The University of Sydney
MATH2008 Introduction to Modern Algebra
(http://www.maths.usyd.edu.au/u/UG/IM/MATH2008/)

Computer Tutorial 10

1. This question is about the group of symmetries of the tetrahedron with vertices labelled 1, 2, 3 and 4 as shown below. Use MAGMA to set up the group $G:=\operatorname{Sym}(4)$ of all permutations of $\{1,2,3,4\}$.

Every rotational symmetry of the tetrahedron corresponds to a permutation of $\{1,2,3,4\}$.
(i) Find a (nontrivial) rotational symmetry that fixes the vertex 1 and another that fixes the vertex 2 , and find the corresponding permutations.
(ii) Let H be the subgroup of G generated by the permutations you found in Part (i). Get MAGMA to print out all the elements of H, and show that the order of H is 12 .
(iii) Describe each element of H geometrically (e.g. as a rotation about an axis).
(iv) List the order of each element of H.
(v) Find a subgroup of H of order 4.

Solution.
Let ℓ_{1} be the line through vertex 1 and the central point of the face 234 . The rotations about the axis ℓ_{1} through 120° and 240° are symmetries of the tetrahedron fixing vertex 1 . The corresponding permutations are $(2,3,4)$ and $(2,4,3)$. Similarly, if ℓ_{2} is the line through vertex 2 and the centroid of the face 134 then rotations about ℓ_{2} through 120° and 240° are symmetries of the tetrahedron fixing vertex 2 . The corresponding permutations are $(1,3,4)$ and $(1,4,3)$. For Part (i) of the question I chose $(2,3,4)$ and $(1,3,4)$. There are three other possible choices that would be equally valid.

[^0]$>H:=$ sub $<\mathrm{G} \mid \mathrm{x}, \mathrm{y}>$;
> H;
Permutation group H acting on a set of cardinality 4
(1, 3, 4)
$(2,3,4)$
$>\operatorname{Set}(\mathrm{H})$;
\{
$(1,2)(3,4)$,
$(1,3,2)$,
$(1,3)(2,4)$,
$(1,2,4)$,
$(1,4,3)$,
$(1,3,4)$,
(1, 4, 2),
Id (H),
$(1,4)(2,3)$,
$(2,4,3)$,
$(1,2,3)$,
$(2,3,4)$
,
$>$ for t in H do
for> "the order of",t,"is", Order (t) ;
for> end for;
the order of $\operatorname{Id}(H)$ is 1
the order of $(1,3,4)$ is 3
the order of $(1,4,3)$ is 3
the order of $(1,2,3)$ is 3
the order of $(2,3,4)$ is 3
the order of $(1,3)(2,4)$ is 2
the order of $(1,4,2)$ is 3
the order of $(1,2)(3,4)$ is 2
the order of $(2,4,3)$ is 3
the order of $(1,3,2)$ is 3
the order of $(1,4)(2,3)$ is 2
the order of $(1,2,4)$ is 3
Sure enough, H has 12 elements. Four of them have been described above. The permutations $(1,2,4)$ and $(1,4,2)$ correspond to rotations through 120° and 240° about ℓ_{3}, the line joining vertex 3 to the centroid of 124 . Similarly, $(1,2,3)$ and $(1,3,2)$ correspond to rotations through 120° and 240° about ℓ_{4}, the line joining vertex 4 to the centroid of 123 . The identity is a rotation through 0° (about any axis). The remaining three elements of H are all halfturns: rotations through 180°. For the permutation $(1,2)(3,4)$ the axis is the line joining the mid-point of 12 to the midpoint of 34 . Similarly, for $(1,3)(2,4)$ the axis is the line joining the mid-point of 13 to the midpoint of 24 , and for $(1,4)(2,3)$ the axis is the line joining the mid-point of 14 to the midpoint of 23 .

By Sylow's Theorem H must have a subgroup of order 4, since 4 is the largest
power of the prime 2 that is a divisor of 12 , the order of H. An element of order k generates a cyclic subgroup of order k, and by Lagrange's Theorem the order of a subgroup has to be a divisor of the order of the group. So the order of any element of a group of order 4 must be a divisor of 4 . Now in H there are only four elements whose orders are divisors of 4: the three elements of order 2 and the identity (of order 1). So these four elements are the only ones that can possibly be contained in a group of order 4 . But H does have a subgroup of order 4 , which certainly contains four elements of H. So it must be these four. So

$$
\{\mathrm{id},(1,2)(3,4),(1,3)(2,4),(1,4)(2,3)\}
$$

is a subgroup of H of order 4.
2. In MAGMA, define G to be the group $\operatorname{Sym}(4)$, and define $p 1:=\{\{1,4\},\{2,3\}\}$;
(i) How many elements does the set p1 have? Check your answer with MAGMA. (Use \#p1;)
(ii) Define $P:=p 1^{\wedge} \mathrm{G}$; , and then get MAGMA to print P. (Here $\mathrm{p} 1^{\wedge} \mathrm{G}$ means the set of everything that p 1 can be changed into by applying a permutation of $\{1,2,3,4\}$. This same example will be discussed in Q1 of Tutorial 10.
(iii) How many elements does P have? Check your answer with MAGMA (via the command \#P;).
(iv) Each element of P corresponds to a partitioning of the set $\{1,2,3,4\}$ into two subsets of size 2. (Each such partitioning corresponds to a way of pairing up four tennis players for a game of doubles. Thus p1 above corresponds to players 1 and 4 teaming up against players 2 and 3.) Define now $p 2:=\{\{2,4\},\{1,3\}\}$; and $p 3:=\{\{3,4\},\{1,2\}\}$; , so that P is $\{p 1, p 2, p 3\}$. Observe that $p 1$ is a set with two elements, both of which are themselves sets. And P is a set whose elements are sets whose elements are sets.
(v) Put $\mathrm{x}:=\mathrm{G}!(1,4,3,2)$; , and get MAGMA to print $\mathrm{p} 1^{\wedge} \mathrm{x}, \mathrm{p} 2^{\wedge} \mathrm{x}$ and $\mathrm{p} 3^{\wedge} \mathrm{x}$. Hence find the permutation of $\{p 1, p 2, p 3\}$ derived from the permutation x of $\{1,2,3,4\}$.
(vi) Each permutation of $\{1,2,3,4\}$ gives rise to a permutation of $\{\mathrm{p} 1, \mathrm{p} 2$, $\mathrm{p} 3\}$; so we have a function f from the group of all permutations of $\{1,2,3,4\}$ to the group of all permutations of $\{p 1, p 2, p 3\}$. This function is, in fact, a homomorphism. The MAGMA command f,L,K := Action(G,P);
defines f to be this homomorphism, L to be the image of f, and K to be the kernel of f. After typing this command, get MAGMA to print f, L and K.
(vii) Type the MAGMA command $f(x)$; . The response should agree with your answer to Part (v).
(viii) Find the permutations of $\{\mathrm{p} 1, \mathrm{p} 2, \mathrm{p} 3\}$ corresponding to each of the permutations $(1,4),(1,3,2),(1,2,3,4),(1,3),(2,4,3)$, by using commands such as $f(G!(1,4))$.
(ix) Find the permutations of \{p1, p2, p3\} corresponding to each of the permutations $(1,2)(3,4),(1,3)(2,4))$ and $(1,3)(4,2)$. Note that these three permutations are all in the group K. Print $\operatorname{Set}(\mathrm{K})$ to confirm this.
(x) Put $\mathrm{A}:=\{\mathrm{x} * \mathrm{k}: \mathrm{k}$ in K$\}$, and then do the following loop: for t in A do
$f(t)$;
end for;
What do you notice about the answer? Put B := \{ G! $(1,4) * \mathrm{k}: \mathrm{k}$ in $K\}$, and do a similar for loop. Observe that you again get the same answer four times. Do some more similar loops.

Solution.
\#p1 is 2. The two elements of p1 are the sets $\{1,4\}$ and $\{2,3\}$.

```
> p1:={{1,4},{2,3}};
> #p1;
2
> P:=p1^G;
> P;
GSet{
            { 1, 4 },
            {2,3 }
},
    { 1, 2 },
            { 3, 4 }
},
{
    { 1, 3 },
    {2,4 }
}
}
```

The set P has three elements; they are $\mathrm{p} 1, \mathrm{p} 2$ and p 3 , where p 2 and p 3 are $\{\{2,4\},\{1,3\}\}$ and $\{\{3,4\},\{1,2\}\}$.

```
> #P;
3
> p2:={{2,4},{1,3}};
> p3:={{3,4},{1,2}};
> P eq {p1,p2,p3};
true
> x:=G!(1,4,3,2);
```

```
> p1^x,p2^x,p3^x;
{
    { 3, 4},
    {1, 2}
}
{
    { 1, 3},
    {2,4}
}
{
    { 1, 4},
    { 2, 3}
}
> p1^x eq p3, p3^x eq p1, p2^x eq p2;
true true true
```

Thus x gives rise to the permutation ($\mathrm{p} 1, \mathrm{p} 3$) of $\{\mathrm{p} 1, \mathrm{p} 2, \mathrm{p} 3\}$.

```
> f,L,K:=Action(G,P);
> P eq {p1,p2,p3};
true
> f;
```

Mapping from: GrpPerm: G to GrpPerm: L
> L;
Permutation group L acting on a set of cardinality 3
(\{
$\{1,4\}$,
$\{2,3\}$
\}, $\{$
$\{1,2\}$,
$\{3,4\}$
\})
(\{
\{ 1, 4 \},
\{ 2, 3 \}
\}, \{
\{ 1, 3 \},
\{ 2, 4 \}
\})
> K;

Permutation group K acting on a set of cardinality 4
Order = 4 = 2^2
$(1,3)(2,4)$
$(1,4)(2,3)$
> $\mathrm{x}:=\mathrm{G}!(1,4,3,2)$;
$>f(x)$;
(\{
$\{1,4\}$,
\{ 2, 3 \}
\}, \{
\{ 1, 2 \},
\{ 3, 4 \}
\})
> f(x) eq L! (p1,p3);
true
> $\mathrm{f}(\mathrm{G}!(1,4))$;
(\{
$\{1,2\}$,
\}, \{
\{ 1, 3 \},
\{ 2, 4 \}
\})
$>f(G!(2,4))$;
(\{
\{ 1, 4 \},
\{ 2, 3 \}
\}, \{
$\{1,2\}$,
\{ 3, 4 \}
\})
$>\mathrm{f}(\mathrm{G}!(1,2,3))$;
(\{
\{ 1, 4 \},
\{ 2, 3 \}
\}, \{
\{ 1, 3 \},
\{ 2,4 \}
\}, \{
\{ 1, 2 \},
\{ 3, 4 \}
\})
$>\mathrm{f}(\mathrm{G}!(1,2,4))$;
(\{
\{ 1, 4 \},
\{ 2, 3 \}
\}, \{
$\{1,2\}$,
\{ 3, 4 \}
\}, \{
\{ 1, 3 \},
\{ 2, 4 \}
\})

Thus the permutations $(1,4),(2,4),(1,2,3)$ and $(1,2,4)$ of $\{1,2,3,4\}$ give
rise (respectively) to the permutations (p2,p3), (p1, p3), (p1, p2, p3) and (p1,p3,p2) of $\{p 1, p 2, p 3\}$

```
\(>\operatorname{Set}(\mathrm{K})\);
    \(\operatorname{Id}(\mathrm{K})\),
    \((1,3)(2,4)\),
    \((1,2)(3,4)\),
    \((1,4)(2,3)\)
\}
\(>f(G!(1,2)(3,4))\);
Id (L)
\(>f(G!(1,3)(2,4))\);
Id (L)
\(>f(G!(1,4)(2,3))\);
\(\operatorname{Id}(\mathrm{L})\)
> \(\mathrm{A}:=\{\mathrm{x} * \mathrm{k}: \mathrm{k}\) in K\(\}\);
\(>\) for \(t\) in \(A\) do \(f(t)\); end for;
(\{
    \(\{1,4\}\),
    \(\{2,3\}\)
\}, \{
    \(\{1,2\}\),
    \(\{3,4\}\)
\})
```

So all the elements in the coset xK give rise to the same permutation of \{p1,p2,p3\}, namely (p1,p3).

```
> B:={G! (1,4)*k : k in K};
> for t in B do f(t); end for;
({
    { 1, 2 },
    {3,4}
}, {
    {1,3},
    {2,4}
})
({
    { 1, 2 },
    { 3, 4}
}, {
    { 1, 3},
    {2,4}
```

$>\mathrm{C}:=\{\mathrm{G}!(2,4) * \mathrm{k}: \mathrm{k}$ in K$\}$;
$>$ for t in C do $f(t)$;
for> end for;
(\{
$\{1,4\}$,
$\{2,3\}$
\}, \{
$\{1,2\}$,
$\{3,4\}$
\})
(\{
$\{1,4\}$,
$\{2,3\}$
\}, \{
$\{1,2\}$,
$\{3,4\}$
\})
(\{
$\{1,4\}$,
$\{2,3\}$
\}, \{
$\{1,2\}$,
\{3,4\}
\})
(\{
$\{1,4\}$,
$\{2,3\}$
\}, \{
$\{1,2\}$
$\{3,4\}$
\})
$>\mathrm{D}:=\{\mathrm{G}!(1,2,4) * \mathrm{k}: \mathrm{k}$ in K$\}$;
$>$ for t in D do $f(t)$;
for> end for
(\{
$\{1,4\}$,
$\{2,3\}$

All elements of $(1,2,4) \mathrm{K}$ give rise to ($\mathrm{p} 1, \mathrm{p} 3, \mathrm{p} 2$), and all elements of $(2,4) \mathrm{K}$ give rise to ($\mathrm{p} 1, \mathrm{p} 3$).
Why do elements of $(2,4) \mathrm{K}$ give rise to the same permutation of $\{\mathrm{p} 1, \mathrm{p} 2, \mathrm{p} 3\}$ as do elements of $\mathrm{xK}=(1,4,3,2) \mathrm{K}$? Because $(2,4) \mathrm{K}=(1,4,3,2) \mathrm{K}$:
$>G!(2,4) * K$ eq $x * K$;

All the elements in the coset $(1,4) \mathrm{K}$ give rise to the same permutation of \{p1, p2, p3\}, namely (p2,p3).

[^0]: > G:=Sym(4);
 > $x:=G!(1,3,4)$;
 > $y:=G!(2,3,4)$;

