The University of Sydney

MATH2008 Introduction to Modern Algebra

(http://www.maths.usyd.edu.au/u/UG/IM/MATH2008/)

Semester 2, 2003	Lecturer: R. Howlett
Demester 2, 2009	

Assignment 2

1. Let y = (1, 2, 3)(4, 5) and z = (1, 4)(2, 5, 3), permutations in Sym(5). Find six distinct permutations $x \in \text{Sym}(5)$ such that $x^{-1}yx = z$.

Solution.

Given that y = (1, 2, 3)(4, 5), it follows that $x^{-1}yx = (1^x, 2^x, 3^x)(4^x, 5^x)$ (for any $x \in \text{Sym}(5)$). This was explained in the solutions to Computer Tutorial 6. The point is that

$$(1^x)^{x^{-1}yx} = 1xx^{-1}yx = 1^{yx} = (1^y)^x = 2^x,$$

since y takes 1 to 2, and by similar calculations

$$(2^x)^{x^{-1}yx} = 2^{yx} = 3^x, \qquad (4^x)^{x^{-1}yx} = 4^{yx} = 5^x, (3^x)^{x^{-1}yx} = 3^{yx} = 1^x, \qquad (5^x)^{x^{-1}yx} = 5^{yx} = 4^x.$$

We want $x^{-1}yx = z$; so these equations become $(1^x)^z = 2^x$, $(2^x)^z = 3^x$, $(3^x)^z = 1^x$, $(4^x)^z = 5^x$ and $(5^x)^z = 4^x$. Thus the numbers 1^x , 2^x and 3^x form a 3-cycle in z, while 4^x and 5^x form a 2-cycle. Indeed, z must equal $(1^x, 2^x, 3^x)(4^x, 5^x)$. But z = (1, 4)(2, 5, 3), so $(4^x, 5^x)$ must equal (1, 4) and $(1^x, 2^x, 3^x)$ must equal (2, 5, 3). This means that 4^x is either 1 or 4, and 5^x is either 4 or 1. Similarly 1^x , 2^x , 3^x are 2, 5, 3; it does not matter which is which, but the cyclic ordering must be right. Thus Thus if $1^x = 2$, then $2^x = 5$ and $3^x = 3$, while if $1^x = 5$ then $2^x = 3$ and $3^x = 2$, and if $1^x = 3$ then $2^x = 2$ and $3^x = 5$. So 2 possibilities for 4^x and 5^x multiplied by 3 possibilities for 1^x , 2^x and 3^x makes 6 possibilities for x altogether. They are as follows:

$$4^x = 1, \quad 5^x = 4$$

 $1^x = 2, \quad 2^x = 5, \quad 3^x = 3$

giving x = (1, 2, 5, 4);

$$4^{x} = 1, \quad 5^{x} = 4$$

 $1^{x} = 5, \quad 2^{x} = 3, \quad 3^{x} = 2$

giving x = (1, 5, 4)(2, 3);

$$4^{x} = 1, \quad 5^{x} = 4$$

 $1^{x} = 3, \quad 2^{x} = 2, \quad 3^{x} = 5$

giving x = (1, 3, 5, 4);

$$4^{x} = 4, \quad 5^{x} = 1$$

 $1^{x} = 2, \quad 2^{x} = 5, \quad 3^{x} = 3$

giving x = (1, 2, 5);

$$4^{x} = 4, \quad 5^{x} = 1$$

 $1^{x} = 5, \quad 2^{x} = 3, \quad 3^{x} = 2$

giving x = (1, 5)(2, 3);

$$4^{x} = 4, \quad 5^{x} = 1$$

 $1^{x} = 3, \quad 2^{x} = 2, \quad 3^{x} = 5$

giving x = (1,3,5). It is a routine matter of multiplying permutations to check that

$$\begin{aligned} &(1,3,5,4)^{-1}(1,2,3)(4,5)(1,3,5,4) = (1,4)(2,5,3),\\ &((1,5,4)(2,3))^{-1}(1,2,3)(4,5)(1,5,4)(2,3) = (1,4)(2,5,3),\\ &(1,2,5,4)^{-1}(1,2,3)(4,5)(1,2,5,4) = (1,4)(2,5,3),\\ &(1,2,5)^{-1}(1,2,3)(4,5)(1,2,5) = (1,4)(2,5,3),\\ &((1,5)(2,3))^{-1}(1,2,3)(4,5)(1,5)(2,3) = (1,4)(2,5,3),\\ &(1,3,5)^{-1}(1,2,3)(4,5)(1,3,5) = (1,4)(2,5,3).\end{aligned}$$

(and this is all that needs to be done to answer the question).

2. Recall from the inner product space section of the course that an $n \times n$ matrix A is said to be *orthogonal* if $A^T = A^{-1}$. Recall also that $(AB)^T = B^T A^T$. Show that the set of all orthogonal $n \times n$ matrices is a subgroup of the group of all invertible $n \times n$ matrices by showing that the properties (SG1), (SG2) and (SG3) hold).

Solution.

Let \mathcal{G} be the group of all $n \times n$ invertible matrices and \mathcal{H} the set of all $n \times n$ orthogonal matrices. Then $A \in \mathcal{H}$ if and only if $A^T = A^{-1}$. This certainly implies that every element of \mathcal{H} has an inverse; so \mathcal{H} is a subset of \mathcal{G} .

The identity element of G is the $n \times n$ identity matrix I. Since I is its own inverse, and also its own transpose, we have $I^T = I = I^{-1}$, and hence $I \in \mathcal{H}$. So (SG2) holds for \mathcal{H} .

Let $A, B \in \mathcal{H}$. Then $A^T = A^{-1}$ and $B^T = B^{-1}$. It was proved earlier in this course that $(AB)^T = B^T A^T$. It is similarly well known that whenever A and B are invertible matrices then their product is invertible, and again the order of the factors is reversed: $(AB)^{-1} = B^{-1}A^{-1}$. So we have that

$$(AB)^T = B^T A^T = B^{-1} A^{-1} = (AB)^{-1},$$

showing that AB is orthogonal. But A and B were arbitrary elements of \mathcal{H} ; so we have shown that $AB \in \mathcal{H}$ for all $A, B \in \mathcal{H}$. So (SG1) holds for \mathcal{H} . Let $A \in \mathcal{H}$. Then $A^T = A^{-1}$. Transposing this gives $(A^T)^T = (A^{-1})^T$; that is, $A = (A^{-1})^T$. We know that A^{-1} exists, and the inverse of A^{-1} is A (since $AA^{-1} = A^{-1}A = I$). So $(A^{-1})^T = A = (A^{-1})^{-1}$, which shows that $A^{-1} \in \mathcal{H}$. So (SG3) holds for \mathcal{H} too, and so \mathcal{H} is a subgroup of \mathcal{G} , as required. **3.** Recall that the column vector $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ is an eigenvector of the 2 × 2 matrix A if and only if $A \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \lambda \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ for some scalar λ . Show that the set of all 2 × 2 invertible matrices A that have $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ as an eigenvector constitutes a subgroup of the group of all invertible 2 × 2 matrices.

Solution.

Let \mathcal{G} be the group of all 2×2 invertible matrices and

$$\mathcal{H} = \{ \mathcal{A} \in \mathcal{G} \mid \mathcal{A} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \lambda \begin{pmatrix} 1 \\ 1 \end{pmatrix} \text{ for some scalar } \lambda \}.$$

By definition, \mathcal{H} is a subset of \mathcal{G} .

The identity element of G is the 2×2 identity matrix I, and since

$$I\begin{pmatrix}1\\1\end{pmatrix} = \begin{pmatrix}1 & 0\\0 & 1\end{pmatrix}\begin{pmatrix}1\\1\end{pmatrix} = \begin{pmatrix}1\\1\end{pmatrix}$$

we see that $I\begin{pmatrix} 1\\1 \end{pmatrix} = \lambda \begin{pmatrix} 1\\1 \end{pmatrix}$ holds with $\lambda = 1$. So $I \in \mathcal{H}$; that is, (SG2) holds for \mathcal{H} .

Let $A, B \in \mathcal{H}$. Then A and B are invertible 2×2 matrices, and $A\begin{pmatrix} 1\\1 \end{pmatrix} = \lambda \begin{pmatrix} 1\\1 \end{pmatrix}$ and $B\begin{pmatrix} 1\\1 \end{pmatrix} = \mu \begin{pmatrix} 1\\1 \end{pmatrix}$ for some scalars λ and μ . Since we know (from the Matrix Applications course) that the product of two invertible matrices is invertible, it follows that AB is invertible (with inverse $B^{-1}A^{-1}$), and, moreover,

$$(AB)\begin{pmatrix}1\\1\end{pmatrix} = A(B\begin{pmatrix}1\\1\end{pmatrix}) = A(\mu\begin{pmatrix}1\\1\end{pmatrix}) = \mu(A\begin{pmatrix}1\\1\end{pmatrix}) = \mu(\lambda\begin{pmatrix}1\\1\end{pmatrix}) = (\mu\lambda)\begin{pmatrix}1\\1\end{pmatrix}$$

Thus $AB \in \mathcal{H}$ (since $(AB) \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ is a scalar multiple of $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$). Since A and B were arbitrary elements of \mathcal{H} , we have shown that $AB \in \mathcal{H}$ for all $A, B \in \mathcal{H}$. So (SG1) holds for \mathcal{H} .

Let $A \in \mathcal{H}$. Then A is invertible and $A\begin{pmatrix} 1\\ 1 \end{pmatrix} = \lambda \begin{pmatrix} 1\\ 1 \end{pmatrix}$ for some scalar λ . Multiplying both sides by A^{-1} gives

$$\begin{pmatrix} 1\\1 \end{pmatrix} = I\begin{pmatrix} 1\\1 \end{pmatrix} = (A^{-1}A)\begin{pmatrix} 1\\1 \end{pmatrix} = A^{-1}(A\begin{pmatrix} 1\\1 \end{pmatrix}) = A^{-1}(\lambda\begin{pmatrix} 1\\1 \end{pmatrix}) = \lambda(A^{-1}\begin{pmatrix} 1\\1 \end{pmatrix}).$$

This implies that $\lambda \neq 0$ (since $\begin{pmatrix} 1\\ 1 \end{pmatrix} \neq 0$), and hence $1/\lambda$ exists. Multiplying the above equation by $1/\lambda$ gives

$$\frac{1}{\lambda} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \frac{1}{\lambda} \Big(\lambda A^{-1} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \Big) = A^{-1} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

showing that $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ is an eigenvector for A^{-1} . Since also A^{-1} is invertible (with inverse A) it follows that $A^{-1} \in \mathcal{H}$. So (SG3) also holds for \mathcal{H} , and so \mathcal{H} is a subgroup of \mathcal{G} , as required.

- 4. Start MAGMA and set a log file via the command SetLogFile("assign2"); and then carry out the following steps.
 - (i) Define S to be the symmetric group Sym(7).
 - (*ii*) Define **G** to be the subgroup of S generated by (1, 7, 6, 5, 4, 3, 2) and (1, 2)(4, 7), and find the order of **G**.
 - (iii) Define C to be the centralizer of (1, 7, 6, 5, 4, 3, 2) in G, and find the order of C.
 - (*iv*) Define X2 to be the set of elements of G of order 2, and find the number of elements in X2.
 - (v) Define X3, X4, X7 and X1 to be the sets of elements of G of orders 3, 4, 7 and 1 (respectively), and check that along with X2 these sets account for all elements of G.

Solution.

101011.	
> S:=Sym(7);	> X2:={ x : x in G Order(x) eq 2};
> a:=S!(1,7,6,5,4,3,2);	> #X2;
> b:=S!(1,2)(4,7);	21
> G:=sub< S a,b >;	> X3:={ x : x in G Order(x) eq 3};
> #G;	> #X3;
168	56
<pre>> C:=Centralizer(G,a);</pre>	> X4:={ x : x in G Order(x) eq 4};
> #C;	> #X4;
7	42
> /* This says that	> X7:={ x : x in G Order(x) eq 7};
> there are exactly 7	> #X7;
> elements of G that	48
> commute with a.	> X1:={ x : x in G Order(x) eq 1};
> Since a has order 7	> #X1;
> we know that a has 7	1
> distinct powers, and	> #X1+#X2+#X3+#X4+#X7;
> it is obvious that	168
> these all commute	> /* Since the sets X1,X2,X3,X4,X7
> with a. So these are	> obviously have no elements in
> the only elements of	> common, and since the total number
> G that commute	> of elements in these sets equals
> with a. */	> the number of elements in G,
	> we see that every element of G
	> must be in one of these subsets.
	> Just to check it another way, we
	> can ask magma to confirm that the
	> union of these subsets equals the
	> whole of G. */
	> (X1 join X2 join X3 join X4
	> join X7) eq Set(G);
	true