
Sydney University Mathematical Society
Problems Competition 2002

This competition is open to all undergraduates at any Australian university or tertiary
institution. Prizes ($50 book vouchers from the Co-op Bookshop) will be awarded for the
best correct solution to each of the 10 problems. Entrants from the University of Sydney
will also be eligible for the Norbert Quirk Prizes (one for each of 1st, 2nd and 3rd years).
Entries from fourth year students will be considered. When prizewinners are being selected,
if two or more entries to a problem are essentially equal, then preference may be given to
the students in the earlier year of university.

Contestants may use any source of information except other people. Solutions are to
be received by 4.00 pm on Friday, September 13, 2002. They may be given to Dr. Donald
Cartwright, Room 620, Carslaw Building, or posted to him at the School of Mathematics
and Statistics, The University of Sydney, N.S.W. 2006. Entries must state name, university,
student number, course and year, term address and telephone number, and be marked 2002
SUMS Competition. The prizes will be awarded towards the end of the academic year.

The SUMS committee is grateful to all those who have provided problems. We are
always keen to get more. Send any, with solutions, to Dr. Cartwright, at the above address.

Problems
(Extensions and generalizations of any problem are invited and are taken into account

when assessing solutions.)

1. Which is the larger of the two numbers

99··
·9

(10 9’s), and 1010··
·10

(9 10’s)?

2. Consider three circles C1, C2 and C3, with radii r1, r2 and r3, respectively. Suppose
that any two of them touch externally (i.e., have a common point, but disjoint interiors).
Suppose that C1 and C3 have a common tangent line `, and that C2 and C3 have a common
tangent line `′ parallel to `. Express r3 in terms of r1 and r2.

3. Let H be the orthocentre of a triangle 4ABC, i.e., the intersection of the altitudes
of the triangle. Now let X and Y be points on the sides BC and AC, respectively. Form
the circles with diameters AX and BY , and let P and Q be their points of intersection.
Show that P , Q and H are collinear.

4. “Two positive integers chosen at random are more likely to be relatively prime
than not”. True or false?

5. Describe the polynomials p(X) with integer coefficients which have the property
that p(X2) ≡ p(X)p(−X).

6. Suppose that we have n squares of total area at least 3, with their sides parallel to
the x- and y-axes. Show that, moving them so that their sides remain parallel to the x-
and y-axes, they can be made to cover the unit square [0, 1]× [0, 1].



7. Calculate ∫ 1

0

φ(x) dx and
∫ 1

0

xφ(x) dx,

where φ(x) is any concave-down function defined on the interval [0,∞) satisfying the
constraints, φ(0) = 0 and φ(x + 1) = φ(x) + 1/(x + 1) for all x ≥ 0. The results involve
Euler’s constant γ defined by

γ = lim
n→∞

(
1 +

1
2

+
1
3

+ · · ·+ 1
n
− log n

)
.

8. This problem is about polyhedra, which may admit symmetries such as rotations
and reflections. For example a cube admits a rotation of 90◦ about an axis through the
centre of two opposite faces; it also admits a reflection in the horizontal plane mid-way
between the top and the bottom faces.

We define a polyhedron to be face-transitive if, for any pair of faces, there is a symme-
try which carries the first face onto the second. Similarly, a polyhedron is vertex-transitive
if, for any pair of vertices, there is a symmetry which carries the first vertex onto the
second; it is edge-transitive if, for any pair of edges, there is a symmetry which carries
the first edge onto the second. (A cube is in fact face-transitive, vertex-transitive and
edge-transitive.)
(i) Find a polyhedron that is face-transitive but not vertex-transitive.
(ii) Find a polyhedron that is vertex-transitive but not face-transitive.
(iii) Find a polyhedron that is both face-transitive and vertex-transitive but not edge-

transitive.
(iv) Prove that an edge-transitive polyhedron must be either face-transitive or vertex-

transitive.

9. Consider the rational number

xn =
21

1
+

22

2
+

23

3
+ · · ·+ 2n

n
.

Write xn = 2vnan/bn, where an and bn are odd integers (thus vn is the “2-adic valuation”
of xn). Show that vn →∞ as n→∞.

10. Consider the Van der Monde determinant

V = det

 1 1 1
x1 x2 x3

x2
1 x2

2 x2
3


in 3 variables x1, x2, x3. Form all the partial derivatives

∂i+j+kV

∂ix1∂jx2∂kx3
,

where i, j, k ≥ 0 (which are all polynomials in the variables x1, x2, x3). Show that we can
find six of these, say p1, . . . , p6, so that any of the other partial derivatives can be written
as a linear combination a1p1 + · · · + a6p6, for some constants a1, . . . , a6. Generalize this
statement to the case of the Van der Monde determinant in the n variables x1, . . . , xn,
showing that there are n! partial derivatives so that all others are linear combinations of
these ones.


