
Sydney University Mathematical Society Problem Competition 2015

1. Let Z+ denote the set of positive integers. If f : Z+ → Z+ is a function and m ∈ Z+, let

f (m) denote the composite function f ◦ f ◦ · · · ◦ f (with m copies of f ). Find all functions

f : Z+ → Z+ with the property that f (m)(n) = f(mn) for all m,n ∈ Z+.

Solution. Observe first that there are certainly going to be infinitely many solutions, since all

constant functions f have this property.

Suppose f : Z+ → Z+ satisfies the desired property. Setting n = 1, we see that f (m)(1) =
f(m) for all m ∈ Z+. Hence for any m,n ∈ Z+ with m ≥ 2 we have f(m) = f(f(m − 1)),
and also

f(mn) = f (m)(n) = f (m−1)(f(n)) = f (m−1)(f (n)(1)) = f (m+n−1)(1) = f(m+ n− 1).

We claim that these properties force f(n) = f(3) for all n ≥ 3. To show this it suffices to show

that f(n+ 1) = f(n) for all n ≥ 3, for which we use induction. The base case holds because

f(4) = f(2× 2) = f(2 + 2− 1) = f(3),

and if n ≥ 4 and we assume that f(n) = f(n− 1), then f(n+ 1) = f(f(n)) = f(f(n− 1)) =
f(n) as required.

Now write A = f(1), B = f(2), C = f(n) for all n ≥ 3. We must determine which

choices of A,B,C ∈ Z+ satisfy the desired property. Note that we always have B = f(A) and

C = f(B). We separate into cases.

Case 1: C = 1. Then we have A = f(C) = f(f(3)) = f(4) = 1 and B = f(A) = f(1) =
A = 1 also, so f is in fact the constant function with value 1.

Case 2: C = 2. Then we have B = f(C) = f(f(3)) = f(4) = 2 also, and 2 = f(A) which

forces A 6= 1. We can in fact let A = f(1) be any number bigger than 1, and set f(n) = 2 for

n ≥ 2; it is easy to see that the desired property is satisfied.

From now on, C ≥ 3 so the desired property f (m)(n) = f(mn) is automatic when n ≥ 3,

both sides equalling C. Its non-automatic content when n ≤ 2 is simply the requirements

B = f(A) and C = f(B) that we have already observed; so it is enough to ensure that these

hold.

Case 3: C ≥ 3, B = 1. Then the requirement C = f(B) says that A = C, and the

requirement B = f(A) gives a contradiction.

Case 4: C ≥ 3, B = 2. Then the requirement C = f(B) gives a contradiction.

Case 5: C ≥ 3 and B = C. Then the requirement is just that C = f(A), which holds exactly

when A > 1.

Case 6: C ≥ 3, B ≥ 3, and B 6= C. Then the requirement C = f(B) is automatic, and the

requirement that B = f(A) holds exactly when A = 2.

To sum up, the possible values of the triple (A,B,C) are as follows:

(1, 1, 1), (2, 2, 2), (a, 2, 2), (a, c, c), and (2, b, c),

where a, b, c denote integers ≥ 3 (not necessarily distinct).
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2. Let n be a positive integer. Prove the inequality

n
∑

k=1

√
n2 − k2

√

n2 − (k − 1)2 <
2n3 + n

3
.

Solution. In fact, one can easily prove smaller upper bounds for the left-hand side, hereafter

denoted LHS. Many entrants used the AM–GM inequality to do this; the Cauchy–Schwarz

inequality, as used below, gives a better bound.

Note that the k = n term in LHS is zero, so we can rewrite it:

LHS =
n−1
∑

k=1

√
n2 − k2

√

n2 − (k − 1)2.

We can now apply the Cauchy–Schwarz inequality

(

n−1
∑

k=1

akbk

)2

≤
(

n−1
∑

k=1

a2k

)(

n−1
∑

k=1

b2k

)

to find that

LHS2 ≤
(

n−1
∑

k=1

n2 − k2

)(

n−1
∑

k=1

n2 − (k − 1)2

)

.

In fact, for n ≥ 3 the inequality is strict, because equality holds in the Cauchy–Schwarz in-

equality only when (a1, · · · , an−1) and (b1, · · · , bn−1) are proportional (n− 1)-tuples, which it

is easy to see does not hold here.

Using the well-known formula 12+22+ · · ·+m2 = m(m+1)(2m+1)
6

, our upper bound becomes

LHS2 ≤
(

(n− 1)n2 − (n− 1)n(2n− 1)

6

)(

(n− 1)n2 − (n− 2)(n− 1)(2n− 3)

6

)

=

(

(n− 1)n(4n+ 1)

6

)(

(n− 1)(4n2 + 7n− 6)

6

)

=
(n− 1)2n(4n+ 1)(4n2 + 7n− 6)

36

=
16n6 − 65n4 + 60n3 − 5n2 − 6n

36
.

It is easy to see that this upper bound for LHS2 is less than the square of 2n3+n
3

.

3. Let n be a positive integer. A composition of n is an ordered k-tuple (n1, n2, · · · , nk) of positive

integers satisfying n1 + n2 + · · ·+ nk = n. Let C(n) be the set of all compositions of n, where

the length k of the tuple is allowed to vary (it can be anything from 1 to n). Prove that

∑

(n1,n2,··· ,nk)∈C(n)

(−1)n−k 1n12n2 · · · knk = 1.

Solution. It is convenient to prove a more general statement depending on two positive

integers, m and n:

∑

(n1,n2,··· ,nk)∈C(n)

(−1)n−k mn1(m+ 1)n2 · · · (m+ k − 1)nk = m.
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The original problem is the m = 1 case.

Our proof is by induction on n (treating all m simultaneously). The n = 1 base case simply

says that m = m, so we can assume that n ≥ 2 and that the result is known when n is replaced

by n−1. The idea of the inductive step is to write C(n) as the disjoint union of two subsets C(n)′
and C(n)′′, where C(n)′ consists of those compositions (n1, n2, · · · , nk) where n1 ≥ 2 and C(n)′
consists of those compositions (n1, n2, · · · , nk) where n1 = 1. We clearly have a bijection

C(n)′ → C(n − 1) sending (n1, n2, · · · , nk) to (n1 − 1, n2, · · · , nk), and another bijection

C(n)′′ → C(n− 1) sending (n1, n2, · · · , nk) to (n2, n3, · · · , nk), which is well defined because

k cannot equal 1 in the latter case (since n ≥ 2). These bijections, incidentally, show that

|C(n)| = 2|C(n − 1)|, which with the base case |C(1)| = 1 clearly implies that |C(n)| = 2n−1.

For the present problem, the bijections and the induction hypothesis show that
∑

(n1,n2,··· ,nk)∈C(n)′
(−1)n−k mn1(m+ 1)n2 · · · (m+ k − 1)nk

= −m
∑

(n1−1,n2,··· ,nk)∈C(n−1)

(−1)(n−1)−k mn1−1(m+ 1)n2 · · · (m+ k − 1)nk

= −m2,
∑

(n1,n2,··· ,nk)∈C(n)′′
(−1)n−k mn1(m+ 1)n2 · · · (m+ k − 1)nk

= m
∑

(n2,··· ,nk)∈C(n−1)

(−1)(n−1)−(k−1) (m+ 1)n2 · · · (m+ k − 1)nk

= m(m+ 1),

so the total sum is −m2 +m(m+ 1) = m, as required to complete the inductive step.

4. If P is a convex polygon in the plane, let M(P ) be the convex polygon whose vertices are the

midpoints of the edges of P . Say that P is periodic if Mk(P ) is similar to P for some positive

integer k, where Mk denotes k applications of the operation M . For example, every triangle T
is periodic, because M(T ) is similar to T ; every parallelogram Q is periodic, because M2(Q)
is similar to Q. Show that there is a periodic pentagon in which no two edges have the same

length.

Solution. In fact, we will show that there are infinitely many similarity classes of pentagons

P with the property that no two edges have the same length and M(P ) is similar to P .

Identify the plane with the set of complex numbers. A convex pentagon P can be specified

(non-uniquely) by listing its vertices in (say) anti-clockwise order, starting from an arbitrarily

chosen vertex. This gives a 5-tuple of complex numbers (a1, · · · , a5). Note that not every 5-

tuple of complex numbers corresponds to a convex pentagon. However, any scalar multiple

(aa1, · · · , aa5) of (a1, · · · , a5) with a 6= 0 (another complex number) does correspond to a

convex pentagon, and one which is similar to P . To see this, write a = reiθ; multiplying by a
has the effect of dilating by a factor of r and rotating by θ.

If the 5-tuple associated to P as above is (a1, · · · , a5), the 5-tuple associated to M(P ) (or

rather one of the 5-tuples associated to M(P ), namely that obtained by choosing as the first

vertex the midpoint opposite the first vertex of P ) is

T (a1, · · · , a5) :=
(

a3 + a4
2

,
a4 + a5

2
,
a1 + a5

2
,
a1 + a2

2
,
a2 + a3

2

)

.

Hence, if (a1, · · · , a5) is an eigenvector of this linear transformation T of C5 for a nonzero

eigenvalue, i.e. T (a1, · · · , a5) = a(a1, · · · , a5) with a 6= 0, then M(P ) is similar to P .
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A straightforward calculation shows that the characteristic polynomial of T is

16x5 − 20x3 + 5x− 1

16
=

(x− 1)(4x2 + 2x− 1)2

16
.

To find this factorization, it helps to realize that 1 is an eigenvalue of T because T (1, 1, 1, 1, 1) =

(1, 1, 1, 1, 1). We conclude that the other eigenvalues of T are −1±
√
5

4
, each repeated. If we let φ

denote the golden ratio 1+
√
5

2
as is customary, then these other eigenvalues of T can be written

−φ/2 and φ−1/2.

One can see directly that −φ/2 is an eigenvalue of T , because if we start with a regular

pentagon with centre at the origin, we find that indeed T (a1, · · · , a5) = (−φ/2)(a1, · · · , a5)
(this uses the fact that cos(π/5) = φ/2). For example, this holds for the pentagon P0 with

vertices equal to the five complex 5th roots of 1, namely 1, ζ, ζ2, ζ̄2, ζ̄ where ζ = e2πi/5. Of

course, this is not a solution to the problem, because all edges of P0 have equal length. However,

the fact that (1, ζ, ζ2, ζ̄2, ζ̄) is an eigenvector of T for the (real) eigenvalue −φ/2 implies that so

is the complex conjugate vector (1, ζ̄, ζ̄2, ζ2, ζ), and hence so is any linear combination of the

form

(1, ζ, ζ2, ζ̄2, ζ̄) + ǫ(1, ζ̄, ζ̄2, ζ2, ζ),

where ǫ is a nonzero complex number. If ǫ is sufficiently small, then the resulting 5-tuple must

still correspond to a convex pentagon P with vertices listed in anti-clockwise order, which is

only a “small perturbation” of the regular pentagon P0. It is easy to see that for generic values

of ǫ, P will have no two edges of the same length, so it solves the problem.

Notice that this solution pentagon P is obtained from the regular pentagon P0 by applying the

transformation z 7→ z + ǫz̄ of the complex plane, which is a linear transformation of the plane

thought of as a real vector space.

5. Let F be the field of integers modulo p, where p is a prime number. Define a finite set

X = {(x, y, z) ∈ F 3 | x6 + y3 + z2 = 0}.

Show that |X| = p2 if and only if p 6≡ 1 (mod 6).

Solution. Assume that p 6≡ 1 (mod 6). Then p 6≡ 1 (mod 3), since there are clearly no primes

congruent to 4 modulo 6. The p−1 nonzero elements of F form a group F× under multiplication

(in fact, a cyclic group), with identity element 1F . The fact that 3 ∤ p − 1 means that the only

y ∈ F such that y3 = 1F is y = 1F itself. So the group homomorphismF× → F× : y 7→ y3 has

trivial kernel and therefore must be injective, hence bijective because its codomain and domain

have the same finite size; this means that the map F → F : y 7→ y3 is also bijective. So X is in

bijection with the set

X ′ = {(x, y′, z) ∈ F 3 | x6 + y′ + z2 = 0}
via the map X → X ′ : (x, y, z) 7→ (x, y3, z). It is clear that X ′ is in bijection with F 2 via the

map X ′ → F 2 : (x, y′, z) 7→ (x, z), so |X| = |X ′| = |F 2| = p2.

If p ≡ 1 (mod 6), then consider the following element of the field F :

S =
∑

(x,y,z)∈F 3

(x6 + y3 + z2)p−1.

On the one hand, for any nonzero a ∈ F we have ap−1 = 1F , so

S = (p3 − |X|) · 1F (meaning 1F + 1F + · · ·+ 1F with p3 − |X| terms).
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In other words, S is the integer −|X| interpreted modulo p.

On the other hand, we can expand the trinomial and obtain

S =
∑

(x,y,z)∈F 3

∑

a,b,c∈N
a+b+c=p−1

(

p− 1

a, b, c

)

· x6ay3bz2c

=
∑

a,b,c∈N
a+b+c=p−1

(

p− 1

a, b, c

)

·
(

∑

x∈F

x6a

)(

∑

y∈F

y3b

)(

∑

z∈F

z2c

)

.

Now
∑

x∈F x0 = p · 1F = 0. If 1 ≤ e ≤ p− 2, we claim that
∑

x∈F xe = 0 also. The simplest

proof is that, since F× is cyclic, there exists some y ∈ F× such that ye 6= 1F , whereas we have

(ye − 1F )
∑

x∈F

xe =
∑

x∈F

(xy)e −
∑

x∈F

xe =
∑

x′∈F

(x′)e −
∑

x∈F

xe = 0.

So the product of the three sums
∑

x∈F x6a,
∑

y∈F y3b,
∑

z∈F z2c can only be nonzero if

a ≥ p− 1

6
, b ≥ p− 1

3
, and c ≥ p− 1

2
.

The constraint that a + b+ c = p− 1 then forces a = p−1
6

, b = p−1
3

, and c = p−1
2

; since p ≡ 1
(mod 6), these are indeed all integers. Note that

∑

x∈F xp−1 = (p−1) ·1F = −1F . We conclude

that

S =

(

p− 1
p−1
6
, p−1

3
, p−1

2

)

· (−1F )
3,

and hence

|X| ≡
(

p− 1
p−1
6
, p−1

3
, p−1

2

)

(mod p).

The trinomial coefficient here is a divisor of (p− 1)!, which is not divisible by p. Thus |X| 6≡ 0
(mod p), which obviously implies |X| 6= p2 as required.

6. Define a function f : (−∞, 1) → R by

f(x) =

∫ 1

0

√
2− x√

1− s2
√
1− xs2

ds.

Show that f(x) has a global minimum at x = 0.

Solution. (Due to entrant Terence Harris, University of New South Wales). Fix x ∈ (−∞, 1).
The change of variable s = sin πt

2
gives

f(x) =
π
√
2− x

2

∫ 1

0

(1− x(sin
πt

2
)2)−1/2 dt.

Notice that 1 − x(sin πt
2
)2 > 0, so (1 − x(sin πt

2
)2)−1/2 is well defined. Since the function

y 7→ y−1/2 is convex on its domain (0,∞), we can apply the integral version of Jensen’s
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inequality to obtain

f(x) ≥ π
√
2− x

2

(
∫ 1

0

1− x(sin
πt

2
)2 dt

)−1/2

=
π
√
2− x

2

(

1− x

2

∫ 1

0

1− cosπt dt

)−1/2

=
π
√
2− x

2

(

1− x

2

)−1/2

=
π
√
2

2
= f(0),

as desired.

7. Let ζ = eπi/6 =
√
3
2
+ 1

2
i, and let Z[ζ ] denote the set of integer linear combinations of the powers

of ζ . Suppose that u, v ∈ Z[ζ ] satisfy |u|2 =
√
3 |v|2 + 1 and v 6= 0. Show that |v|2 ≥ 2 +

√
3,

and find when equality occurs.

Solution. Since the minimal polynomial of ζ is x4 − x2 + 1, any element of Z[ζ ] can be

written uniquely as a + bζ + cζ2 + dζ3 where a, b, c, d ∈ Z. Finding real and imaginary parts,

we see that

a+ bζ + cζ2 + dζ3 = (a+

√
3

2
b+

1

2
c) + (

1

2
b+

√
3

2
c+ d)i,

so

|a+ bζ + cζ2 + dζ3|2 = (a +

√
3

2
b+

1

2
c)2 + (

1

2
b+

√
3

2
c+ d)2

= (a2 + ac+ c2 + b2 + bd+ d2) + (ab+ bc + cd)
√
3.

Thus, if we let u = a+bζ+cζ2+dζ3 and v = a′+b′ζ+c′ζ2+d′ζ3 where a, b, c, d, a′, b′, c′, d′ ∈ Z,

the equation |u|2 =
√
3 |v|2 + 1 becomes the following two equations:

a2 + ac+ c2 + b2 + bd+ d2 = 1 + 3(a′b′ + b′c′ + c′d′), (1)

and

ab+ bc + cd = a′2 + a′c′ + c′2 + b′2 + b′d′ + d′2. (2)

Now the quadratic form x2 + xy + y2 is positive-definite, since

4(x2 + xy + y2) = (x− y)2 + 3(x+ y)2. (3)

Since a2 + ac + c2 is an integer, we have a2 + ac + c2 ≥ 1 unless a = c = 0, and similarly

b2 + bd + d2 ≥ 1 unless b = d = 0. If either a = c = 0 or b = d = 0, then the left-hand side

of (2) vanishes, forcing the right-hand side of (2) to vanish, which then by the same positive-

definiteness forces a′ = b′ = c′ = d′ = 0, contrary to the assumption that v 6= 0. We conclude

that a2 + ac + c2 ≥ 1 and b2 + bd + d2 ≥ 1, meaning that the left-hand side of (1) is at least

2. Hence the right-hand side of (1) is at least 2, implying that a′b′ + b′c′ + c′d′ ≥ 1. This in

turn implies that it is not true that a′ = c′ = 0 or that b′ = d′ = 0, so a′2 + a′c′ + c′2 ≥ 1 and

b′2 + b′d′ + d′2 ≥ 1. Hence we have

|v|2 = (a′2 + a′c′ + c′2 + b′2 + b′d′ + d′2) + (a′b′ + b′c′ + c′d′)
√
3 ≥ 2 +

√
3,
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as claimed.

For equality to hold, i.e. to have |v|2 = 2 +
√
3, we need a′, b′, c′, d′ ∈ Z to be such that

a′2+a′c′+ c′2 = 1 and b′2+ b′d′+d′2 = 1, in addition to a′b′+ b′c′+ c′d′ = 1. Using (3) we see

that a′2 + a′c′ + c′2 = 1 forces either a′ = ±1, c′ = ∓1 or a′ = ±1, c′ = 0 or a′ = 0, c′ = ±1.

The same trichotomy holds for b′ and d′. Applying the final condition a′b′ + b′c′ + c′d′ = 1, we

get the following twelve possibilities for (a′, b′, c′, d′) (and thus for v):

(a′, b′, c′, d′) ∈ { ± (1, 0,−1,−1),±(1, 1,−1,−1),±(1, 1, 0, 0),

± (1, 1, 0,−1),±(0, 1, 1, 0),±(0, 0, 1, 1)}.

Since |ζ | = 1, all these possible values of v can be obtained from just one (say, v = 1 + ζ) by

multiplying by the twelve distinct powers of ζ .

We also need to have |u|2 = 4 + 2
√
3, i.e. we need a, b, c, d ∈ Z to be such that a2 + ac +

c2 + b2 + bd + d2 = 4 and ab+ bc + cd = 2. Considering (3) modulo 3, we see that we cannot

have a2 + ac + c2 = 2, so the only possibilities are a2 + ac + c2 = 1 and b2 + bd + d2 = 3
or a2 + ac + c2 = 3 and b2 + bd + d2 = 1. In the first of these cases, we have the trichotomy

for a and c as above, whereas b2 + bd + d2 = 3 forces either b = d = ±1 or b = ±2, d = ∓1
or b = ±1, d = ∓2. Applying the final condition ab + bc + cd = 2, we get the following

possibilities for (a, b, c, d) (and thus for u):

(a, b, c, d) ∈ {±(1, 1,−1,−2),±(1, 2, 0,−1),±(0, 1, 1, 1)}.

The other case gives the following possibilities for (a, b, c, d) (and thus for u):

(a, b, c, d) ∈ {±(2, 1,−1,−1),±(1, 0,−2,−1),±(1, 1, 1, 0)}.

So there are twelve possibilities for u in all; again, they can be obtained from just one (say,

u = 1 + 2ζ − ζ3 = 1 +
√
3) by multiplying by the twelve distinct powers of ζ .

8. Let d be a fixed integer, at least 2. If P (x) is a polynomial in x, let ⌈P (x)⌉ be the polynomial

obtained by rounding up each exponent of x to the nearest multiple of d, so that ⌈P (x)⌉ is a

polynomial in xd. For example, if d = 3 then

⌈2 + 5x2 + 4x3 + x4⌉ = 2 + 5x3 + 4x3 + x6 = 2 + 9x3 + x6.

Suppose that all we know about P (x) is that it has nonnegative real coefficients. Show that if

we are given all of the polynomials ⌈P (x)⌉, ⌈P (x)2⌉, ⌈P (x)3⌉, . . . , we can determine P (x).

Solution. The intention of the question, as stated by a clarification on the competition web-

page, was that the integer d was also to be regarded as given.

The wording “Show that . . . we can determine P (x)” was also ambiguous. On one interpre-

tation, it simply requires us to show that there cannot be two different polynomials P (x) with

nonnegative real coefficients that give rise to the same sequence of polynomials (⌈P (x)m⌉)m≥1.

As pointed out by entrant Terence Harris (University of New South Wales), this follows from

the fact that for any fixed real number y ≥ 1,

P (y)m ≤ ⌈P (y)m⌉ ≤ yd−1P (y)m,

and hence

lim
m→∞

⌈P (y)m⌉1/m = P (y).
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However, on another interpretation, “determining P (x)” requires a finite algorithm (in particu-

lar, not involving limits) to determine the various coefficients of the polynomial P (x) from the

coefficients of the known polynomials ⌈P (x)m⌉. Such an algorithm follows.

A trivial but vital observation is that the operation ⌈·⌉ is linear, in the sense that ⌈aQ(x) +
bR(x)⌉ = a⌈Q(x)⌉ + b⌈R(x)⌉ for any polynomials Q(x), R(x) and numbers a, b. Also note

that ⌈xkdQ(x)⌉ = xkd⌈Q(x)⌉ for all nonnegative integers k. We will use these rules henceforth

without further comment.

If Q(x) is any polynomial, write Q(x)[xj ] for the coefficient of xj in Q(x). We first show that

it suffices to prove the claim in the case when P (x)[x0] = 0 (i.e. P (x) has no constant term).

The reason is that if we know ⌈P (x)m⌉ for all m ≥ 0, then we know P (x)[x0] = ⌈P (x)⌉[x0],
and so we also know

⌈(P (x)− P (x)[x0])m⌉ =
m
∑

j=0

(

m

j

)

(−P (x)[x0])m−j⌈P (x)j⌉ for all m ≥ 0.

So assuming we can solve the problem for polynomials with no constant term, we can determine

P (x)− P (x)[x0] and hence the original P (x).
Now it is enough to prove the following claim for all nonnegative integers n: for a polynomial

P (x) with P (x)[xj ] ≥ 0 for all j and P (x)[x0] = 0, if we know ⌈P (x)m⌉ for all m ≥ 0, then

we can determine P (x)[xn]. We prove this claim by induction on n, the n = 0 case being

obvious. So we can assume that n ≥ 1 and that the claim is true when n is replaced by a smaller

nonnegative integer.

The inductive hypothesis implies that from the assumed knowledge of ⌈P (x)m⌉ for all m ≥ 0,

we can determine the coefficients P (x)[x1], · · · , P (x)[xn−1]. If these coefficients are all zero

(or if n = 1), then (P (x)d)[xj ] = 0 for all j < nd and (P (x)d)[xnd] = (P (x)[xn])d. So

⌈P (x)d⌉[xnd] = (P (x)[xn])d also, and hence we know (P (x)[xn])d and can determine P (x)[xn]
by taking the dth root. Here is where it matters that we are dealing with nonnegative real

numbers.

Otherwise, we have P (x)[x1] = · · · = P (x)[xi−1] = 0 and P (x)[xi] > 0 for some positive

integer i < n. In particular, x−iP (x) is a polynomial in x with constant term P (x)[xi]. Define

Q(x) = (x−iP (x))d − (P (x)[xi])d and R(x) = x−iP (x)− P (x)[xi],

two other polynomials in x with nonnegative real coefficients and no constant term. By assump-

tion we know

⌈Q(x)m⌉ =
m
∑

j=0

(

m

j

)

(−(P (x)[xi])d)m−jx−ijd⌈P (x)jd⌉ for all m ≥ 0.

So by the inductive hypothesis we can determine the coefficient Q(x)[xn−i]. By definition,

Q(x)[xn−i] = ((R(x) + P (x)[xi])d − (P (x)[xi])d)[xn−i]

=

d
∑

k=1

(

d

k

)

(P (x)[xi])d−kR(x)k[xn−i].

Now if k ≥ 2 and we write the coefficient R(x)k[xn−i] as a function of the coefficients

R(x)[x1] = P (x)[xi+1], R(x)[x2] = P (x)[xi+2], · · · of R(x), we see that it cannot involve

any coefficient R(x)[xa] = P (x)[xa+i] for a ≥ n − i, because k − 1 + a > n − i. So in
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the above expression for Q(x)[xn−i], all the terms of the sum with k ≥ 2 involve only coeffi-

cients of P (x) that have already been determined. Thus we can detemine the remaining k = 1
term, which is d(P (x)[xi])d−1P (x)[xn]. Since P (x)[xi] 6= 0 by assumption, we can determine

P (x)[xn] from this, completing the inductive step.


