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Tutorial 1

Please be sure to bring your lecture notes to the tutorial.

At the end of the semester you will be awarded a mark for tutorial participation.
If you merely attend the tutorial without working on the problems then you will
not receive credit for that tutorial.

The system log files record your attendance at the computer tutorials. These will
also be consulted when determining your tutorial mark.

1. Let u
˜

= (1, 0,−5, 7)T and v
˜

= (21, 2, 2,−2)T . Find the lengths of u
˜

and v
˜

and
the angle between them.

Solution.

‖u
˜
‖2 = u

˜
· u
˜

= 12 + 02 + (−5)2 + 72 = 75; so ‖u
˜
‖ = 5

√
3 ≈ 8.66. Simlarly,

‖v
˜
‖ =

√
453 ≈ 21.28, and u

˜
· v
˜

= 1 × 21 − 5 × 2 − 7 × 2 = −3. The angle
between u

˜
and v

˜
is arccos

( −3
5
√

3
√

453

)
≈ 1.59 radians (which is about 90◦ 56′).

2. The four points (0, 0, 0), (1, 1, 0), (1, 0, 1) and (0, 1, 1) are the vertices of a
tetrahedron in R3.

(i) Show that all six edges of this tetrahedron have the same length.

(ii) Given that the centre of this tetrahedron is (1/2, 1/2, 1/2), calculate the
angle between two rays joining the centre to two of the vertices. Check
that you get the same answer whichever two vertices you choose.

(This tetrahedron can be seen as a model of a methane molecule, with a
carbon atom at the centre and hydrogen atoms at the vertices. The angle in
Part (ii) is the “bond angle”.)

Solution.

(i) Let v
˜
1 = (1, 1, 0)T , v

˜
2 = (1, 0, 1)T , v

˜
3 = (0, 1, 1)T , the vectors rep-

resenting three of the vertices; the remaining vertex is given by the
vector v

˜
0 = 0

˜
. Now d(v

˜
1, v

˜
0) = ‖v

˜
1‖ =

√
12 + 12 + 02 =

√
2, and

by a similar calculation d(v
˜
2, v

˜
0) = d(v

˜
3, v

˜
0) =

√
2. We also have

d(v
˜
1, v

˜
2) = ‖v

˜
1−v

˜
2‖ = ‖(0, 1,−1)‖ =

√
2, and again similar calculations

give d(v
˜
1, v

˜
3) = ‖(1, 0,−1)‖ =

√
2 and d(v

˜
2, v

˜
3) = ‖(1,−1, 0)‖ =

√
2.
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(ii) Let w
˜

= ( 1
2 , 1

2 , 1
2 )T . Then d(v

˜
0, w

˜
) = ‖w

˜
‖ =

√
1
4 + 1

4 + 1
4 =

√
3

2 . More-

over, d(v
˜
1, w

˜
) = ‖v

˜
1 − w

˜
‖ = ‖( 1

2 , 1
2 ,− 1

2 )‖ =
√

3
2 , and we find simi-

larly that d(v
˜
2, w

˜
) = d(v

˜
3, w

˜
) =

√
3

2 . The rays from the centre to the
vertices v

˜
1 and v

˜
2 correspond to the vectors v

˜
1 − w

˜
= ( 1

2 , 1
2 ,− 1

2 ) and
v
˜
2 −w

˜
= ( 1

2 ,− 1
2 , 1

2 ). The dot product of these two is 1
4 −

1
4 −

1
4 , and so

the cosine of the angle between them is (− 1
4/ 3

4 ) (since they each have
length

√
3

2 ). So the angle is arccos(−1/3) ≈ 1.91 radians, or 109◦ 28′.
The other pairs of rays give the same angle.

3. Prove the following properties of the dot product.

(i) (u
˜

+ v
˜
) · w

˜
= u

˜
· w
˜

+ v
˜
· w
˜

for all u
˜
, v
˜
, w

˜
∈ Rn.

(ii) u
˜
· v
˜

= v
˜
· u
˜

for all u
˜
, v
˜
∈ Rn.

(iii) k(u
˜
· v
˜
) = (ku

˜
) · v

˜
= u

˜
· (kv

˜
) for all u

˜
, v
˜
∈ Rn and k ∈ R.

(iv) u
˜
· u
˜
≥ 0, and if u

˜
· u
˜

= 0 then u
˜

= 0
˜
, for all u

˜
∈ Rn.

Solution.

Let u
˜

= (u1, u2, . . . , un)T , v
˜

= (v1, v2, . . . , vn)T w
˜

= (w1, w2, . . . , wn)T .
Then u

˜
+ v

˜
= (u1 + v1, u2 + v2, . . . , un + vn)T , and

(u
˜

+ v
˜
) · w

˜
= (u1 + v1)w1 + (u2 + v2)w2 + · · ·+ (un + vn)wn

= (u1w1 + v1w1) + (u2w2 + v2w2) + · · ·+ (unwn + vnwn)
= (u1w1 + u2w2 + · · ·+ unwn) + (v1w1 + v2w2 + · · ·+ vnwn)
= u

˜
· w
˜

+ v
˜
· w
˜

proving (i). Similarly, u
˜
·v
˜

=
∑n

i=1 uivi =
∑n

i=1 viui = v
˜
·u
˜
, proving (ii). And

k(u
˜
· v
˜
) = k

∑n
i=1 uivi =

∑n
i=1(kui)vi = (ku

˜
) · v

˜
=

∑n
i=1 ui(kvi) = u

˜
· (kv

˜
),

proving (iii). As for (iv), u
˜
· u
˜

=
∑n

i=1 u2
i ≥ 0, since all u2

i are nonnegative,
and if any u2

i is strictly positive then u
˜
· u
˜

> 0. So if u
˜
· u
˜

= 0 then each u2
i

must be zero, giving v
˜

= 0
˜
.

4. If u
˜

and v
˜

are points in Rn then the distance d(u
˜
, v
˜
) from u

˜
to v

˜
is defined by

d(u
˜
, v
˜
) = ‖u

˜
−v

˜
‖. The triangle inequality says that d(u

˜
, v
˜
)+d(v

˜
, w
˜
) ≥ d(u

˜
, w
˜
)

for all u
˜
, v
˜
, w

˜
∈ Rn. Fill in the details of the following proof of this fact.

(i) Use properties of dot products to show that ‖x
˜
+y

˜
‖2 = ‖x

˜
‖2+2x

˜
·y
˜
+‖y

˜
‖2,

and deduce that ‖x
˜

+ y
˜
‖2 ≤ ‖x

˜
‖2 + 2‖x

˜
‖‖y

˜
‖+ ‖y

˜
‖2. (Use the Cauchy-

Schwarz inequality for this step.)
(ii) Conclude that ‖x

˜
+ y

˜
‖ ≤ ‖x

˜
‖+ ‖y

˜
‖. (This is also a fact that you should

remember.)
(iii) In (ii) replace x

˜
by u

˜
− v

˜
and y

˜
by v

˜
− w

˜
.
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Solution.

The Cauchy-Schwarz inequality says that |x
˜
· y
˜
| ≤ ‖x

˜
‖ ‖y

˜
‖ for all x

˜
, y
˜
∈ Rn.

Since obviously x
˜
· y
˜
≤ |x

˜
· y
˜
|, it follows that for all x

˜
, y
˜
∈ Rn,

‖x
˜

+ y
˜
‖2 = (x

˜
+ y

˜
) · (x

˜
+ y

˜
)

= x
˜
· y
˜

+ 2x
˜
· y
˜

= y
˜
· y
˜

= ‖x
˜
‖2 + 2x

˜
· y
˜

+ ‖y
˜
‖2

≤ ‖x
˜
‖2 + 2‖x

˜
‖ ‖y

˜
‖+ ‖y

˜
‖2

= (‖x
˜
‖+ ‖y

˜
‖)2.

Since ‖x
˜

+ y
˜
‖ and ‖x

˜
‖+ ‖y

˜
‖ are both nonnegative, taking square roots gives

‖x
˜

+ y
˜
‖ ≤ ‖x

˜
‖+ ‖y

˜
‖, as required for Part (ii). Since this holds for all x

˜
and

y
˜
∈ Rn, it holds when x

˜
= u

˜
− v

˜
and y

˜
= v

˜
− w

˜
, for any u

˜
, v
˜
, w

˜
∈ Rn. Now

x
˜
+y

˜
= (u

˜
−v

˜
)+(v

˜
−w

˜
) = u

˜
−w

˜
; so ‖u

˜
−w

˜
‖ ≤ ‖u

˜
−v

˜
‖+‖v

˜
−w

˜
‖, as required.

5. Let B be a square matrix.

(i) Show that B + BT is symmetric.
(ii) Show that B − BT is skew-symmetric. (A matrix X is called skew-

symmetric if XT = −X.)

Solution.

We use the properties of the transpose operation that were stated in lectures.
In particular, (X + Y )T = XT + Y T whenever X and Y are matrices of the
same shape. Here since B is square we see that BT has the same shape as B,
and so B + BT and B −BT both make sense.

(i) (B + BT )T = BT + (BT )T = BT + B = B + BT .
(ii) (B −BT )T = BT − (BT )T = BT −B = −(B −BT ).

6. Let v
˜

be a fixed non-zero vector in Rn. Let W be the set of all vectors in Rn

orthogonal to v
˜
. Show that W is a subspace of Rn.

Solution.

Recall that a subset of Rn is a subspace if and only if it contains the zero
vector and is closed under addition and scalar multiplication. So to prove
that W is a subspace we must prove the following facts:

(a) 0
˜
∈ W ;

(b) if x
˜
, y
˜
∈ W then x

˜
+ y

˜
∈ W ;

(c) if x
˜
∈ W then kx

˜
∈ W for all scalars k.

We have 0
˜
· v
˜

= 0, and therefore 0
˜
∈ W . So (a) holds. Let x

˜
, y
˜
∈ W . Then

x
˜
· v
˜

= 0 and y
˜
· v
˜

= 0, and we see that (x
˜

+ y
˜
) · v

˜
= x

˜
· v
˜

+ y
˜
· v
˜

= 0 + 0 = 0.
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It follows that x
˜

+ y
˜
∈ W . This is true for all x

˜
, y
˜
∈ W ; so (b) holds.

Finally, suppose that x
˜
∈ W and that k is any scalar. Then x

˜
· v
˜

= 0, and
(kx

˜
) · v

˜
= k(x

˜
· v
˜
) = k0 = 0. Hence kx

˜
∈ W . Thus (c) holds too, and so W is

a subspace.

7. Let u
˜
, v
˜
∈ Rn with u

˜
6= 0

˜
. Show that the Cauchy-Schwarz inequality becomes

an equality (that is, |u
˜
· v
˜
| = ‖u

˜
‖ ‖v

˜
‖) only if v

˜
= λu

˜
for some scalar λ. (Hint:

Calculate (λu
˜
+v

˜
) ·(λu

˜
+v

˜
) when λ = −(u

˜
·v
˜
)/(u

˜
·u
˜
).) Check also the converse

statement: if v
˜

= λu
˜

for some scalar λ then |u
˜
· v
˜
| = ‖u

˜
‖ ‖v

˜
‖.

Solution.

Suppose that |u
˜
· v
˜
| = ‖u

˜
‖ ‖v

˜
‖ and u

˜
6= 0

˜
. If λ is any scalar then

(λu
˜

+ v
˜
) · (λu

˜
+ v

˜
) = λ2u

˜
· u
˜

+ 2λu
˜
· v
˜

+ v
˜
· v
˜
,

and if we put λ = −(u
˜
· v
˜
)/(u

˜
· u
˜
) then we find that

(λu
˜

+ v
˜
) · (λu

˜
+ v

˜
) =

(u
˜
· v
˜

u
˜
· u
˜

)2

u
˜
· u
˜
− 2

(u
˜
· v
˜

u
˜
· u
˜

)
u
˜
· v
˜

+ v
˜
· v
˜

=
(u
˜
· v
˜
)2

u
˜
· u
˜

− 2
(u
˜
· v
˜
)2

u
˜
· u
˜

+ v
˜
· v
˜

= − (u
˜
· v
˜
)2

u
˜
· u
˜

+ v
˜
· v
˜

= − (u
˜
· v
˜
)2

‖u
˜
‖2

+ ‖v
˜
‖2.

But since we are assuming that |u
˜
· v
˜
| = ‖u

˜
‖ ‖v

˜
‖, this last expression equals

−‖u
˜
‖2‖v

˜
‖2

‖u
˜
‖2 + ‖v

˜
‖2 = 0. Thus (λu

˜
+ v

˜
) · (λu

˜
+ v

˜
) = 0, which means that

λu
˜

+ v
˜

= 0
˜
, and so v = −λu. (The hint should really have told you to look

at (λu
˜
− v

˜
) · (λu

˜
− v

˜
) with λ = (u

˜
· v
˜
)/(u

˜
· u
˜
). Then we would have obtained

v = λu rather than v = −λu.)
Conversely, if v = λu then

|u
˜
· v
˜
| = |λ(u

˜
· u
˜
)| = |λ| ‖u

˜
‖2 = ‖u

˜
‖ ‖λu

˜
‖ = ‖u

˜
‖ ‖v

˜
‖,

as required.


