The University of Sydney

MATH3906 Representation Theory

(http://www.maths.usyd.edu.au/u/UG/IM/MATH3906/)

Semester2, 1997

Lecturer: R. Howlett

Tutorial 1

- 1. If A is an $m \times n$ matrix over the field \mathbb{C} (complex numbers) then \overline{A} is the $m \times n$ matrix whose entries are the complex conjugates of the entries of A.
 - (i) Show that an arbitrary complex matrix can be written as P + iQ with P and Q real.
 - (*ii*) A is Hermitian if $\overline{A} = A^{t}$ (transpose of A). Show that A is Hermitian if and only if its real part (P) is symmetric and its imaginary part (Q) is skew-symmetric.
 - (*iii*) Show that if A is Hermitian then $\overline{v}^{t}Av$ is a real number for all complex column vectors v (of appropriate size).
 - (*iv*) A Hermitian matrix A is said to be it positive definite if $\overline{v}^t A v > 0$ for all nonzero v. Prove that positive definite matrices are nonsingular.
 - (v) Show that a Hermitian matrix A is positive definite if and only if there exists a nonsingular B such that $A = \overline{B}^{t}B$. (The "if" part is OK. For the "only if" you have to use row and column operations. Start by showing that the diagonal entries of A are real and positive.)
 - (vi) Show that the sum of two positive definite matrices is positive definite.
 - (vii) Let G be a finite subgroup of $\operatorname{GL}_n(\mathbb{C})$. Prove that there exists a positive definite matrix A such that $\overline{Y}^t A Y = A$ for all $Y \in G$. (Hint: Try $A = \sum_{X \in G} \overline{X}^t X$.)
 - (viii) Prove that if G is a finite subgroup of $\operatorname{GL}_n(\mathbb{C})$ then there exists a nonsingular B such that BXB^{-1} is unitary for all $X \in G$. (A matrix is unitary if its inverse is the transpose of its conjugate.)

Solution.

- (i) Let A have (r, s)-entry $\alpha_{rs} \in \mathbb{C}$. Writing $\alpha_{rs} = \beta_{rs} + i\gamma_{rs}$ with $\beta_{rs}, \gamma_{rs} \in \mathbb{R}$ we see that A = P + iQ where P and Q have (r, s)-entries β_{rs} and γ_{rs} (respectively).
- (*ii*) Since $(\overline{P+iQ})^{t} = (P-iQ)^{t} = P^{t} iQ^{t}$ we see that A = P + iQ is Hermitian if and only if $P^{t} = P$ and $Q^{t} = -Q$.
- (*iii*) Recall that transposing reverses products; that is, $(XY)^{t} = Y^{t}X^{t}$ whenever the left hand side is defined. (Note that this implies that $(A^{-1})^{t} = (A^{t})^{-1}$

whenever A is nonsingular. It is also clear that taking complex conjugates preserves sums and products, and commutes with the maps $A \mapsto A^{-1}$ and $A \mapsto A^{t}$.) Let v be an arbitrary column vector and let $z = \overline{v}^{t}Av$. Since z is a 1×1 matrix we have $\overline{z}^{t} = \overline{z}$, and so

$$\overline{z} = \left(\overline{(\overline{v}^{\mathrm{t}}Av)}\right)^{\mathrm{t}} = \overline{v}^{\mathrm{t}}\overline{A}^{\mathrm{t}}v = \overline{v}^{\mathrm{t}}Av = z.$$

Thus z is real.

- (*iv*) Suppose that A is positive definite. Note first that since A is Hermitian it must be square (as its transpose is the same shape as itself). Now let v be in the nullspace of A; that is, v is a column vector such that Av = 0. Then $\overline{v}^{t}Av = \overline{v}0 = 0$, and positive definiteness of A gives v = 0. So the nullspace of A is $\{0\}$; this implies that A is nonsingular.
- (v) Recall that if $v \in \mathbb{C}^n$ and the k^{th} entry of v is $x_k + iy_k$ (for k = 1, 2, ..., n) then $\overline{v}^{\text{t}}v = \sum_{k=1}^n x_k^2 + y_k^2$, which is real, nonnegative, and zero only if v = 0. This shows that the identity matrix is positive definite. Suppose now that $A = \overline{B}^{\text{t}}CB$ where $B, C \in \text{GL}_n(\mathbb{C})$ and C is positive definite, and let $v \in \mathbb{C}^n$ be nonzero. Then $Bv \neq 0$, since B is nonsingular, and since C is positive definite it follows that $(\overline{Bv})^{\text{t}}C(Bv) > 0$. But $\overline{v}^{\text{t}}Av = (\overline{Bv})^{\text{t}}C(Bv)$, and since this is positive for all nonzero v it follows that A is positive definite. Putting C = I gives the "if" part.

Let A be an arbitrary positive definite $n \times n$ Hermitian matrix. We use induction on n to prove that A has the desired form; note that in the case n = 1 the matrix A is simply a positive real number, and we may take $B = \sqrt{A}$. Let e_l be the l^{th} column of the identity matrix (so that e_1, e_2, \ldots, e_n comprise the standard basis of \mathbb{C}^n). The (l, l)-entry of A is $\overline{e}_l^{\text{t}} A e_l$, which must be positive since A is positive definite. Thus we can write

$$A = \begin{pmatrix} a & \overline{x^{t}} \\ x & \overline{A'} \end{pmatrix}$$

where a is real and positive, $x \in \mathbb{C}^{n-1}$ and A' is some $(n-1) \times (n-1)$ Hermitian matrix. Now set

$$D = \begin{pmatrix} \sqrt{a^{-1}} & 0 \\ -a^{-1}\tilde{x} & I \end{pmatrix}$$

and observe that D is nonsingular; indeed, as a row operation matrix the effect of D is to divide the first row by \sqrt{a} and add multiples of the first row to the others. We see that the first column of DA is $(\sqrt{a})e_1$. Now postmultiplication by \overline{D}^t performs a corresponding sequence of column operations, and we find that

$$DA\overline{D}^{t} = \begin{pmatrix} 1 & 0\\ 0 & A'' \end{pmatrix}.$$

$$A = D^{-1} \begin{pmatrix} 1 & 0 \\ 0 & Y \end{pmatrix}^{\mathsf{t}} \begin{pmatrix} 1 & 0 \\ 0 & Y \end{pmatrix} (\overline{D}^{\mathsf{t}})^{-1} = \overline{B}^{\mathsf{t}} B$$

where $B = \begin{pmatrix} 1 & 0 \\ 0 & Y \end{pmatrix} (\overline{D}^{t})^{-1}$.

(vi) If $A, B \in GL_n(\mathbb{C})$ are positive definite and $0 \neq v \in \mathbb{C}^n$ then

$$\overline{v}^{t}(A+B)v = \overline{v}^{t}Av + \overline{v}^{t}Bv > 0$$

(since $\overline{v}^{t}Av > 0$ and $\overline{v}^{t}Bv > 0$).

- (vii) We see that $\overline{Y}^{t}AY = \sum_{X \in G} (\overline{Y}^{t}\overline{X}^{t})(XY) = \sum_{Z \in G} \overline{Z}^{t}Z = A$ (since Z = XY runs through all elements of G as X does).
- (viii) By (vii) we can find a positive definite A such that $\overline{Y}^{t}AY = A$ for all $Y \in G$, and by (v) we can put $A = \overline{B}^{t}B$. But the equation $\overline{Y}^{t}\overline{B}^{t}BY = \overline{B}^{t}B$ can be written as $BY^{-1}B^{-1} = (\overline{B}^{-1})^{t}\overline{Y}^{t}\overline{B}^{t}$, or, equivalently,

$$(BYB^{-1})^{-1} = (\overline{BYB^{-1}})^{\mathrm{t}},$$

showing that BYB^{-1} is unitary for all $Y \in G$.

2. Recall that the dot product on \mathbb{C}^n is defined by $u \cdot v = \overline{u}^t v$, and that unitary matrices preserve it (in the sense that $(Xu) \cdot (Xv) = u \cdot v$ for all u and v if X is unitary). Recall also that if U is a subspace of \mathbb{C}^n then $\mathbb{C}^n = U \oplus U^{\perp}$, where

$$U^{\perp} = \{ v \in \mathbb{C}^n \mid u \cdot v = 0 \text{ for all } u \in U \}$$

(the orthogonal complement of U).

Let G be a finite group of $n \times n$ unitary matrices, and let U be a G-invariant subspace of \mathbb{C}^n . (That is, if $X \in G$ and $u \in U$ then $Xu \in U$.) Prove that the orthogonal complement of U is also G-invariant.

Solution.

Let $v \in U^{\perp}$ and let $X \in G$. Then for all $u \in U$ we have that $X^{-1}u \in U$ (since $X^{-1} \in G$ and U is G-invariant), and so

$$\begin{aligned} (Xv) \cdot u &= Xv \cdot X(X^{-1}u) \\ &= v \cdot X^{-1}u \quad \text{(since } X \text{ is unitary)} \\ &= 0 \quad \text{(since } v \in U^{\perp}\text{)}. \end{aligned}$$

Hence $Xv \in U^{\perp}$, and since this holds for all $X \in G$ and $v \in U^{\perp}$ we have shown that U^{\perp} is G-invariant.

3. Let *H* and *N* be groups and $\phi: H \to \operatorname{Aut}(N)$ a homomorphism. Define

$$H \ltimes N = \{ (h, x) \mid h \in H, x \in N \}$$

with multiplication given by

$$(h, x)(k, y) = (hk, x^{\phi(k)}y)$$

for all $h, k \in H$ and $x, y \in N$. Prove that this makes $H \ltimes N$ into a group. (Such a group is called a *semidirect product* of N by H. If ϕ is the trivial homomorphism $(h \mapsto 1 \in \operatorname{Aut}(N) \text{ for all } h \in H)$ we get the direct product of N and H.)

Solution.

Since ϕ is a homomorphism we have $\phi(1) = 1$, where the 1 on the left hand side is the identity element of H and the 1 on the right hand side is the identity automorphism of N. Hence our multiplication rule gives

$$(h, x)(1, 1) = (h1, x^{\phi(1)}1 = (h, x)$$

Since all automorphisms of N map 1 to 1 we also find that

$$(1,1)(h,x) = (1h, 1^{\phi(h)}x) = (h,x).$$

So $H \ltimes N$ has an identity element. The following calculation proves associativity:

$$\begin{split} \big((h,x)(k,y)\big)(l,z) &= (hk,x^{\phi(k)}y)(l,z) = (hkl,(x^{\phi(k)}y)^{\phi(l)}z)\\ (hkl,x^{\phi(k)\phi(l)}y^{\phi(l)}z) &= (hkl,x^{\phi(kl)}y^{\phi(l)}z)\\ &= (h,x)(kl,y^{\phi(l)}z) = (h,x)\big((k,y)(l,z)\big). \end{split}$$

Let (h, x) be an arbitrary element of $H \ltimes N$, and let $k = h^{-1}$ and $y = (x^{-1})^{\phi(k)}$. Since $(x^{-1})^{\phi(k)} = (x^{\phi(k)})^{-1}$ we see that $(h, x)(k, y) = (hk, x^{\phi(k)}y) = (1, 1)$. Moreover, since $\phi(k)\phi(h) = \phi(hk) = 1$ we also have that $y^{\phi(h)} = x^{-1}$, and $(k, y)(h, x) = (kh, y^{\phi(h)}x = (1, 1)$, so that (k, y) is definitely the inverse of (h, x).