The University of Sydney
MATH3906 Representation Theory
(http://www.maths.usyd.edu.au/u/UG/IM/MATH3906/)

Tutorial 1

1. If A is an $m \times n$ matrix over the field \mathbb{C} (complex numbers) then \bar{A} is the $m \times n$ matrix whose entries are the complex conjugates of the entries of A.
(i) Show that an arbitrary complex matrix can be written as $P+i Q$ with P and Q real.
(ii) A is Hermitian if $\bar{A}=A^{\mathrm{t}}$ (transpose of A). Show that A is Hermitian if and only if its real part (P) is symmetric and its imaginary part (Q) is skew-symmetric.
(iii) Show that if A is Hermitian then $\bar{v}^{\mathrm{t}} A v$ is a real number for all complex column vectors v (of appropriate size).
(iv) A Hermitian matrix A is said to be it positive definite if $\bar{v}^{\mathrm{t}} A v>0$ for all nonzero v. Prove that positive definite matrices are nonsingular.
(v) Show that a Hermitian matrix A is positive definite if and only if there exists a nonsingular B such that $A=\bar{B}^{\mathrm{t}} B$. (The "if" part is OK. For the "only if" you have to use row and column operations. Start by showing that the diagonal entries of A are real and positive.)
(vi) Show that the sum of two positive definite matrices is positive definite.
(vii) Let G be a finite subgroup of $\mathrm{GL}_{n}(\mathbb{C})$. Prove that there exists a positive definite matrix A such that $\bar{Y}^{\mathrm{t}} A Y=A$ for all $Y \in G$. (Hint: Try $A=\sum_{X \in G} \bar{X}^{\mathrm{t}} X$.)
(viii) Prove that if G is a finite subgroup of $\mathrm{GL}_{n}(\mathbb{C})$ then there exists a nonsingular B such that $B X B^{-1}$ is unitary for all $X \in G$. (A matrix is unitary if its inverse is the transpose of its conjugate.)

Solution.
(i) Let A have (r, s)-entry $\alpha_{r s} \in \mathbb{C}$. Writing $\alpha_{r s}=\beta_{r s}+i \gamma_{r s}$ with $\beta_{r s}, \gamma_{r s} \in \mathbb{R}$ we see that $A=P+i Q$ where P and Q have (r, s)-entries $\beta_{r s}$ and $\gamma_{r s}$ (respectively).
(ii) Since $(\overline{P+i Q})^{\mathrm{t}}=(P-i Q)^{\mathrm{t}}=P^{\mathrm{t}}-i Q^{\mathrm{t}}$ we see that $A=P+i Q$ is Hermitian if and only if $P^{\mathrm{t}}=P$ and $Q^{\mathrm{t}}=-Q$.
(iii) Recall that transposing reverses products; that is, $(X Y)^{\mathrm{t}}=Y^{\mathrm{t}} X^{\mathrm{t}}$ whenever the left hand side is defined. (Note that this implies that $\left(A^{-1}\right)^{\mathrm{t}}=\left(A^{\mathrm{t}}\right)^{-1}$
whenever A is nonsingular. It is also clear that taking complex conjugates preserves sums and products, and commutes with the maps $A \mapsto A^{-1}$ and $A \mapsto A^{\mathrm{t}}$.) Let v be an arbitrary column vector and let $z=\bar{v}^{\mathrm{t}} A v$. Since z is a 1×1 matrix we have $\bar{z}^{\mathrm{t}}=\bar{z}$, and so

Thus z is real

(iv) Suppose that A is positive definite. Note first that since A is Hermitian it must be square (as its transpose is the same shape as itself). Now let v be in the nullspace of A; that is, v is a column vector such that $A v=0$. Then $\bar{v}^{\mathrm{t}} A v=\bar{v} 0=0$, and positive definiteness of A gives $v=0$. So the nullspace of A is $\{0\}$; this implies that A is nonsingular.
(v) Recall that if $v \in \mathbb{C}^{n}$ and the $k^{\text {th }}$ entry of v is $x_{k}+i y_{k}$ (for $k=1,2, \ldots, n$) then $\bar{v}^{\mathrm{t}} v=\sum_{k=1}^{n} x_{k}^{2}+y_{k}^{2}$, which is real, nonnegative, and zero only if $v=0$. This shows that the identity matrix is positive definite. Suppose now that $A=\bar{B}^{\mathrm{t}} C B$ where $B, C \in \mathrm{GL}_{n}(\mathbb{C})$ and C is positive definite, and let $v \in \mathbb{C}^{n}$ be nonzero. Then $B v \neq 0$, since B is nonsingular, and since C is positive definite it follows that $(\overline{B v})^{\mathrm{t}} C(B v)>0$. But $\bar{v}^{\mathrm{t}} A v=(\overline{B v})^{\mathrm{t}} C(B v)$, and since this is positive for all nonzero v it follows that A is positive definite. Putting $C=I$ gives the "if" part.
Let A be an arbitrary positive definite $n \times n$ Hermitian matrix. We use induction on n to prove that A has the desired form; note that in the case $n=1$ the matrix A is simply a positive real number, and we may take $B=\sqrt{A}$. Let e_{l} be the $l^{\text {th }}$ column of the identity matrix (so that $e_{1}, e_{2}, \ldots, e_{n}$ comprise the standard basis of $\left.\mathbb{C}^{n}\right)$. The (l, l)-entry of A is $\bar{e}_{l}{ }^{\mathrm{t}} A e_{l}$, which must be positive since A is positive definite. Thus we can write

$$
A=\left(\begin{array}{cc}
a & \overline{x^{\mathrm{t}}} \\
x & \overline{A^{\prime}}
\end{array}\right)
$$

where a is real and positive, $\underset{\sim}{x} \in \mathbb{C}^{n-1}$ and A^{\prime} is some $(n-1) \times(n-1)$ Hermitian matrix. Now set

$$
D=\left(\begin{array}{cc}
\sqrt{a^{-1}} & 0 \\
-a^{-1} \underset{\sim}{x} & I
\end{array}\right)
$$

and observe that D is nonsingular; indeed, as a row operation matrix the effect of D is to divide the first row by \sqrt{a} and add multiples of the first row to the others. We see that the first column of $D A$ is $(\sqrt{a}) e_{1}$. Now postmultiplication by \bar{D}^{t} performs a corresponding sequence of column operations, and we find that

$$
D A \bar{D}^{\mathrm{t}}=\left(\begin{array}{cc}
1 & 0 \\
0 & A^{\prime \prime}
\end{array}\right)
$$

Since A was positive definite, this must be too. Hence $A^{\prime \prime}$ is a $(n-1) \times(n-1)$ positive definite matrix. By induction we can write $A^{\prime \prime}=\bar{Y}^{\mathrm{t}} Y$, and this gives

$$
A=D^{-1}\left(\begin{array}{cc}
1 & 0 \\
0 & Y
\end{array}\right)^{\mathrm{t}}\left(\begin{array}{cc}
1 & 0 \\
0 & Y
\end{array}\right)\left(\bar{D}^{\mathrm{t}}\right)^{-1}=\bar{B}^{\mathrm{t}} B
$$

where $B=\left(\begin{array}{ll}1 & 0 \\ 0 & Y\end{array}\right)\left(\bar{D}^{\mathrm{t}}\right)^{-1}$.
(vi) If $A, B \in \mathrm{GL}_{n}(\mathbb{C})$ are positive definite and $0 \neq v \in \mathbb{C}^{n}$ then

$$
\bar{v}^{\mathrm{t}}(A+B) v=\bar{v}^{\mathrm{t}} A v+\bar{v}^{\mathrm{t}} B v>0
$$

(since $\bar{v}^{\mathrm{t}} A v>0$ and $\bar{v}^{\mathrm{t}} B v>0$).
(vii) We see that $\bar{Y}^{\mathrm{t}} A Y=\sum_{X \in G}\left(\bar{Y}^{\mathrm{t}} \bar{X}^{\mathrm{t}}\right)(X Y)=\sum_{Z \in G} \bar{Z}^{\mathrm{t}} Z=A$ (since $Z=X Y$ runs through all elements of G as X does).
(viii) By (vii) we can find a positive definite A such that $\bar{Y}^{\mathrm{t}} A Y=A$ for all $Y \in G$, and by (v) we can put $A=\bar{B}^{\mathrm{t}} B$. But the equation $\bar{Y}^{\mathrm{t}} \bar{B}^{\mathrm{t}} B Y=\bar{B}^{\mathrm{t}} B$ can be written as $B Y^{-1} B^{-1}=\left(\bar{B}^{-1}\right)^{\mathrm{t}} \bar{Y}^{\mathrm{t}} \bar{B}^{\mathrm{t}}$, or, equivalently,

$$
\left(B Y B^{-1}\right)^{-1}=\left(\overline{B Y B^{-1}}\right)^{\mathrm{t}}
$$

showing that $B Y B^{-1}$ is unitary for all $Y \in G$.
2. Recall that the dot product on \mathbb{C}^{n} is defined by $u \cdot v=\bar{u}^{\mathrm{t}} v$, and that unitary matrices preserve it (in the sense that $(X u) \cdot(X v)=u \cdot v$ for all u and v if X is unitary). Recall also that if U is a subspace of \mathbb{C}^{n} then $\mathbb{C}^{n}=U \oplus U^{\perp}$, where

$$
U^{\perp}=\left\{v \in \mathbb{C}^{n} \mid u \cdot v=0 \text { for all } u \in U\right\}
$$

(the orthogonal complement of U).
Let G be a finite group of $n \times n$ unitary matrices, and let U be a G-invariant subspace of \mathbb{C}^{n}. (That is, if $X \in G$ and $u \in U$ then $X u \in U$.) Prove that the orthogonal complement of U is also G-invariant.

Solution.

Let $v \in U^{\perp}$ and let $X \in G$. Then for all $u \in U$ we have that $X^{-1} u \in U$ (since $X^{-1} \in G$ and U is G-invariant), and so

$$
\begin{aligned}
(X v) \cdot u & =X v \cdot X\left(X^{-1} u\right) \\
& =v \cdot X^{-1} u \quad(\text { since } X \text { is unitary }) \\
& =0 \quad\left(\text { since } v \in U^{\perp}\right)
\end{aligned}
$$

Hence $X v \in U^{\perp}$, and since this holds for all $X \in G$ and $v \in U^{\perp}$ we have shown that U^{\perp} is G-invariant.
3. Let H and N be groups and $\phi: H \rightarrow \operatorname{Aut}(N)$ a homomorphism. Define

$$
H \ltimes N=\{(h, x) \mid h \in H, x \in N\}
$$

with multiplication given by

$$
(h, x)(k, y)=\left(h k, x^{\phi(k)} y\right)
$$

for all $h, k \in H$ and $x, y \in N$. Prove that this makes $H \ltimes N$ into a group. (Such a group is called a semidirect product of N by H. If ϕ is the trivial homomorphism ($h \mapsto 1 \in \operatorname{Aut}(N)$ for all $h \in H$) we get the direct product of N and H.)
Solution.
Since ϕ is a homomorphism we have $\phi(1)=1$, where the 1 on the left hand side is the identity element of H and the 1 on the right hand side is the identity automorphism of N. Hence our multiplication rule gives

$$
(h, x)(1,1)=\left(h 1, x^{\phi(1)} 1=(h, x) .\right.
$$

Since all automorphisms of N map 1 to 1 we also find that

$$
(1,1)(h, x)=\left(1 h, 1^{\phi(h)} x\right)=(h, x)
$$

So $H \ltimes N$ has an identity element. The following calculation proves associativity:

$$
\begin{gathered}
((h, x)(k, y))(l, z)=\left(h k, x^{\phi(k)} y\right)(l, z)=\left(h k l,\left(x^{\phi(k)} y\right)^{\phi(l)} z\right) \\
\left(h k l, x^{\phi(k) \phi(l)} y^{\phi(l)} z\right)=\left(h k l, x^{\phi(k l)} y^{\phi(l)} z\right) \\
=(h, x)\left(k l, y^{\phi(l)} z\right)=(h, x)((k, y)(l, z)) .
\end{gathered}
$$

Let (h, x) be an arbitrary element of $H \ltimes N$, and let $k=h^{-1}$ and $y=\left(x^{-1}\right)^{\phi(k)}$. Since $\left(x^{-1}\right)^{\phi(k)}=\left(x^{\phi(k)}\right)^{-1}$ we see that $(h, x)(k, y)=\left(h k, x^{\phi(k)} y\right)=(1,1)$. Moreover, since $\phi(k) \phi(h)=\phi(h k)=1$ we also have that $y^{\phi(h)}=x^{-1}$, and $(k, y)(h, x)=\left(k h, y^{\phi(h)} x=(1,1)\right.$, so that (k, y) is definitely the inverse of (h, x).

