{2}}{2} \\
& =f(0),
\end{aligned}
$$

as desired.
7. Let $\zeta=e^{\pi i / 6}=\frac{\sqrt{3}}{2}+\frac{1}{2} i$, and let $\mathbf{Z}[\zeta]$ denote the set of integer linear combinations of the powers of ζ. Suppose that $u, v \in \mathbf{Z}[\zeta]$ satisfy $|u|^{2}=\sqrt{3}|v|^{2}+1$ and $v \neq 0$. Show that $|v|^{2} \geq 2+\sqrt{3}$, and find when equality occurs.
Solution. Since the minimal polynomial of ζ is $x^{4}-x^{2}+1$, any element of $\mathbb{Z}[\zeta]$ can be written uniquely as $a+b \zeta+c \zeta^{2}+d \zeta^{3}$ where $a, b, c, d \in \mathbb{Z}$. Finding real and imaginary parts, we see that

$$
a+b \zeta+c \zeta^{2}+d \zeta^{3}=\left(a+\frac{\sqrt{3}}{2} b+\frac{1}{2} c\right)+\left(\frac{1}{2} b+\frac{\sqrt{3}}{2} c+d\right) i
$$

so

$$
\begin{aligned}
\left|a+b \zeta+c \zeta^{2}+d \zeta^{3}\right|^{2} & =\left(a+\frac{\sqrt{3}}{2} b+\frac{1}{2} c\right)^{2}+\left(\frac{1}{2} b+\frac{\sqrt{3}}{2} c+d\right)^{2} \\
& =\left(a^{2}+a c+c^{2}+b^{2}+b d+d^{2}\right)+(a b+b c+c d) \sqrt{3}
\end{aligned}
$$

Thus, if we let $u=a+b \zeta+c \zeta^{2}+d \zeta^{3}$ and $v=a^{\prime}+b^{\prime} \zeta+c^{\prime} \zeta^{2}+d^{\prime} \zeta^{3}$ where $a, b, c, d, a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime} \in \mathbb{Z}$, the equation $|u|^{2}=\sqrt{3}|v|^{2}+1$ becomes the following two equations:

$$
\begin{equation*}
a^{2}+a c+c^{2}+b^{2}+b d+d^{2}=1+3\left(a^{\prime} b^{\prime}+b^{\prime} c^{\prime}+c^{\prime} d^{\prime}\right), \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
a b+b c+c d=a^{\prime 2}+a^{\prime} c^{\prime}+c^{\prime 2}+b^{\prime 2}+b^{\prime} d^{\prime}+d^{\prime 2} . \tag{2}
\end{equation*}
$$

Now the quadratic form $x^{2}+x y+y^{2}$ is positive-definite, since

$$
\begin{equation*}
4\left(x^{2}+x y+y^{2}\right)=(x-y)^{2}+3(x+y)^{2} . \tag{3}
\end{equation*}
$$

Since $a^{2}+a c+c^{2}$ is an integer, we have $a^{2}+a c+c^{2} \geq 1$ unless $a=c=0$, and similarly $b^{2}+b d+d^{2} \geq 1$ unless $b=d=0$. If either $a=c=0$ or $b=d=0$, then the left-hand side of (2) vanishes, forcing the right-hand side of (2) to vanish, which then by the same positivedefiniteness forces $a^{\prime}=b^{\prime}=c^{\prime}=d^{\prime}=0$, contrary to the assumption that $v \neq 0$. We conclude that $a^{2}+a c+c^{2} \geq 1$ and $b^{2}+b d+d^{2} \geq 1$, meaning that the left-hand side of (1) is at least 2. Hence the right-hand side of (1) is at least 2 , implying that $a^{\prime} b^{\prime}+b^{\prime} c^{\prime}+c^{\prime} d^{\prime} \geq 1$. This in turn implies that it is not true that $a^{\prime}=c^{\prime}=0$ or that $b^{\prime}=d^{\prime}=0$, so $a^{\prime 2}+a^{\prime} c^{\prime}+c^{\prime 2} \geq 1$ and $b^{\prime 2}+b^{\prime} d^{\prime}+d^{\prime 2} \geq 1$. Hence we have

$$
|v|^{2}=\left(a^{\prime 2}+a^{\prime} c^{\prime}+c^{\prime 2}+b^{\prime 2}+b^{\prime} d^{\prime}+d^{\prime 2}\right)+\left(a^{\prime} b^{\prime}+b^{\prime} c^{\prime}+c^{\prime} d^{\prime}\right) \sqrt{3} \geq 2+\sqrt{3},
$$

as claimed.
For equality to hold, i.e. to have $|v|^{2}=2+\sqrt{3}$, we need $a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime} \in \mathbb{Z}$ to be such that $a^{\prime 2}+a^{\prime} c^{\prime}+c^{\prime 2}=1$ and $b^{\prime 2}+b^{\prime} d^{\prime}+d^{\prime 2}=1$, in addition to $a^{\prime} b^{\prime}+b^{\prime} c^{\prime}+c^{\prime} d^{\prime}=1$. Using (3) we see that $a^{\prime 2}+a^{\prime} c^{\prime}+c^{\prime 2}=1$ forces either $a^{\prime}= \pm 1, c^{\prime}=\mp 1$ or $a^{\prime}= \pm 1, c^{\prime}=0$ or $a^{\prime}=0, c^{\prime}= \pm 1$. The same trichotomy holds for b^{\prime} and d^{\prime}. Applying the final condition $a^{\prime} b^{\prime}+b^{\prime} c^{\prime}+c^{\prime} d^{\prime}=1$, we get the following twelve possibilities for $\left(a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}\right)$ (and thus for v):

$$
\begin{array}{r}
\left(a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}\right) \in\{ \pm(1,0,-1,-1), \pm(1,1,-1,-1), \pm(1,1,0,0) \\
\pm(1,1,0,-1), \pm(0,1,1,0), \pm(0,0,1,1)\} .
\end{array}
$$

Since $|\zeta|=1$, all these possible values of v can be obtained from just one (say, $v=1+\zeta$) by multiplying by the twelve distinct powers of ζ.
We also need to have $|u|^{2}=4+2 \sqrt{3}$, i.e. we need $a, b, c, d \in \mathbb{Z}$ to be such that $a^{2}+a c+$ $c^{2}+b^{2}+b d+d^{2}=4$ and $a b+b c+c d=2$. Considering (3) modulo 3 , we see that we cannot have $a^{2}+a c+c^{2}=2$, so the only possibilities are $a^{2}+a c+c^{2}=1$ and $b^{2}+b d+d^{2}=3$ or $a^{2}+a c+c^{2}=3$ and $b^{2}+b d+d^{2}=1$. In the first of these cases, we have the trichotomy for a and c as above, whereas $b^{2}+b d+d^{2}=3$ forces either $b=d= \pm 1$ or $b= \pm 2, d=\mp 1$ or $b= \pm 1, d=\mp 2$. Applying the final condition $a b+b c+c d=2$, we get the following possibilities for (a, b, c, d) (and thus for u):

$$
(a, b, c, d) \in\{ \pm(1,1,-1,-2), \pm(1,2,0,-1), \pm(0,1,1,1)\} .
$$

The other case gives the following possibilities for (a, b, c, d) (and thus for u):

$$
(a, b, c, d) \in\{ \pm(2,1,-1,-1), \pm(1,0,-2,-1), \pm(1,1,1,0)\} .
$$

So there are twelve possibilities for u in all; again, they can be obtained from just one (say, $u=1+2 \zeta-\zeta^{3}=1+\sqrt{3}$) by multiplying by the twelve distinct powers of ζ.
8. Let d be a fixed integer, at least 2 . If $P(x)$ is a polynomial in x, let $\lceil P(x)\rceil$ be the polynomial obtained by rounding up each exponent of x to the nearest multiple of d, so that $\lceil P(x)\rceil$ is a polynomial in x^{d}. For example, if $d=3$ then

$$
\left\lceil 2+5 x^{2}+4 x^{3}+x^{4}\right\rceil=2+5 x^{3}+4 x^{3}+x^{6}=2+9 x^{3}+x^{6} .
$$

Suppose that all we know about $P(x)$ is that it has nonnegative real coefficients. Show that if we are given all of the polynomials $\lceil P(x)\rceil,\left\lceil P(x)^{2}\right\rceil,\left\lceil P(x)^{3}\right\rceil$, \ldots, we can determine $P(x)$.

Solution. The intention of the question, as stated by a clarification on the competition webpage, was that the integer d was also to be regarded as given.
The wording "Show that \ldots we can determine $P(x)$ " was also ambiguous. On one interpretation, it simply requires us to show that there cannot be two different polynomials $P(x)$ with nonnegative real coefficients that give rise to the same sequence of polynomials $\left(\left\lceil P(x)^{m}\right\rceil\right)_{m \geq 1}$. As pointed out by entrant Terence Harris (University of New South Wales), this follows from the fact that for any fixed real number $y \geq 1$,

$$
P(y)^{m} \leq\left\lceil P(y)^{m}\right\rceil \leq y^{d-1} P(y)^{m},
$$

and hence

$$
\lim _{m \rightarrow \infty}\left\lceil P(y)^{m}\right\rceil^{1 / m}=P(y)
$$

However, on another interpretation, "determining $P(x)$ " requires a finite algorithm (in particular, not involving limits) to determine the various coefficients of the polynomial $P(x)$ from the coefficients of the known polynomials $\left\lceil P(x)^{m}\right\rceil$. Such an algorithm follows.
A trivial but vital observation is that the operation $\lceil\cdot\rceil$ is linear, in the sense that $\lceil a Q(x)+$ $b R(x)\rceil=a\lceil Q(x)\rceil+b\lceil R(x)\rceil$ for any polynomials $Q(x), R(x)$ and numbers a, b. Also note that $\left\lceil x^{k d} Q(x)\right\rceil=x^{k d}\lceil Q(x)\rceil$ for all nonnegative integers k. We will use these rules henceforth without further comment.
If $Q(x)$ is any polynomial, write $Q(x)\left[x^{j}\right]$ for the coefficient of x^{j} in $Q(x)$. We first show that it suffices to prove the claim in the case when $P(x)\left[x^{0}\right]=0$ (i.e. $P(x)$ has no constant term). The reason is that if we know $\left\lceil P(x)^{m}\right\rceil$ for all $m \geq 0$, then we know $P(x)\left[x^{0}\right]=\lceil P(x)\rceil\left[x^{0}\right]$, and so we also know

$$
\left\lceil\left(P(x)-P(x)\left[x^{0}\right]\right)^{m}\right\rceil=\sum_{j=0}^{m}\binom{m}{j}\left(-P(x)\left[x^{0}\right]\right)^{m-j}\left\lceil P(x)^{j}\right\rceil \quad \text { for all } m \geq 0 .
$$

So assuming we can solve the problem for polynomials with no constant term, we can determine $P(x)-P(x)\left[x^{0}\right]$ and hence the original $P(x)$.
Now it is enough to prove the following claim for all nonnegative integers n : for a polynomial $P(x)$ with $P(x)\left[x^{j}\right] \geq 0$ for all j and $P(x)\left[x^{0}\right]=0$, if we know $\left\lceil P(x)^{m}\right\rceil$ for all $m \geq 0$, then we can determine $P(x)\left[x^{n}\right]$. We prove this claim by induction on n, the $n=0$ case being obvious. So we can assume that $n \geq 1$ and that the claim is true when n is replaced by a smaller nonnegative integer.
The inductive hypothesis implies that from the assumed knowledge of $\left\lceil P(x)^{m}\right\rceil$ for all $m \geq 0$, we can determine the coefficients $P(x)\left[x^{1}\right], \cdots, P(x)\left[x^{n-1}\right]$. If these coefficients are all zero (or if $n=1$), then $\left(P(x)^{d}\right)\left[x^{j}\right]=0$ for all $j<n d$ and $\left(P(x)^{d}\right)\left[x^{n d}\right]=\left(P(x)\left[x^{n}\right]\right)^{d}$. So $\left\lceil P(x)^{d}\right\rceil\left[x^{n d}\right]=\left(P(x)\left[x^{n}\right]\right)^{d}$ also, and hence we know $\left(P(x)\left[x^{n}\right]\right)^{d}$ and can determine $P(x)\left[x^{n}\right]$ by taking the d th root. Here is where it matters that we are dealing with nonnegative real numbers.
Otherwise, we have $P(x)\left[x^{1}\right]=\cdots=P(x)\left[x^{i-1}\right]=0$ and $P(x)\left[x^{i}\right]>0$ for some positive integer $i<n$. In particular, $x^{-i} P(x)$ is a polynomial in x with constant term $P(x)\left[x^{i}\right]$. Define

$$
Q(x)=\left(x^{-i} P(x)\right)^{d}-\left(P(x)\left[x^{i}\right]\right)^{d} \quad \text { and } \quad R(x)=x^{-i} P(x)-P(x)\left[x^{i}\right],
$$

two other polynomials in x with nonnegative real coefficients and no constant term. By assumption we know

$$
\left\lceil Q(x)^{m}\right\rceil=\sum_{j=0}^{m}\binom{m}{j}\left(-\left(P(x)\left[x^{i}\right]\right)^{d}\right)^{m-j} x^{-i j d}\left\lceil P(x)^{j d}\right\rceil \quad \text { for all } m \geq 0
$$

So by the inductive hypothesis we can determine the coefficient $Q(x)\left[x^{n-i}\right]$. By definition,

$$
\begin{aligned}
Q(x)\left[x^{n-i}\right] & =\left(\left(R(x)+P(x)\left[x^{i}\right]\right)^{d}-\left(P(x)\left[x^{i}\right]\right)^{d}\right)\left[x^{n-i}\right] \\
& =\sum_{k=1}^{d}\binom{d}{k}\left(P(x)\left[x^{i}\right]\right)^{d-k} R(x)^{k}\left[x^{n-i}\right] .
\end{aligned}
$$

Now if $k \geq 2$ and we write the coefficient $R(x)^{k}\left[x^{n-i}\right]$ as a function of the coefficients $R(x)\left[x^{1}\right]=P(x)\left[x^{i+1}\right], R(x)\left[x^{2}\right]=P(x)\left[x^{i+2}\right], \cdots$ of $R(x)$, we see that it cannot involve any coefficient $R(x)\left[x^{a}\right]=P(x)\left[x^{a+i}\right]$ for $a \geq n-i$, because $k-1+a>n-i$. So in
the above expression for $Q(x)\left[x^{n-i}\right]$, all the terms of the sum with $k \geq 2$ involve only coefficients of $P(x)$ that have already been determined. Thus we can detemine the remaining $k=1$ term, which is $d\left(P(x)\left[x^{i}\right]\right)^{d-1} P(x)\left[x^{n}\right]$. Since $P(x)\left[x^{i}\right] \neq 0$ by assumption, we can determine $P(x)\left[x^{n}\right]$ from this, completing the inductive step.

