Topological invariants of groups and tropical geometry

Alex Suciu

Northeastern University

Recent Progress in Mathematics and Statistics Seminar The University of Sydney

February 9, 2023

1 Finiteness properties of abelian covers

- The Bieri-Neumann-Strebel-Renz invariants
- Novikov–Sikorav homology

2 Cohomology jump loci

- Characteristic varieties
- Resonance varieties
- Bounding the Sigma-invariants

TROPICAL GEOMETRY

- Tropical varieties
- A tropical bound for the Sigma-invariants
- Alexander polynomial and BNS invariant

APPLICATIONS

- One-relator groups
- Compact 3-manifolds
- Kähler manifolds
- Hyperplane arrangements

The Bieri-Neumann-Strebel-Renz invariants

- Let G be a finitely generated group. Let
 n = b₁(G) > 0.
 - $S(G) = S^{n-1}$, the unit sphere in $Hom(G, \mathbb{R}) = \mathbb{R}^n$.
 - Cay(G), the Cayley graph of G.

• (Bieri-Neumann-Strebel 1987)

 $\Sigma^{1}(G) = \{ \chi \in S(G) \mid \mathsf{Cay}_{\chi}(G) \text{ is connected} \},\$

where $Cay_{\chi}(G)$ is the induced subgraph of Cay(G) on vertex set $G_{\chi} = \{g \in G \mid \chi(g) \ge 0\}.$

• (Bieri-Renz 1988)

$\Sigma^q(G,\mathbb{Z}) = \{\chi \in S(G) \mid \text{the monoid } G_{\chi} \text{ is of type FP}_q\},$

i.e., there is a projective $\mathbb{Z}G_{\chi}$ -resolution $P_{\bullet} \to \mathbb{Z}$, with P_i finitely generated for all $i \leq q$. Moreover, $\Sigma^1(G, \mathbb{Z}) = -\Sigma^1(G)$.

• The BNSR-invariants of form a descending chain of open subsets,

 $S(G) \supseteq \Sigma^1(G,\mathbb{Z}) \supseteq \Sigma^2(G,\mathbb{Z}) \supseteq \cdots$.

• The Σ -invariants control the finiteness properties of normal subgroups $N \lhd G$ for which G/N is free abelian:

 $N \text{ is of type } \mathsf{FP}_q \Longleftrightarrow S(G,N) \subseteq \Sigma^q(G,\mathbb{Z})$

where $S(G, N) = \{\chi \in S(G) \mid \chi(N) = 0\}.$

• In particular: $\ker(\chi: \mathcal{G} \twoheadrightarrow \mathbb{Z})$ is f.g. $\iff \{\pm\chi\} \subseteq \Sigma^1(\mathcal{G})$.

Novikov–Sikorav homology

• For each $\chi \in S(G)$, the Novikov–Sikorav completion of $\mathbb{Z}G$,

 $\widehat{\mathbb{Z}G}_{\chi} = \left\{ \lambda \in \mathbb{Z}^{\mathcal{G}} \mid \{ g \in \operatorname{supp} \lambda \mid \chi(g) \ge c \} \text{ is finite, } \forall c \in \mathbb{R} \right\}$

is a ring containing $\mathbb{Z}G$ as a subring.

- Alternatively, let U_m be the additive subgroup of ZG (freely) generated by {g ∈ G | χ(g) ≥ m}.
- Requiring the decreasing filtration {U_m}_{m∈Z} to form a basis of open neighborhoods of 0 defines a topology on ZG, compatible with the ring structure. Then

$$\widehat{\mathbb{Z}}\widehat{G}_{-\chi}=\varprojlim_m\mathbb{Z}G/U_m.$$

EXAMPLE

Let $G = \mathbb{Z} = \langle t \rangle$ and $\chi(t) = 1$. Then

$$\widehat{\mathbb{Z}G}_{\chi} = \mathbb{Z}[[t^{-1}]][t] = \Big\{ \sum_{i \leqslant k} n_i t^i \mid n_i \in \mathbb{Z}, \text{ for some } k \in \mathbb{Z} \Big\}.$$

- Now let X be a connected CW-complex with finite q-skeleton, for some q ≥ 1. Write G := π₁(X) and S(X) := S(G).
- (Farber–Geoghegan–Schütz 2010)

 $\Sigma^{q}(X,\mathbb{Z}) = \{\chi \in \mathcal{S}(X) \mid H_{i}(X; \widehat{\mathbb{Z}G}_{-\chi}) = 0, \ \forall i \leq q\}.$

- (Bieri 2007) If G is FP_k , then $\Sigma^q(G,\mathbb{Z}) = \Sigma^q(\mathcal{K}(G,1),\mathbb{Z}), \forall q \leq k$.
- In particular, if G is finitely generated, the BNS set
 Σ¹(G) = −Σ¹(G, Z) consists of those characters χ ∈ S(G) for which
 both H₀(G; ZG_χ) and H₁(G; ZG_χ) vanish.

Characteristic varieties

- Let $\mathbb{T}_G := \text{Hom}(G, \mathbb{C}^*)$ be the character group of $G = \pi_1(X)$, identified with $\text{Char}(X) := H^1(X; \mathbb{C}^*)$.
- The characteristic varieties of X are the sets

 $\mathcal{V}^{i}(X) = \{ \rho \in \mathbb{T}_{\mathcal{G}} \mid H_{i}(X; \mathbb{C}_{\rho}) \neq 0 \}.$

- If X has finite q-skeleton, then $\mathcal{V}^{i}(X)$ is Zariski closed for all $i \leq q$.
- We may define similarly $\mathcal{V}^i(X, \Bbbk) \subset H^1(X; \Bbbk^*)$ for any field \Bbbk .
- These constructions are compatible with restriction and extension of the base field. Namely, if k ⊂ L is a field extension, then

$$\mathcal{V}^{i}(X,\mathbb{k}) = \mathcal{V}^{i}(X,\mathbb{L}) \cap H^{1}(X;\mathbb{k}^{*}),$$

 $\mathcal{V}^{i}(X,\mathbb{L}) = \mathcal{V}^{i}(X,\mathbb{k}) \times_{\mathbb{k}} \mathbb{L}.$

• Let $X^{ab} \to X$ be the maximal abelian cover. View $H_*(X^{ab}; \mathbb{C})$ as a module over $\mathbb{C}[G_{ab}]$. Then

$$\bigcup_{i \leq q} \mathcal{V}^{i}(X) = \bigcup_{i \leq q} V(\operatorname{ann}\left(H_{i}(X^{\operatorname{ab}}; \mathbb{C})\right)).$$

Let exp: Cⁿ → (C*)ⁿ. Given a subvariety W ⊂ (C*)ⁿ, define its exponential tangent cone at 1 (the identity of (C*)ⁿ) as

$$\tau_1(W) = \{ z \in \mathbb{C}^n \mid \exp(\lambda z) \in W, \ \forall \lambda \in \mathbb{C} \}.$$

- $\tau_1(W)$ depends only on the germ $W_{(1)}$; it is non-empty iff $1 \in W$.
- If $T \cong (\mathbb{C}^*)^r$ is an algebraic subtorus, then $\tau_1(T) = T_1(T) \cong \mathbb{C}^r$.
- (Dimca–Papadima–S. 2009) $\tau_1(W)$ is a finite union of rationally defined linear subspaces.
- For any subfield $\Bbbk \subset \mathbb{C}$, set $\tau_1^{\Bbbk}(W) = \tau_1(W) \cap \Bbbk^n$.

Resonance varieties

Let A = H^{*}(X; C). For each a ∈ A¹, we have that a² = 0. Thus, there is a cochain complex

$$(A, \cdot a): A^0 \xrightarrow{a} A^1 \xrightarrow{a} A^2 \longrightarrow \cdots$$

- The resonance varieties of X are the homogeneous algebraic sets $\mathcal{R}^{i}(X) = \{a \in A^{1} \mid H^{i}(A, a) \neq 0\}.$
- Identify $A^1 = H^1(X; \mathbb{C})$ with \mathbb{C}^n , where $n = b_1(X)$. The map exp: $H^1(X; \mathbb{C}) \to H^1(X; \mathbb{C}^*)$ has image $\mathbb{T}_G^0 = (\mathbb{C}^*)^n$.
- (Dimca–Papadima–S. 2009)

 $au_1(\mathcal{V}^i(X)) \subseteq \mathcal{R}^i(X).$

• (DPS-2009, DP-2014) If X is a q-formal space, then, for all $i \leq q$, $\tau_1(\mathcal{V}^i(X)) = \mathcal{R}^i(X).$

Bounding the Σ -invariants

- Let $\chi \in S(X)$, and set $\Gamma = \operatorname{im}(\chi)$; then $\Gamma \cong \mathbb{Z}^r$, for some $r \ge 1$.
- A Laurent polynomial $p = \sum_{\gamma} n_{\gamma} \gamma \in \mathbb{Z}\Gamma$ is χ -monic if the greatest element in $\chi(\operatorname{supp}(p))$ is 0, and $n_0 = 1$.
- Let *R*Γ_χ be the *Novikov ring*, i.e., the localization of ZΓ at the multiplicative subset of all χ-monic polynomials; then *R*Γ_χ is a PID.
- Let $b_i(X, \chi) = \operatorname{rank}_{\mathcal{R}\Gamma_{\chi}} H_i(X; \mathcal{R}\Gamma_{\chi})$ be the Novikov–Betti numbers.

THEOREM (PAPADIMA-S. 2010)

Let X be a connected CW-complex with finite q-skeleton and let $\chi: \pi_1(X) \to \mathbb{R}$ be a non-zero homomorphism. Then,

- $-\chi \in \Sigma^q(X,\mathbb{Z}) \implies b_i(X,\chi) = 0, \quad \forall i \leq q.$
- $\chi \notin \tau_1^{\mathbb{R}}(\mathcal{V}^{\leq q}(X)) \iff b_i(X,\chi) = 0, \ \forall i \leq q.$

COROLLARY

$$\Sigma^{q}(X,\mathbb{Z})\subseteq S\left(au_{1}^{\mathbb{R}}\left(\ \mathcal{V}^{\leqslant q}(X)
ight)
ight)^{\mathrm{c}}$$

ALEX SUCIU

- Thus, $\Sigma^{q}(X,\mathbb{Z})$ is contained in the complement of a finite union of rationally defined great subspheres.
- If X is q-formal, then $\Sigma^{i}(X,\mathbb{Z}) \subseteq S\left(\mathcal{R}^{\leqslant i}(X)\right)^{c}$ for all $i \leqslant q$.

EXAMPLE

Let X be a nilmanifold. Then $\Sigma^i(X, \mathbb{Z}) = S(X)$, while $\mathcal{V}^i(X) = \{1\}$, $\forall i$. Thus, $\Sigma^q(X, \mathbb{Z}) = S(\tau_1^{\mathbb{R}}(\mathcal{V}^{\leq q}(X)))^c$, for all q.

EXAMPLE

- Let $G = G_{\Gamma} = \langle v \in V | vw = wv$ if $\{v, w\} \in E \rangle$ be the right-angled Artin group associated to a finite simple graph $\Gamma = (V, E)$.
- There is a finite K(G, 1) which is formal.
- $\Sigma^q(G,\mathbb{R}) = S(\mathcal{R}^{\leq q}(G,\mathbb{R}))^c$ holds for all q.
- Σ^q(G, Z) = S(R^{≤q}(G, R))^c, provided the homology groups of certain subcomplexes in the flag complex of Γ are torsion-free.
- This condition is always satisfied in degree q = 1, giving $\Sigma^1(G) = S(\mathcal{R}^1(G, \mathbb{R}))^c$.

ALEX SUCIU

Tropical varieties

- Let $\mathbb{K} = \mathbb{C}\{\{t\}\} = \bigcup_{n \ge 1} \mathbb{C}((t^{1/n}))$ be the field of Puiseux series over \mathbb{C} .
- A non-zero element of \mathbb{K} has the form $c(t) = c_1 t^{a_1} + c_2 t^{a_2} + \cdots$, $c_i \in \mathbb{C}^*$ and $a_1 < a_2 < \cdots$ rationals with a common denominator.
- The (algebraically closed) field K admits a valuation v: K* → Q, given by v(c(t)) = a₁.
- Let $v: (\mathbb{K}^*)^n \to \mathbb{Q}^n \subset \mathbb{R}^n$ be the *n*-fold product of the valuation.
- The tropicalization of a subvariety W ⊂ (K*)ⁿ, denoted Trop(W), is the closure (in the Euclidean topology) of v(W) in Rⁿ.
- This is a rational polyhedral complex in ℝⁿ. For instance, if W is a curve, then Trop(W) is a graph with rational edge directions.

- If T is an algebraic subtorus of (K^{*})ⁿ, then Trop(T) is the linear subspace Hom(K^{*}, T) ⊗ R ⊂ Hom(K^{*}, (K^{*})ⁿ) ⊗ R = Rⁿ.
- Moreover, if $z \in (\mathbb{K}^*)^n$, then $\operatorname{Trop}(z \cdot T) = \operatorname{Trop}(T) + v(z)$.
- For a variety W ⊂ (ℂ*)ⁿ, we may define its tropicalization by setting Trop(W) = Trop(W ×_ℂ K).
- In this case, the tropicalization is a polyhedral fan in \mathbb{R}^n .

- For a polytope $P \subset \mathbb{R}^n$, let $P^\circ = \{y \in (\mathbb{R}^n)^{\vee} : x \cdot y \leq 1, \forall x \in P\}$ be its polar dual, and set
 - \$\mathcal{F}(P)\$ the face fan (the set of cones spanned by the faces of P);
 \$\mathcal{N}(P)\$ the (inner) normal fan.
- If $0 \in int(P)$, then $\mathcal{N}(P) = \mathcal{F}(P^{\circ})$.
- If W = V(f) is a hypersurface defined by $f = \sum_{u \in A} a_u t^u \in \mathbb{C}[t^{\pm 1}]$, and $\operatorname{Newt}(f) = \operatorname{conv}\{u \mid a_u \neq 0\} \subset \mathbb{R}^n$, then $\operatorname{Trop}(V(f)) = \mathcal{N}(\operatorname{Newt}(f))^{\operatorname{codim}>0}$.

EXAMPLE

ALEX SUCIU

Let $f = t_1 + t_2 + 1$. Then Newt $(f) = conv\{(1,0), (0,1), (0,0)\}$ is a triangle, and so Trop(V(f)) is a tripod.

Tropicalizing the characteristic varieties

- Recall $\mathbb{K} = \mathbb{C}\{\!\{t\}\!\}$ comes with a valuation map, $v \colon \mathbb{K}^* \to \mathbb{Q}$.
- Let ν_X : $\operatorname{Char}_{\mathbb{K}}(X) \to \mathbb{Q}^n \subset \mathbb{R}^n$ be the composite

 $H^1(X;\mathbb{K}^*) \xrightarrow{v_*} H^1(X;\mathbb{Q}) \longrightarrow H^1(X;\mathbb{R}).$

- I.e., if $\rho \colon \pi_1(X) \to \mathbb{K}^*$ is a \mathbb{K} -valued character, then the morphism $v \circ \rho \colon \pi_1(X) \to \mathbb{Q}$ defines $\nu_X(\rho) \in H^1(X; \mathbb{Q}) = \mathbb{Q}^n \subset \mathbb{R}^n$.
- Given an algebraic subvariety W ⊂ H¹(X; C*) we define its tropicalization as the closure in H¹(X; ℝ) ≅ ℝⁿ of the image of W ×_C ℝ ⊂ H¹(X; ℝ*) under ν_X,

$$\mathsf{Trop}(W) := \overline{\nu_X(W \times_{\mathbb{C}} \mathbb{K})}.$$

• Applying this definition to the characteristic varieties $\mathcal{V}^i(X)$, and recalling that $\mathcal{V}^i(X, \mathbb{K}) = \mathcal{V}^i(X) \times_{\mathbb{C}} \mathbb{K}$, we have that

$$\operatorname{Frop}(\mathcal{V}^{i}(X)) = \overline{\nu_{X}(\mathcal{V}^{i}(X,\mathbb{K}))}.$$

LEMMA

Let $W \subset (\mathbb{C}^*)^n$ be an algebraic variety. Then $\tau_1^{\mathbb{R}}(W) \subseteq \operatorname{Trop}(W)$.

Sketch of proof.

- Every irreducible component of τ₁^ℝ(W) is of the form L ⊗_Q ℝ, for some linear subspace L ⊂ Qⁿ.
- The complex torus $T := \exp(L \otimes_{\mathbb{Q}} \mathbb{C})$ lies inside W.
- Thus, $\operatorname{Trop}(T) = L \otimes_{\mathbb{Q}} \mathbb{R}$ lies inside $\operatorname{Trop}(W)$.

PROPOSITION

- $\tau_1^{\mathbb{R}}(\mathcal{V}^i(X)) \subseteq \operatorname{Trop}(\mathcal{V}^i(X))$, for all $i \leq q$.
- If there is a subtorus $T \subset \operatorname{Char}^{0}(X)$ such that $T \notin \mathcal{V}^{i}(X)$, yet $\rho T \subset \mathcal{V}^{i}(X)$ for some $\rho \in \operatorname{Char}(X)$, then $\tau_{1}^{\mathbb{R}}(\mathcal{V}^{i}(X)) \subsetneq \operatorname{Trop}(\mathcal{V}^{i}(X))$.

THEOREM (PS-2010, S-2021)

Let $\rho: \pi_1(X) \to \Bbbk^*$ be a character such that $\rho \in \mathcal{V}^{\leq q}(X, \Bbbk)$. Let $\upsilon: \Bbbk^* \to \mathbb{R}$ be the homomorphism defined by a valuation on \Bbbk . If the homomorphism $\chi := \upsilon \circ \rho: \pi_1(X) \to \mathbb{R}$ is non-zero, then $\chi \notin \Sigma^q(X, \mathbb{Z})$.

Sketch of proof.

- Let \hat{k} be the topological completion of k with respect to the absolute value $|c| = \exp(-v(c))$. Get a field extension, $\iota : \mathbb{k} \hookrightarrow \hat{\mathbb{k}}$.
- Let $G = \pi_1(X)$. Extend $\rho \colon G \to \Bbbk^*$ to a ring map, $\bar{\rho} \colon \mathbb{Z}G \to \Bbbk$.
- Since $\chi = \upsilon \circ \rho$, we can extend $\overline{\rho}$ to a morphism of topological rings, $\hat{\rho} \colon \widehat{\mathbb{Z}G}_{-\chi} \to \hat{\Bbbk}$, making $\hat{\Bbbk}$ into a $\widehat{\mathbb{Z}G}_{-\chi}$ -module, denoted $\hat{\Bbbk}_{\hat{\rho}}$.
- Restricting scalars via the inclusion $\mathbb{Z}G \hookrightarrow \widehat{\mathbb{Z}G}_{-\chi}$ yields the $\mathbb{Z}G$ -module $\hat{\Bbbk}_{\iota \circ \rho}$, defined by the character $\iota \circ \rho \colon G \to \hat{\Bbbk}^*$.

• For a ring *R*, a bounded below chain complex of flat right *R*-modules *K*_{*}, and a left *R*-module *M*, there is a (right half-plane, boundedly converging) Künneth spectral sequence,

 $E_{ij}^2 = \operatorname{Tor}_i^R(H_j(K), M) \Rightarrow H_{i+j}(K \otimes_R M).$

- Use ring $R = \widehat{\mathbb{Z}G}_{-\chi}$, chain complex of free *R*-modules $K_* = C_*(\widetilde{X}, \mathbb{Z}) \otimes_{\mathbb{Z}G} \widehat{\mathbb{Z}G}_{-\chi}$, and *R*-module $M = \hat{\Bbbk}_{\hat{\rho}}$.
- Now let $\rho \in \mathcal{V}^{\leq q}(X, \mathbb{k})$, and suppose $\chi = \upsilon \circ \rho \in \Sigma^{q}(X, \mathbb{Z})$.
- This is equivalent to $H_j(X; \widehat{\mathbb{Z}G}_{-\chi}) = 0$ for all $j \leq q$; that is, $H_j(K) = 0$ for $j \leq q$. Therefore, $E_{ij}^2 = 0$ for $j \leq q$.
- Hence, $H_{i+j}(X; \hat{\Bbbk}_{\iota \circ \rho}) = 0$ for $j \leqslant q$, and so $H_j(X; \hat{\Bbbk}_{\iota \circ \rho}) = 0$ for $j \leqslant q$.
- This is equivalent to $\iota \circ \rho \notin \mathcal{V}^{\leq q}(X, \hat{\Bbbk})$. Hence, $\rho \notin \mathcal{V}^{\leq q}(X, \Bbbk)$, contradicting our hypothesis on ρ .
- Therefore, $\chi \notin \Sigma^q(X, \mathbb{Z})$.

THEOREM (S-2021)

$\Sigma^q(X,\mathbb{Z}) \subseteq S(\operatorname{Trop}(\mathcal{V}^{\leqslant q}(X)))^c$

Sketch of proof.

- Let $\rho: \pi_1(X) \to \mathbb{K}^*$ and set $\chi = v \circ \rho: \pi_1(X) \to \mathbb{Q}$, a rational point on $H^1(X; \mathbb{R})$.
- Suppose $\rho \in \mathcal{V}^{\leq q}(X, \mathbb{K}) = \mathcal{V}^{\leq q}(X) \times_{\mathbb{C}} \mathbb{K}$.
- Then χ is a rational point on $\operatorname{Trop}(\mathcal{V}^{\leq q}(X)) = \overline{\nu_X(\mathcal{V}^{\leq q}(X;\mathbb{K}))}.$
- Conversely, all rational points on $\operatorname{Trop}(\mathcal{V}^{\leq q}(X))$ are of the form $\nu_X(\rho) = v \circ \rho$, for some $\rho \in \mathcal{V}^{\leq q}(X, \mathbb{K})$.
- Finally, assume that χ ≠ 0, so that χ represents an (arbitrary) rational point in S(Trop(V^{≤q}(X)).
- By the previous theorem, $\chi \in \Sigma^q(X, \mathbb{Z})^c$.
- But the rational points are dense in $S(\operatorname{Trop}(\mathcal{V}^{\leq q}(X)))$, and $\Sigma^{q}(X,\mathbb{Z})^{c}$ is closed in S(X), and so we're done.

Alex Suciu

GROUPS AND TROPICAL GEOMETH

COROLLARY

$$\begin{split} \Sigma^{q}(X,\mathbb{Z}) &\subseteq S(\mathsf{Trop}(\mathcal{V}^{\leqslant q}(X)))^{c} \subseteq S(\tau_{1}^{\mathbb{R}}(\mathcal{V}^{\leqslant q}(X)))^{c}.\\ \Sigma^{1}(G) &\subseteq -S(\mathsf{Trop}(\mathcal{V}^{1}(G)))^{c} \subseteq S(\tau_{1}^{\mathbb{R}}(\mathcal{V}^{1}(G)))^{c}. \end{split}$$

COROLLARY

If $\mathcal{V}^{\leq q}(X)$ contains a component of $\operatorname{Char}(X)$, then $\Sigma^{q}(X,\mathbb{Z}) = \emptyset$.

THEOREM

Let $f_{\alpha}: G \to G_{\alpha}$ be a finite collection of epimorphisms. If each $\mathcal{V}^{1}(G_{\alpha})$ contains a component of $\mathbb{T}_{G_{\alpha}}$, then

$$\Sigma^{1}(G) \subseteq \left(\bigcup_{\alpha} S(f_{\alpha}^{*}(H^{1}(G_{\alpha};\mathbb{R})))\right)^{c}.$$

The Alexander polynomial

- Let $H = G_{ab}/ \operatorname{tors}(G_{ab})$ be the maximal torsion-free abelian quotient of $G = \pi_1(X)$ and $q: X^H \to X$ the respective cover.
- Set $A_X := H_1(X^H; q^{-1}(x_0), \mathbb{Z})$, viewed as a $\mathbb{Z}[H]$ -module.
- Let E₁(A_X) ⊆ Z[H] be the ideal of codimension 1 minors in a presentation for A_X.
- Δ_X := gcd(E₁(A_X)) ∈ ℤ[H] is the Alexander polynomial of X. It only depends on G, so also write it as Δ_G.
- Suppose $I_H^p \cdot (\Delta_G) \subseteq E_1(A_G)$, for some $p \ge 0$. Then

$$\mathcal{V}^1(X) \cap \mathbb{T}^0_{\mathcal{G}} = \{1\} \cup V(\Delta_{\mathcal{G}}).$$

This condition is satisfied if G is a 1-relator group, or G = π₁(M), where M is a closed, orientable 3-manifold with empty or toroidal boundary (C. McMullen, D. Eisenbud–W. Neumann).

- Let $Newt(\Delta_G) \subset H_1(G; \mathbb{R})$ be the Newton polytope of Δ_G .
- Given φ ∈ H¹(G; Z) ≃ Hom(H, Z), its Alexander norm, ||φ||_A, is the length of φ(Newt(Δ_G)).
- This defines a semi-norm on $H^1(G; \mathbb{R})$, with unit ball

 $B_{\mathcal{A}} = \{ \phi \in H^1(G; \mathbb{R}) \mid \|\phi\|_{\mathcal{A}} \leq 1 \}.$

• If Δ_G is symmetric (i.e., invariant under $t_i \mapsto t_i^{-1}$), then B_A is, up to a scale factor of 1/2, the polar dual of the Newton polytope of Δ_G ,

 $2B_A = \operatorname{Newt}(\Delta_G)^\circ.$

PROPOSITION

If Δ_G is symmetric and $I_H^p \cdot (\Delta_G) \subseteq E_1(A_G)$, for some $p \ge 0$, then

$$\Sigma^1(G) \subseteq \bigcup_{F \text{ an open facet of } B_A} S(F).$$

Two-generator, one-relator groups

Let G = ⟨x, y | r⟩, with b₁(G) = 2. In 1987, K. Brown gave a combinatorial algorithm for computing Σ¹(G); see Friedl–Tillmann (2020) for a modern approach.

EXAMPLE

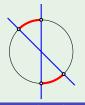
• Let
$$G = \langle a, b | b^2 (ab^{-1})^2 a^{-2} \rangle$$
.

• Then $\Sigma^1(G) = S^1 \setminus \{(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}), (0, -1), (-1, 0)\}.$

• On the other hand,
$$\Delta_G = a + b + 1$$
.

• Thus, $\Sigma^1(G) = -S(\operatorname{Trop}(V(\Delta_G)))^c$, though $\tau_1 \mathcal{V}^1(G) = \{0\}$.

EXAMPLE



- Let $G = \langle a, b \mid a^2 b a^{-1} b a^2 b a^{-1} b^{-3} a^{-1} b a^2 b a^{-1} b a b^{-1} a^{-2} b^{-1} a b^{-1} a^{-2} b^{-1} a b^{3} a b^{-1} a^{-2} b^{-1} a b^{-1} a^{-1} b \rangle$.
- Then Δ_G = (a-1)(ab-1), and so S(Trop(V(Δ_G))) consists of two pairs of points.
- Yet Σ¹(G) consists of two open arcs joining those points.

ALEX SUCIU

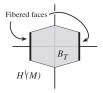
GROUPS AND TROPICAL GEOMETRY

Sydney 9 Feb 2023 23 / 32

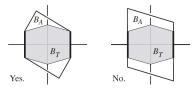
Compact 3-manifolds

- Let M be a compact, connected, orientable 3-manifold with $b_1(M) > 0$.
- A non-zero class $\phi \in H^1(M; \mathbb{Z}) = \text{Hom}(\pi_1(M), \mathbb{Z})$ is *fibered* if there exists a fibration $p: M \to S^1$ such that the induced map $p_*: \pi_1(M) \to \pi_1(S^1) = \mathbb{Z}$ coincides with ϕ .
- The Thurston norm ||φ||_T of a class φ ∈ H¹(M; Z) is the infimum of -χ(Ŝ), where S runs though all the properly embedded, oriented surfaces in M dual to φ, and Ŝ denotes the result of discarding all components of S which are disks or spheres.
- Thurston showed that $\|-\|_{\mathcal{T}}$ defines a seminorm on $H^1(M; \mathbb{Z})$, which can be extended to a continuous seminorm on $H^1(M; \mathbb{R})$.
- The unit norm ball, $B_T = \{\phi \in H^1(M; \mathbb{R}) \mid \|\phi\|_T \leq 1\}$, is a rational polyhedron with finitely many sides and symmetric in the origin.

There are facets of B_T , called the *fibered faces* (coming in antipodal pairs), so that a class $\phi \in H^1(M;\mathbb{Z})$ fibers if and only if it lies in the cone over the interior of a fibered face.



- Bieri, Neumann, and Strebel showed that the BNS invariant of $G = \pi_1(M)$ is the projection onto S(G) of the open fibered faces of the Thurston norm ball B_T ; in particular, $\Sigma^1(G) = -\Sigma^1(G)$.
- Under some mild assumptions, McMullen showed that $\|\phi\|_A \leq \|\phi\|_T$, leading to an upper bound for $\Sigma_1(G)$ in terms of B_A , explained by Dunfield, as follows:



THEOREM

Let *M* be a compact, connected, orientable, 3-manifold with empty or toroidal boundary. Set $G = \pi_1(M)$ and assume $b_1(M) \ge 2$. Then

- (1) Trop $(\mathcal{V}^1(G) \cap \mathbb{T}_G^0)$ is the positive-codimension skeleton of $\mathcal{F}(B_A)$, the face fan of the unit ball in the Alexander norm.
- (2) (Partly recovers McMullen's theorem) $\Sigma^1(G)$ is contained in the union of the open cones on the facets of B_A .

Example: Let M be Seifert manifold with

- Orientable base surface of genus g.
- Exceptional fibers $(\alpha_1, \beta_1), \ldots, (\alpha_r, \beta_r)$.
- Orbifold Euler number $e = -\sum_{i=1}^{r} \beta_i / \alpha_i$.
- $\theta(\alpha) = \alpha_1 \cdots \alpha_r / \operatorname{lcm}(\alpha_1, \ldots, \alpha_r).$

PROPOSITION

Suppose $e \neq 0$ and either g > 1, or g = 1 and $\theta(\alpha) > 1$. Then $\Sigma^1(M) = \emptyset$.

26/32

Kähler manifolds

- Let M be a compact Kähler manifold. Then M is formal.
- (Beauville, Catanese, Green–Lazarsfeld, Simpson, Arapura, B. Wang)
 𝒱ⁱ(𝔥) are finite unions of torsion translates of algebraic subtori of H¹(𝔥, ℂ*).

THEOREM (DELZANT 2010)

$$\Sigma^{1}(M) = S(M) \setminus \bigcup_{\alpha} S(f_{\alpha}^{*}(H^{1}(C_{\alpha};\mathbb{R}))),$$

where the union is taken over those orbifold fibrations $f_{\alpha}: M \to C_{\alpha}$ with the property that either $\chi(C_{\alpha}) < 0$, or $\chi(C_{\alpha}) = 0$ and f_{α} has some multiple fiber.

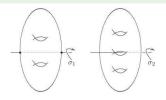
In degree 1, we may recast this result in the tropical setting, as follows.

COROLLARY

$$\Sigma^1(M) = S(\operatorname{Trop}(\mathcal{V}^1(M))^c.$$

EXAMPLE (THE CATANESE-CILIBERTO-MENDES LOPES SURFACE)

Let C_1 be a smooth curve of genus 2 with an elliptic involution σ_1 , • and C_2 a curve of genus 3 with a free involution σ_2 .



- Then $\Sigma_1 = C_1/\sigma_1$ is a curve of genus 1, $\Sigma_2 = C_2/\sigma_2$ is a curve of genus 2, and $M = (C_1 \times C_2)/\sigma_1 \times \sigma_2$ is a smooth, complex projective surface with $H_1(M; \mathbb{Z}) = \mathbb{Z}^6$.
- Projection onto the first coordinate yields an orbifold fibration $f_1: M \to \Sigma_1$ with two multiple fibers, each of multiplicity 2. The other projection defines a smooth fibration $f_2: M \to \Sigma_2$.
- We have $\mathcal{V}^1(M) = \{t \mid t_1 = t_2 = 1\} \cup \{t_4 = t_5 = t_6 = 1, t_3 = -1\}$, with the two components obtained by pullback along f_1 and f_2 .

• Thus, $\Sigma^1(M) = S^5 \setminus S(\{x_3 = \cdots = x_6 = 0\} \cup \{x_1 = x_2 = 0\}).$

Hyperplane arrangements

- Let A = {H₁,..., H_n} be an (essential, central) arrangement of hyperplanes in C^d.
- Its complement, M(A) ⊂ (C*)^d, is a smooth, quasi-projective Stein manifold; thus, it has the homotopy type of a finite, *d*-dimensional CW-complex.
- $H^*(M(\mathcal{A});\mathbb{Z})$ is the Orlik–Solomon algebra of $L(\mathcal{A})$.
- (Arapura) The characteristic varieties Vⁱ(A) := Vⁱ(M(A)) ⊂ (C*)ⁿ. are unions of translated subtori.
- Consequently, $\operatorname{Trop}(\mathcal{V}^{i}(\mathcal{A})) = -\operatorname{Trop}(\mathcal{V}^{i}(\mathcal{A})).$
- (Denham–S.–Yuzvinsky 2016/17) M(A) is an "abelian duality space"; thus, its jump loci propagate: V¹(A) ⊆ ··· ⊆ V^{d−1}(A).
- (Arnol'd, Brieskorn) $M(\mathcal{A})$ is formal. Thus, $\tau_1(\mathcal{V}^i(\mathcal{A})) = \mathcal{R}^i(\mathcal{A})$.

THEOREM

Let *M* be the complement of an arrangement of *n* hyperplanes in \mathbb{C}^d . Then, for each $1 \leq q \leq d - 1$:

- $\operatorname{Trop}(\mathcal{V}^q(M))$ is the union of a subspace arrangement in \mathbb{R}^n .
- $\Sigma^q(M,\mathbb{Z}) \subseteq S(\operatorname{Trop}(\mathcal{V}^q(M)))^c$.

QUESTION (MFO MINIWORKSHOP 2007)Given an arrangement \mathcal{A} , do we have $\Sigma^1(\mathcal{M}(\mathcal{A})) = S(\mathcal{R}^1(\mathcal{A}, \mathbb{R}))^c$?(*)

EXAMPLE (KOBAN-MCCAMMOND-MEIER 2013)

- Let \mathcal{A} be the braid arrangement in \mathbb{C}^n , defined by $\prod_{1 \leq i < j \leq n} (z_i - z_j) = 0. \text{ Then } M(\mathcal{A}) = \text{Conf}(n, \mathbb{C}) \simeq \mathcal{K}(P_n, 1).$
- Answer to (\star) is yes: $\Sigma^1(\mathcal{M}(\mathcal{A}))$ is the complement of the union of $\binom{n}{3} + \binom{n}{4}$ planes in $\mathbb{C}^{\binom{n}{2}}$, intersected with the unit sphere.

EXAMPLE

- Let \mathcal{A} be the "deleted B₃" arrangement, defined by $z_1z_2(z_1^2-z_2^2)(z_1^2-z_2^2)(z_2^2-z_3^2)=0.$
- (S. 2002) $\mathcal{V}^1(\mathcal{A})$ contains a (1-dimensional) translated torus $\rho \cdot \mathcal{T}$.
- Thus, $\operatorname{Trop}(\rho \cdot T) = \operatorname{Trop}(T)$ is a line in \mathbb{C}^8 which is *not* contained in $\mathcal{R}^1(\mathcal{A}, \mathbb{R})$. Hence, the answer to (*) is no.

QUESTION (REVISED)

 $\Sigma^{1}(M(\mathcal{A})) = S(\operatorname{Trop}(\mathcal{V}^{1}(\mathcal{A}))^{c}?$

 $(\star\star)$

A.I. Suciu, Sigma-invariants and tropical varieties, Math.Annalen 380 (2021), 1427–1463.