The University of Sydney

MATH2008 Introduction to Modern Algebra

(http://www.maths.usyd.edu.au/u/UG/IM/MATH2008/)

Semester2, 2003

Lecturer: R. Howlett

Tutorial 2

1. Calculate the projection of the vector $v = (1, 1, 0) \in (\mathbb{R}^3)'$ onto the onedimensional space spanned by a = (1, -2, 1). Check that if p is this projection then p - v is orthogonal to a.

Solution.

- We have $\underline{p} = \frac{(\underline{a} \cdot \underline{v})}{(\underline{a} \cdot \underline{a})} \underline{a} = \frac{(-1)}{6} (1, -2, 1) = (-\frac{1}{6}, \frac{1}{3}, -\frac{1}{6})$; so $\underline{p} \underline{v} = (-\frac{7}{6}, -\frac{2}{3}, -\frac{1}{6})$, and consequently $(\underline{p} - \underline{v}) \cdot \underline{a} = -\frac{7}{6} + \frac{4}{3} - \frac{1}{6} = 0$.
- 2. Calculate the projection \underline{p} of $\underline{v} = (1, 2, 3, 4)^T$ onto the subspace of \mathbb{R}^4 spanned by the following three vectors:

$$\tilde{a}_1 = \begin{pmatrix} 1 \\ 0 \\ -1 \\ 0 \end{pmatrix}, \quad \tilde{a}_2 = \begin{pmatrix} -1 \\ 0 \\ 0 \\ 1 \end{pmatrix}, \quad \tilde{a}_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 1 \end{pmatrix}.$$

Check that v - p is orthogonal to each of a_1 , a_2 and a_3 .

Solution.

Let $W = \text{Span}(a_1, a_2, a_3)$. To apply the formulas given in lectures, we need a basis for the space W. In fact the vectors a_1, a_2, a_3 are linearly independent, and hence form a basis. To check this, suppose that

$$\lambda_1 \begin{pmatrix} 1\\0\\-1\\0 \end{pmatrix} + \lambda_2 \begin{pmatrix} -1\\0\\0\\1 \end{pmatrix} + \lambda_3 \begin{pmatrix} 0\\0\\1\\1 \end{pmatrix} = \begin{pmatrix} 0\\0\\0\\0 \end{pmatrix}.$$

The first equation gives $\lambda_1 = \lambda_2$ and the third gives $\lambda_1 = \lambda_3$. So λ_1 , λ_2 and λ_3 are all equal; let us call their common value λ . The fourth equation now gives $2\lambda = 0$; so all the coefficients λ_i must be zero, and this proves that the q_i are linearly independent.

Let A be the 4×3 matrix whose columns are a_1, a_2, a_3 . Then

$$A^{T}A = \begin{pmatrix} 1 & 0 & -1 & 0 \\ -1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & -1 & 0 \\ 0 & 0 & 0 \\ -1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & 1 \\ -1 & 1 & 2 \end{pmatrix}$$

and

$$A^{T} \underline{v} = \begin{pmatrix} 1 & 0 & -1 & 0 \\ -1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \end{pmatrix} = \begin{pmatrix} -2 \\ 3 \\ 7 \end{pmatrix}.$$

The projection is given by $\underline{p} = A\underline{x}$, where $A^T A\underline{x} = A^T \underline{v}$; so we start by solving this system.

$$\begin{pmatrix} 2 & -1 & -1 & | & -2 \\ -1 & 2 & 1 & | & 3 \\ -1 & 1 & 2 & | & 7 \end{pmatrix} \xrightarrow{R_1 \leftrightarrow R_2}_{\substack{R_2 \coloneqq R_2 + 2R_1 \\ R_3 \coloneqq R_3 - R_1 \end{pmatrix}} \begin{pmatrix} -1 & 2 & 1 & | & 3 \\ 0 & 3 & 1 & | & 4 \\ 0 & -1 & 1 & | & 4 \end{pmatrix}$$
$$\xrightarrow{R_2 \leftrightarrow R_3}_{\substack{R_3 \coloneqq R_3 + 3R_2 \\ 0 & 0 & 4 & | & 16 \end{pmatrix}$$

and now back substitution gives $x_3 = 4$, $x_2 = 0$ and $x_1 = 1$ (where x_1, x_2 and x_3 are the entries of x. So

$$\underline{p} = \begin{pmatrix} 1 & -1 & 0\\ 0 & 0 & 0\\ -1 & 0 & 1\\ 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1\\ 0\\ 4 \end{pmatrix} = \begin{pmatrix} 1\\ 0\\ 3\\ 4 \end{pmatrix}$$

So $\underline{v} - \underline{p} = (0, 2, 0, 0)^T$. If we compute the dot product of this with an arbitrary column vector $\underline{a} \in \mathbb{R}^4$ then it is clear that the answer will be zero if the second component of \underline{a} is zero, since

$$\begin{pmatrix} 0\\2\\0\\0 \end{pmatrix} \begin{pmatrix} \alpha\\\beta\\\gamma\\\delta \end{pmatrix} = 0\alpha + 2\beta + 0\gamma + 0\delta = 2\beta = 0 \quad \text{if and only if } \beta = 0.$$

Since a_1 , a_2 and a_3 all satisfy this condition, it is true that v - p is orthogonal to a_1 , a_2 and a_3 .

3. Let $\{a_1, a_2, \ldots, a_k\}$ be a basis for a subspace W of \mathbb{R}^n , and let v be any vector in \mathbb{R}^n . Show that v is orthogonal to each of a_1, a_2, \ldots, a_k if and only if v is orthogonal to every vector in W.

Solution.

Since a_1, a_2, \ldots, a_k are vectors in W, if v is orthogonal to every vector in Wthen it is certainly orthogonal to a_1, a_2, \ldots, a_k . Conversely, suppose that vis orthogonal to each of a_1, a_2, \ldots, a_k and let w be an arbitrary vector in W. Then $w = \lambda_1 a_1 + \lambda_2 a_2 + \cdots + \lambda_n a_k$ for some scalars λ_i (since the a_i span W), and so $w \cdot v = \lambda_1 a_1 \cdot v + \lambda_2 a_2 \cdot v + \cdots + \lambda_n a_n \cdot v = 0$, because $a_i \cdot v = 0$ for all *i*. Since w was chosen as an arbitrary element of W, this shows that v is orthogonal to all elements of W, as required.

- 3
- 4. Find the least squares line of best fit for the four points (0,1), (2,0), (3,1) and (3,2).

Solution.

Let A be the 4×2 matrix whose 1st column consists of 1's and whose 2nd column consists of the x-coordinates of the data points. We must solve $A^T A \begin{pmatrix} a \\ b \end{pmatrix} = A^T y$, where the entries of y are the y-coordinates of the data points. We have

$$A^{T}A = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 2 & 3 & 3 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 1 & 2 \\ 1 & 3 \\ 1 & 3 \end{pmatrix} = \begin{pmatrix} 4 & 8 \\ 8 & 22 \end{pmatrix},$$

and

$$A^T \underline{y} = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 2 & 3 & 3 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 4 \\ 9 \end{pmatrix}$$

11

.

The equation to be solved is therefore

$$\begin{pmatrix} 4 & 8 \\ 8 & 22 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} 4 \\ 9 \end{pmatrix},$$

and the solution is

$$\begin{pmatrix} a \\ b \end{pmatrix} = \frac{1}{24} \begin{pmatrix} 22 & -8 \\ -8 & 4 \end{pmatrix} \begin{pmatrix} 4 \\ 9 \end{pmatrix} = \begin{pmatrix} 2/3 \\ 1/6 \end{pmatrix}$$

Thus the line of best fit has equation $y = \frac{2}{3} + \frac{1}{6}x$.

- 5. For each collection of data points below, find the parabola $y = a + bx + cx^2$ of best fit.
 - (i) (-1,0), (0,0), (0,1), (1,2).
 - (ii) (-1,0), (0,0), (0,1), (1,1).
 - (iii) (-1,0), (0,0), (0,1), (1,0).

Solution.

The 1st column of A should be all 1's, the 2nd should consist of the x-coordinates of the data points, the third should consist of the squares of these x-coordinates. We see that for all parts of this question, A is the same, namely

$$A = \begin{pmatrix} 1 & -1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \end{pmatrix}.$$

We must solve the equation $A^T A \tilde{a} = A^T \tilde{y}$ for \tilde{a} , where the entries of \tilde{y} are the *y*-coordinates of the data points. Observe that

$$A^{T}A = \begin{pmatrix} 1 & 1 & 1 & 1 \\ -1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & -1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 4 & 0 & 2 \\ 0 & 2 & 0 \\ 2 & 0 & 2 \end{pmatrix}$$

In Part (*i*), $y = (0, 0, 1, 2)^T$ and so

$$A^{T} \underbrace{y}_{\tilde{y}} = \begin{pmatrix} 1 & 1 & 1 & 1 \\ -1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 3 \\ 2 \\ 2 \end{pmatrix}.$$

Solving

$$\begin{pmatrix} 4 & 0 & 2 \\ 0 & 2 & 0 \\ 2 & 0 & 2 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} 3 \\ 2 \\ 2 \end{pmatrix}$$

· · · ·

gives a = 1/2, b = 1 and c = 1/2. So the parabola of best fit is $y = \frac{1}{2} + x + \frac{1}{2}x^2$. For Part (*ii*) we have $y = (0, 0, 1, 1)^T$, giving $A^T y = (2, 1, 1)^T$. Solving $A^T A a = A^T y$ gives (a, b, c) = (1/2, 1/2, 0). So the "parabola" is actually the straight line $y = \frac{1}{2} + \frac{1}{2}x$.

For Part (*iii*),
$$\underline{y} = (0, 0, 1, 1)^T$$
 and $A^T \underline{y} = (1, 0, 0)^T$. Solving $A^T A \underline{a} = A^T \underline{y}$ gives $(a, b, c) = (1/2, 0, -1/2)$. So the parabola of best fit is $y = \frac{1}{2} - \frac{1}{2}x^2$.

(For each part of the question it would be a good idea to plot the parabola and the four given points on graph paper to see if the parabola of best fit is reasonable.)

6. Find the cubic curve $y = a + bx + cx^2 + dx^3$ that best fits the following data points: (-1, -14), (0, -5), (1, -4), (2, 1), (3, 22).

Solution.

Let A be the 5×4 matrix whose 1st column consists of 1's, 2nd column the xcoordinates of the data points, 3rd column the squares of these x-coordinates, 4th column the cubes of the x-coordinates, and solve $A^T A \hat{q} = A^T \hat{y}$ for \hat{q} , the entries of \hat{y} being the y-coordinates of the data points. The answer is $\hat{q} = (-5, 3, -4, 2)^T$, and so the cubic of best fit is $y = -5 + 3x - 4x^2 + 2x^3$. (It actually goes through all of the data points.)

7. If
$$A = \begin{pmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots & \vdots \\ 1 & x_k \end{pmatrix}$$
, show that $A^T A = \begin{pmatrix} k & \sum x_i \\ \sum x_i & \sum x_i^2 \end{pmatrix}$.

Solution.

The (i, j) entry of $A^T A$ is the dot product of the *i*-th and *j*-th columns of A. So the (1, 1) entry is $\sum_{i=1}^{k} 1^2 = k$, the (1, 2) and (2, 1) entries are both $\sum_{i=1}^{k} 1x_i$, and the (2, 2) entry is $\sum_{i=1}^{k} x_i^2$.