
The University of Sydney

MATH2008 Introduction to Modern Algebra
(http://www.maths.usyd.edu.au/u/UG/IM/MATH2008/)

Semester2, 2003 Lecturer: R. Howlett

Computer Tutorial 4

This tutorial is about the vector space of polynomials over R. There is one new
MAGMA command you will need to use (PolynomialAlgebra) and one new control
structure (for . . . end for). And of course you can still use the commands
you learnt in previous tutorials (e.g. RealField VectorSpace print func Sqrt
InnerProduct Arccos NullSpace sub KMatrixSpace Transpose Solution).

Remember that all MAGMA commands end with a semicolon (;) (which can go on
the next line, if necessary). You should frequently get MAGMA to print the values
of the variables you are working with, to see the results of your actions. (e.g. if
you define a subspace by a command like
SS := sub< V | u, v >;
then you should type SS; (or print SS;) to find out what MAGMA thinks SS is.
To see what variables the MAGMA system has defined, type ShowIdentifiers();.

1. Use MAGMA to add and multiply the polynomials f(x) = x7 − 5x4 + 2x − 1
and g(x) = 3x3 − 2x2 + x − 1. To get started type
R := RealField();
P<x> := PolynomialAlgebra(R);
(Now MAGMA knows that P is the set of all polynomials in the variable x.)

(i) The next step is to enter the polynomials themselves. That is,
f := x∧7 - 5*x∧4 + 2*x - 1;
g := 3*x∧3 - 2*x∧2 + x - 1;

(ii) Print out the values of P, f and g.
(iii) Next, print the sum and product of f and g.
(iv) MAGMA has a function Eltseq which returns the sequence of coefficients

of a polynomial. To see how it works, type Eltseq(f);. Note that the
constant term comes first, then the coefficient of x1, and so on. You
can also define a polynomial by entering its sequence of coefficients,
and “coercing” this sequence into the polynomial algebra. Test this by
typing h:=P![-1,1,-2,3]; and then print h;.

Solution.

> R := RealField();
> P<x> := PolynomialAlgebra(R);
> f := x∧7 - 5*x∧4 + 2*x - 1;
> g := 3*x∧3 - 2*x∧2 + x - 1;

2

> P,f,g;
Univariate Polynomial Ring in x over Real Field
x∧7 - 5*x∧4 + 2*x - 1
3*x∧3 - 2*x∧2 + x - 1
> f+g, f*g;
x∧7 - 5*x∧4 + 3*x∧3 - 2*x∧2 + 3*x - 2
3*x∧10 - 2*x∧9 + x∧8 - 16*x∧7 + 10*x∧6 - 5*x∧5 + 11*x∧4 - 7*x∧3

+ 4*x∧2 - 3*x + 1
> Eltseq(f);
[-1, 2, 0, 0, -5, 0, 0, 1]
> h:=P![-1,1,-2,3];
> h;
3*x∧3 - 2*x∧2 + x - 1
> h eq g;
true

2. (i) If f(x) is a polynomial then the mathematical notation for the number
obtained by putting x = 3 (say) is f(3). MAGMA has a function Evaluate
for this: in MAGMA, if f is a polynomial then Evaluate(f,3) evaluates
f at x = 3. Evaluate f, g, f-g and f*g at x = 0, 1 and 10.

(ii) MAGMA can integrate and differentiate polynomials with the commands
Integral and Derivative. We can use Integral to define a MAGMA

function that returns the inner product of two polynomial functions on
the interval [−1, 1], using the inner product defined in lectures, namely
(f, g) =

∫ 1

−1
f(x)g(x) dx. The MAGMA code you need is

polyip := func< a,b| Evaluate(int,1) - Evaluate(int,-1)
where int:=Integral(a*b) >;

Use polyip to find the inner product of the polynomials f and g of the
previous exercise.

(iii) Calculate the length of f and the angle between f and g. (Recall that
in any inner product space the length of an element v is defined to be√

(v, v), and the angle between v and w is arccos((v, w)/‖v‖ ‖w‖). Start
by defining Length:=func< v | Sqrt(polyip(v,v)) >;).

Solution.

> Evaluate(f,0); Evaluate(g,0);
-1
-1
> Evaluate(f+g,0); Evaluate(f*g,0);
-2
1

3

> Evaluate(f,1); Evaluate(g,1);
-3
1
> Evaluate(f+g,1); Evaluate(f*g,1);
-2
-3
> Evaluate(f,10); Evaluate(g,10);
9950019
2809
> Evaluate(f+g,10); Evaluate(f*g,10);
9952828
27949603371
> polyip:=func<a,b| Evaluate(int,1) - Evaluate(int,-1) where
int:=Integral(a*b);
> polyip(f,g);
43976/3465
> Length:=func< v | Sqrt(polyip(v,v)) >;
> Length(f);
3.904413457159019223898136120
> Arccos(polyip(f,g)/(Length(f)*Length(g)));
0.3419620528286725421961978426

3. Find the inner products (xk, xk) where k ranges from 0 to 10. You can use a
MAGMA control structure called the “for loop”. You put the commands you
want to repeat between the words “for” and “end for”. Your work will look
like this:
> for k in [0..10] do
for> The command for printing (xk, xk) goes here. Remember the semicolon.
for> end for;
Notice that after you begin a for loop, MAGMA changes its prompt to remind
you that you must finish it. You finish the for loop with the two-word com-
mand “end for” followed by a semicolon, but there is no semicolon after the
do.

Solution.

> for k in [1..10] do
for> k, polyip(x∧k,x∧k);
for> end for;
1 2/3
2 2/5
3 2/7
4 2/9

5 2/11
6 2/13
7 2/15
8 2/17
9 2/19
10 2/21

4

4. For what values of k and m are xk and xm orthogonal? To answer this, use
MAGMA to deal with the first few cases (say for k and m ranging from 1 to 5)
and then make a conjecture.
Hint. You can begin with
for k in [1..5] do
for m in [1..5] do
. . .

Solution.

> for k in [1..5] do
for> for m in [1..5] do
for|for> print "(x∧",k,",x∧",m,") = ",polyip(x∧k,x∧m);
for|for> end for;
for> end for;
(x∧ 1 ,x∧ 1) = 2/3
(x∧ 1 ,x∧ 2) = 0
(x∧ 1 ,x∧ 3) = 2/5
(x∧ 1 ,x∧ 4) = 0
(x∧ 1 ,x∧ 5) = 2/7
(x∧ 2 ,x∧ 1) = 0

· · · etc. · · ·
(x∧ 5 ,x∧ 4) = 0
(x∧ 5 ,x∧ 5) = 2/11

(The print command used above could be replaced by the simpler
polyip(x∧k,x∧m);
but then MAGMA would just print the 25 numbers 2/3, 0, 2/5, . . . , and it
would not be immediately obvious which inner products have which values.
So it is better at least to get MAGMA to print k and m as well as (x∧k,x∧m)
each time:
k, m, polyip(x∧k,x∧m);
You can also get MAGMA to print words or symbols literally by enclosing them
in quotes, as done above.)
You should guess from the above output that if k and m are positive integers
then (xk, xm) = 0 if and only if k + m is odd. You should also be be able to
prove this mathematically. Indeed,∫ 1

−1

xk+m dx =
1

k + m + 1
(1k+m+1 − (−1)k+m+1),

which is zero if k + m + 1 is even and is 2/(k + m + 1) if k + m + 1 is odd.

5. Check that 1 + 2x2 and x3 are orthogonal and then find the projections of x4

and x5 onto the subspace spanned by 1 + 2x2 and x3. Explain why in both
cases you get a multiple of one of the original vectors.

5

Hint. Remember that the projection p of the vector v onto the subspace with
the orthogonal basis a1, a2, . . . , ak is

p =
(v, a1)
(a1, a1)

a1 +
(v, a2)
(a2, a2)

a2 + · · · + (v, ak)
(ak, ak)

ak.

In this question, k is 2, a1 = 1 + 2x2 and a2 = x3.

Solution.
> p := 1+2*x∧2;
> q := x∧3;
> polyip(p,q);
0
> (polyip(x∧4,p)/polyip(p,p))*p+(polyip(x∧4,q)/polyip(q,q))*q;
102/329*x∧2 + 51/329
> (polyip(x∧5,p)/polyip(p,p))*p+(polyip(x∧5,q)/polyip(q,q))*q;
7/9*x∧3

The projection of x4 is a multiple of p since (x4, q) = 0. And the projection
of x5 is a multiple of q since x5 is orthogonal to p.

6. (i) The aim of this question is to apply the Gram-Schmidt process to the
polynomials 1, x, x2, x3, x4, x5 and x6, and hence obtain the first seven
Legendre polynomials.
A MAGMA input file t4defs.m has been prepared containing the following
MAGMA code (which you are not required to understand):
polyProjection := func< Q,g | #Q eq 0 select 0*g else

&+[(polyip(f,g)/polyip(f,f))*f : f in Q] >;
polyGS := func< Q | [f-polyProjection(Self(),f) : f in Q]>;

The function polyGS does this: if B is a sequence of polynomials then
polyGS(B) is the orthogonal sequence produced by Gram-Schmidt.
Type load "t4defs.m"; to get MAGMA to read the input file. Next,
define B to be the sequence of polynomials consisting of the powers of x
from x∧0 up to x∧6. You can do this by
B:=[x∧0,x∧1,x∧2,x∧3,x∧4,x∧5,x∧6];

or more sneakily by
B := [x∧k : k in [0..6]];

Then apply polyGS to B.
(ii) Actually, Legendre polynomials are usually scaled so that their value at

1 is 1. If we are given a polynomial f and we define a new polynomial g
by g(x) = cf(x), where c is a scalar, then of course g(1) = cf(1). So we
can make g(1) = 1 by putting c = 1/f(1). In MAGMA the correspond-
ing command is g:= (1/Evaluate(f,1))*f;. Do this scaling on the
polynomials you obtained in Part (i).

6

Solution.

> load "t4defs.m";
> B := [x∧k : k in [0..6]];
> G := polyGS(B);
> G;
[

1,
x,
x∧2 - 1/3,
x∧3 - 3/5*x,
x∧4 - 6/7*x∧2 + 3/35,
x∧5 - 10/9*x∧3 + 5/21*x,
x∧6 - 15/11*x∧4 + 5/11*x∧2 - 5/231

]
> for k in [1..7] do G[k] := G[k]/Evaluate(G[k],1);
for> end for;
> G;
[

1,
x,
3/2*x∧2 - 1/2,
5/2*x∧3 - 3/2*x,
35/8*x∧4 - 15/4*x∧2 + 3/8,
63/8*x∧5 - 35/4*x∧3 + 15/8*x,
231/16*x∧6 - 315/16*x∧4 + 105/16*x∧2 - 5/16

]

Note that MAGMA uses the notation G[1], G[2] (etc.) for the 1st, 2nd (etc.)
terms of a sequence G. Thus in this case G[1] is the polynomial 1, G[2] is x,
G[3] is (3/2)x∧2-1/2, and so on.

