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1. Use orthogonality of coordinate functions to prove that if χ and φ are
characters of irreducible complex representations of G then

1
|G|

∑
g∈G

χ(g)φ(g) =
{

1 if χ = φ
0 if χ 6= φ.

(Hint: Choose a full set of irreducible unitary representations R(k)

of G, as in Lecture 9. Since equivalent representations have the
same character, χ(g) =

∑dk

i=1R
(k)
ii (g) and φ(g) =

∑dl

j=1R
(l)
jj (g) for

some k and l.)

Solution.

Let R and S be representations whose characters are χ and φ. If
R(1), R(2), . . . , R(s) are a full set of irreducible unitary representations
of G then R must be equivalent to R(k) and S to R(l) for some k and l.
As in the notes, for each h ∈ {1, 2, . . . , s} and p, m ∈ {1, 2, . . . , dh}
define R(h)

pm:G→ C by the rule that R(h)
pmg is the (p,m)-entry of R(h)g

(for each g ∈ G), and let χ(h) =
∑dh

m=1R
(h)
mm (the character of R(h)).

Since equivalent representations have the same character we obtain
χ = χ(k) and φ = χ(l). Now orthogonality of coordinate functions
gives

1
|G|

∑
g∈G

(R(l)
pmg)(R

(k)
qn g) = (1/dk)δklδpqδmn,

and putting p = m and q = n and summing over m and n gives

1
|G|

∑
g∈G

( dl∑
m=1

(R(l)
mmg)

)( dk∑
n=1

(R(k)
nng)

)
= (1/dk)δkl

dl∑
m=1

dk∑
n=1

δmnδmn.

The right hand side is zero unless l = k, in which case it equals 1 (since

2

there are dk nonzero terms in the sum). So

1
|G|

∑
g∈G

χ(l)(g)χ(k)(g) = δkl. (∗)

The left hand side here equals
∑

g∈G φ(g)χ(g). If χ 6= φ then certainly
k 6= l, and so the right hand side is 0. If χ = φ the left hand side can
be written as (1/|G|)

∑
g∈G |χ(g)|2, which is nonzero since all terms

are nonnegative, and |χ(1)|2 6= 0 as χ(1) is the trace of the dl × dl

identity matrix, which is dl. So if χ = φ we must have k = l, and (∗)
gives

∑
g∈G φ(g)χ(g) = 1.

2. Use Exercise 1 to show that if χ is the character of a representation
which is not irreducible then (1/|G|)

∑
g∈G |χ(g)|2 > 1.

Solution.

If a representation R is not irreducible then by Maschke’s Theorem it is
equivalent to the diagonal sum of two other representations, and then
its character will be the sum of the characters of these other representa-
tions. If these in turn are not irreducible then they can also be written
as sums of other characters. As the degrees of the representations are
reduced at each step, and the degree of a representation is always a
positive integer, the process cannot go on indefinitely. Eventually our
original character χ is expressed as a sum ψ1 + ψ2 + · · · + ψn, where
the ψj are characters of irreducible representations. As in Exercise 1,
each ψj must equal one of the χ(k) (and there could be repetitions).
Thus χ =

∑s
k=1mkχ

(k) for some nonnegative integers mk, at least one
of which is nonzero. Now

1
|G|

∑
g∈G

|χ(g)|2 =
1
|G|

∑
g∈G

χ(g)χ(g)

=
s∑

h=1

s∑
k=1

mhmk

|G|
∑
g∈G

χ(h)(g)χ(k)(g) =
s∑

h=1

s∑
k=1

mhmkδhk =
s∑

k=1

m2
k.

The least value this can take is 1. Moreover, this minimum is only
attained when one of the mk’s is 1 and the others all 0, in which case
χ = χ(k) is irreducible. Otherwise (1/|G|)

∑
g∈G |χ(g)|2 > 1.

3. Prove that if λ is a character of G of degree 1 and φ is any character
of G then λφ, defined by (λφ)(g) = λ(g)φ(g) for all g ∈ G, is also a
character of G.



3

Solution.

Let R be a matrix representation with character φ. (Note that λ is
a representation as well as a character, since its degree is 1.) Define
S(g) = λ(g)R(g) for all g ∈ G. Then S is a representation, since for
all g and h in G

S(gh) = λ(gh)R(gh) = λ(g)λ(h)R(g)R(h)
= λ(g)R(g)λ(h)R(h) = S(g)S(h)

(since scalars commute with matrices). Multiplying a matrix by a
scalar clearly multiplies its trace by the same scalar. The trace of
R(g) is χ(g); hence the trace of S(g) is λ(g)χ(g) = (λχ)(g), and the
function g 7→ (λφ)(g) is the character of the representation S.

4. Determine the irreducible characters of S4, given that there are exactly
five of them.

Solution.

Each element of S4 is uniquely expressible in the form σx with σ ∈ S3

and x ∈ K, and each coset of K in S4 is uniquely expressible as σK
with σ ∈ S3. A character χ of S3 becomes a character of S4/K if we
define χ(σK) = χ(σ) for all σ ∈ S3. By Exercise 2 we obtain a char-
acter χ̃ of S4 satisfying χ̃(σx) = χ(σK) = χ(σ) for all σ ∈ S3 and all
x ∈ K. We see that χ̃ must take the same value on elements of K as
it takes at the identity, and the same value on four-cycles as on trans-
positions. (Observe, for instance, that (1, 2, 3, 4) = (1, 3)[(2, 3)(1, 4)].)
Starting with the 1-character of S3 this simply gives the 1-character of
S4, and similarly the sign character of S3 (mapping even permutations
to 1 and odd permutations to −1) gives the sign character of S4. The
irreducible character of S3 of degree 2 yields χ3 of the table below.
The character χ4 was found in Assignment 1, and χ5 is the product of
χ4 and χ2 (see Exercise 1).

1 (1, 2) (1, 2, 3) (1, 2, 3, 4) (1, 2)(3, 4)
χ1 1 1 1 1 1
χ2 1 −1 1 −1 1
χ3 2 0 −1 0 2
χ4 3 1 0 −1 −1
χ5 3 −1 0 1 −1

4

The numbers of elements in the various conjugacy classes are 1, 6, 8, 6
and 3 (taking the classes in the same order as in the table). To calculate
the inner product of a character with itself, multiply the square of the
absolute value of the character on each class by the number of elements
in the class, sum over all the classes and divide by the order of the group
(24 in this case). Thus for χ4 we get

(32 + 6× 12 + 8× 02 + 6× (−1)2 + 3× (−1)2)/24

which is 1. Since each of the χi give 1 they are all irreducible.

5. If A = (aij) is an m × n matrix and B = (bkl) a p × q matrix then
the Kronecker product of A and B is the mp×nq matrix A ×̇B whose
((i− 1)p+ k, (j − 1)q + l)-entry is aijbkl. That is,

A ×̇B =


a11B a12B . . . a1nB
a21B a22B . . . a2nB

...
...

...
am1B am2B . . . amnB

 .

Prove that (A ×̇B)(C ×̇D) = AC ×̇BD, provided that the number of
rows of C (resp. D) equals the number of columns of A (resp. B).

Solution.

By multiplication of partitioned matrices in the usual way we find that
(A ×̇B)(C ×̇D) equals

a11B a12B . . . a1nB
a21B a22B . . . a2nB

...
...

...
am1B am2B . . . amnB



c11D c12D . . . c1rD
c21D c22D . . . c2rD

...
...

...
cn1D cn2D . . . cnrD



=


∑

j a1jcj1BD
∑

j a1jcj2BD . . .
∑

j a1jcjrBD∑
j a2jcj1BD

∑
j a2jcj2BD . . .

∑
j a2jcjrBD

...
...

...∑
j amjcj1BD

∑
j amjcj2BD . . .

∑
j amjcjrBD

 ,

which equals AC ×̇BD, since
∑

j aijcjk is the (i, k)-entry of AC.


