Assignment 2

1. Let $y=(1,2,3)(4,5)$ and $z=(1,4)(2,5,3)$, permutations in $\operatorname{Sym}(5)$. Find six distinct permutations $x \in \operatorname{Sym}(5)$ such that $x^{-1} y x=z$.

Solution.
Given that $y=(1,2,3)(4,5)$, it follows that $x^{-1} y x=\left(1^{x}, 2^{x}, 3^{x}\right)\left(4^{x}, 5^{x}\right)$ (for any $x \in \operatorname{Sym}(5))$. This was explained in the solutions to Computer Tutorial 6. The point is that

$$
\left(1^{x}\right)^{x^{-1} y x}=1 x x^{-1} y x=1^{y x}=\left(1^{y}\right)^{x}=2^{x},
$$

since y takes 1 to 2 , and by similar calculations

$$
\begin{array}{ll}
\left(2^{x}\right)^{x^{-1} y x}=2^{y x}=3^{x}, & \left(4^{x}\right)^{x^{-1} y x}=4^{y x}=5^{x}, \\
\left(3^{x}\right)^{x^{-1} y x}=3^{y x}=1^{x}, & \left(5^{x}\right)^{x^{-1} y x}=5^{y x}=4^{x} .
\end{array}
$$

We want $x^{-1} y x=z$; so these equations become $\left(1^{x}\right)^{z}=2^{x},\left(2^{x}\right)^{z}=3^{x}$, $\left(3^{x}\right)^{z}=1^{x},\left(4^{x}\right)^{z}=5^{x}$ and $\left(5^{x}\right)^{z}=4^{x}$. Thus the numbers $1^{x}, 2^{x}$ and 3^{x} form a 3 -cycle in z, while 4^{x} and 5^{x} form a 2 -cycle. Indeed, z must equal $\left(1^{x}, 2^{x}, 3^{x}\right)\left(4^{x}, 5^{x}\right)$. But $z=(1,4)(2,5,3)$, so $\left(4^{x}, 5^{x}\right)$ must equal $(1,4)$ and $\left(1^{x}, 2^{x}, 3^{x}\right)$ must equal $(2,5,3)$. This means that 4^{x} is either 1 or 4 , and 5^{x} is either 4 or 1 . Similarly $1^{x}, 2^{x}, 3^{x}$ are $2,5,3$; it does not matter which is which, but the cyclic ordering must be right. Thus Thus if $1^{x}=2$, then $2^{x}=5$ and $3^{x}=3$, while if $1^{x}=5$ then $2^{x}=3$ and $3^{x}=2$, and if $1^{x}=3$ then $2^{x}=2$ and $3^{x}=5$. So 2 possibilities for 4^{x} and 5^{x} multiplied by 3 possibilities for $1^{x}, 2^{x}$ and 3^{x} makes 6 possibilities for x altogether. They are as follows:

$$
\begin{gathered}
4^{x}=1, \quad 5^{x}=4 \\
1^{x}=2, \quad 2^{x}=5, \quad 3^{x}=3
\end{gathered}
$$

giving $x=(1,2,5,4)$;

$$
\begin{gathered}
4^{x}=1, \quad 5^{x}=4 \\
1^{x}=5, \quad 2^{x}=3, \quad 3^{x}=2
\end{gathered}
$$

giving $x=(1,5,4)(2,3)$;

$$
\begin{gathered}
4^{x}=1, \quad 5^{x}=4 \\
1^{x}=3, \quad 2^{x}=2, \quad 3^{x}=5
\end{gathered}
$$

giving $x=(1,3,5,4)$;

$$
\begin{gathered}
4^{x}=4, \quad 5^{x}=1 \\
1^{x}=2, \quad 2^{x}=5, \quad 3^{x}=3
\end{gathered}
$$

giving $x=(1,2,5)$;

$$
\begin{gathered}
4^{x}=4, \quad 5^{x}=1 \\
1^{x}=5, \quad 2^{x}=3, \quad 3^{x}=2
\end{gathered}
$$

giving $x=(1,5)(2,3) ;$

$$
\begin{gathered}
4^{x}=4, \quad 5^{x}=1 \\
1^{x}=3, \quad 2^{x}=2, \quad 3^{x}=5
\end{gathered}
$$

giving $x=(1,3,5)$. It is a routine matter of multiplying permutations to check that

$$
\begin{aligned}
(1,3,5,4)^{-1}(1,2,3)(4,5)(1,3,5,4) & =(1,4)(2,5,3), \\
((1,5,4)(2,3))^{-1}(1,2,3)(4,5)(1,5,4)(2,3) & =(1,4)(2,5,3), \\
(1,2,5,4)^{-1}(1,2,3)(4,5)(1,2,5,4) & =(1,4)(2,5,3), \\
(1,2,5)^{-1}(1,2,3)(4,5)(1,2,5) & =(1,4)(2,5,3), \\
((1,5)(2,3))^{-1}(1,2,3)(4,5)(1,5)(2,3) & =(1,4)(2,5,3), \\
(1,3,5)^{-1}(1,2,3)(4,5)(1,3,5) & =(1,4)(2,5,3)
\end{aligned}
$$

(and this is all that needs to be done to answer the question).
2. Recall from the inner product space section of the course that an $n \times n$ matrix A is said to be orthogonal if $A^{T}=A^{-1}$. Recall also that $(A B)^{T}=B^{T} A^{T}$.
Show that the set of all orthogonal $n \times n$ matrices is a subgroup of the group of all invertible $n \times n$ matrices by showing that the properties (SG1), (SG2) and (SG3) hold).

Solution.

Let \mathcal{G} be the group of all $n \times n$ invertible matrices and \mathcal{H} the set of all $n \times n$ orthogonal matrices. Then $A \in \mathcal{H}$ if and only if $A^{T}=A^{-1}$. This certainly implies that every element of \mathcal{H} has an inverse; so \mathcal{H} is a subset of \mathcal{G}.
The identity element of G is the $n \times n$ identity matrix I. Since I is its own inverse, and also its own transpose, we have $I^{T}=I=I^{-1}$, and hence $I \in \mathcal{H}$. So (SG2) holds for \mathcal{H}.
Let $A, B \in \mathcal{H}$. Then $A^{T}=A^{-1}$ and $B^{T}=B^{-1}$. It was proved earlier in this course that $(A B)^{T}=B^{T} A^{T}$. It is similarly well known that whenever A and B are invertible matrices then their product is invertible, and again the order of the factors is reversed: $(A B)^{-1}=B^{-1} A^{-1}$. So we have that

$$
(A B)^{T}=B^{T} A^{T}=B^{-1} A^{-1}=(A B)^{-1}
$$

showing that $A B$ is orthogonal. But A and B were arbitrary elements of \mathcal{H}; so we have shown that $A B \in \mathcal{H}$ for all $A, B \in \mathcal{H}$. So (SG1) holds for \mathcal{H}.
Let $A \in \mathcal{H}$. Then $A^{T}=A^{-1}$. Transposing this gives $\left(A^{T}\right)^{T}=\left(A^{-1}\right)^{T}$; that is, $A=\left(A^{-1}\right)^{T}$. We know that A^{-1} exists, and the inverse of A^{-1} is A (since $\left.A A^{-1}=A^{-1} A=I\right)$. So $\left(A^{-1}\right)^{T}=A=\left(A^{-1}\right)^{-1}$, which shows that $A^{-1} \in \mathcal{H}$. So (SG3) holds for \mathcal{H} too, and so \mathcal{H} is a subgroup of \mathcal{G}, as required.
3. Recall that the column vector $\binom{1}{1}$ is an eigenvector of the 2×2 matrix A if and only if $A\binom{1}{1}=\lambda\binom{1}{1}$ for some scalar λ. Show that the set of all 2×2 invertible matrices A that have $\binom{1}{1}$ as an eigenvector constitutes a subgroup of the group of all invertible 2×2 matrices.

Solution.

Let \mathcal{G} be the group of all 2×2 invertible matrices and

$$
\mathcal{H}=\left\{\mathcal{A} \in \mathcal{G} \left\lvert\, \mathcal{A}\binom{1}{1}=\lambda\binom{1}{1}\right. \text { for some scalar } \lambda\right\}
$$

By definition, \mathcal{H} is a subset of \mathcal{G}.
The identity element of G is the 2×2 identity matrix I, and since

$$
I\binom{1}{1}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\binom{1}{1}=\binom{1}{1}
$$

we see that $I\binom{1}{1}=\lambda\binom{1}{1}$ holds with $\lambda=1$. So $I \in \mathcal{H}$; that is, (SG2) holds for \mathcal{H}.
Let $A, B \in \mathcal{H}$. Then A and B are invertible 2×2 matrices, and $A\binom{1}{1}=\lambda\binom{1}{1}$ and $B\binom{1}{1}=\mu\binom{1}{1}$ for some scalars λ and μ. Since we know (from the Matrix Applications course) that the product of two invertible matrices is invertible, it follows that $A B$ is invertible (with inverse $B^{-1} A^{-1}$), and, moreover,
$(A B)\binom{1}{1}=A\left(B\binom{1}{1}\right)=A\left(\mu\binom{1}{1}\right)=\mu\left(A\binom{1}{1}\right)=\mu\left(\lambda\binom{1}{1}\right)=(\mu \lambda)\binom{1}{1}$.
Thus $A B \in \mathcal{H}$ (since $(A B)\binom{1}{1}$ is a scalar multiple of $\binom{1}{1}$). Since A and B were arbitrary elements of \mathcal{H}, we have shown that $A B \in \mathcal{H}$ for all $A, B \in \mathcal{H}$. So (SG1) holds for \mathcal{H}.
Let $A \in \mathcal{H}$. Then A is invertible and $A\binom{1}{1}=\lambda\binom{1}{1}$ for some scalar λ. Multiplying both sides by A^{-1} gives
$\binom{1}{1}=I\binom{1}{1}=\left(A^{-1} A\right)\binom{1}{1}=A^{-1}\left(A\binom{1}{1}\right)=A^{-1}\left(\lambda\binom{1}{1}\right)=\lambda\left(A^{-1}\binom{1}{1}\right)$.
This implies that $\lambda \neq 0$ (since $\left.\binom{1}{1} \neq 0\right)$, and hence $1 / \lambda$ exists. Multiplying the above equation by $1 / \lambda$ gives

$$
\frac{1}{\lambda}\binom{1}{1}=\frac{1}{\lambda}\left(\lambda A^{-1}\binom{1}{1}\right)=A^{-1}\binom{1}{1}
$$

showing that $\binom{1}{1}$ is an eigenvector for A^{-1}. Since also A^{-1} is invertible (with inverse A) it follows that $A^{-1} \in \mathcal{H}$. So (SG3) also holds for \mathcal{H}, and so \mathcal{H} is a subgroup of \mathcal{G}, as required.
4. Start MAGMA and set a log file via the command

SetLogFile("assign2");

and then carry out the following steps.
(i) Define S to be the symmetric group $\operatorname{Sym}(7)$.
(ii) Define G to be the subgroup of S generated by (1, 7, 6, 5, 4, 3, 2) and $(1,2)(4,7)$, and find the order of G .
(iii) Define C to be the centralizer of $(1,7,6,5,4,3,2)$ in G , and find the order of C .
(iv) Define X 2 to be the set of elements of G of order 2, and find the number of elements in X 2 .
(v) Define $\mathrm{X} 3, \mathrm{X} 4, \mathrm{X} 7$ and X 1 to be the sets of elements of G of orders 3, 4, 7 and 1 (respectively), and check that along with X 2 these sets account for all elements of G .
Solution.
> S:=Sym(7);
$>\mathrm{a}:=\mathrm{S}!(1,7,6,5,4,3,2)$;
$>\mathrm{b}:=\mathrm{S}!(1,2)(4,7)$;
$>\mathrm{G}:=$ sub< $\mathrm{S} \mid \mathrm{a}, \mathrm{b}>$;
> \#G;
168
> C:=Centralizer (G, a) ;
> \#C;
7
> /* This says that
$>$ there are exactly 7
$>$ elements of G that
$>$ commute with a.
> Since a has order 7
$>$ we know that a has 7
$>$ distinct powers, and
$>$ it is obvious that
> these all commute
$>$ with a. So these are
$>$ the only elements of
$>\mathrm{G}$ that commute
> with a. */

```
> X2:={ x : x in G | Order(x) eq 2};
> #X2;
21
> X3:={ x : x in G | Order(x) eq 3};
> #X3;
56
> X4:={x : x in G | Order(x) eq 4};
> #X4;
42
> X7:={ x : x in G | Order(x) eq 7};
> #X7;
48
> X1:={ x : x in G | Order(x) eq 1};
> #X1;
1
> #X1+#X2+#X3+#X4+#X7;
168
> /* Since the sets X1,X2,X3,X4,X7
> obviously have no elements in
> common, and since the total number
> of elements in these sets equals
> the number of elements in G,
> we see that every element of G
> must be in one of these subsets.
> Just to check it another way, we
> can ask magma to confirm that the
> union of these subsets equals the
> whole of G. */
> (X1 join X2 join X3 join X4
> join X7) eq Set(G);
```

true

