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1. Calculate the projection of the vector v
˜

= (1, 1, 0) ∈ (R3)′ onto the one-
dimensional space spanned by a

˜
= (1,−2, 1). Check that if p

˜
is this projection

then p
˜
− v

˜
is orthogonal to a

˜
.

Solution.

We have p
˜

= (a
˜
·v
˜
)

(a
˜
·a
˜
)a˜

= (−1)
6 (1,−2, 1) = (− 1

6 , 1
3 ,− 1

6 ); so p
˜
− v

˜
= (− 7

6 ,− 2
3 ,− 1

6 ),
and consequently (p

˜
− v

˜
) · a

˜
= − 7

6 + 4
3 −

1
6 = 0.

2. Calculate the projection p
˜

of v
˜

= (1, 2, 3, 4)T onto the subspace of R4 spanned
by the following three vectors:

a
˜
1 =


1
0
−1
0

 , a
˜
2 =


−1
0
0
1

 , a
˜
3 =


0
0
1
1

 .

Check that v
˜
− p

˜
is orthogonal to each of a

˜
1, a

˜
2 and a

˜
3.

Solution.

Let W = Span(a
˜
1, a

˜
2, a

˜
3). To apply the formulas given in lectures, we need a

basis for the space W . In fact the vectors a
˜
1, a

˜
2, a

˜
3 are linearly independent,

and hence form a basis. To check this, suppose that

λ1


1
0
−1
0

 + λ2


−1
0
0
1

 + λ3


0
0
1
1

 =


0
0
0
0

 .

The first equation gives λ1 = λ2 and the third gives λ1 = λ3. So λ1, λ2 and
λ3 are all equal; let us call their common value λ. The fourth equation now
gives 2λ = 0; so all the coefficients λi must be zero, and this proves that the
a
˜

i are linearly independent.
Let A be the 4× 3 matrix whose columns are a

˜
1, a

˜
2, a

˜
3. Then

AT A =

 1 0 −1 0
−1 0 0 1
0 0 1 1




1 −1 0
0 0 0
−1 0 1
0 1 1

 =

 2 −1 −1
−1 2 1
−1 1 2



2

and

AT v
˜

=

 1 0 −1 0
−1 0 0 1
0 0 1 1




1
2
3
4

 =

−2
3
7

 .

The projection is given by p
˜

= Ax
˜
, where AT Ax

˜
= AT v

˜
; so we start by solving

this system. 2 −1 −1 −2
−1 2 1 3
−1 1 2 7

 R1↔R2
R2:=R2+2R1
R3:=R3−R1−−−−−−−→

−1 2 1 3
0 3 1 4
0 −1 1 4


R2↔R3

R3:=R3+3R2−−−−−−−→

−1 2 1 3
0 −1 1 4
0 0 4 16


and now back substitution gives x3 = 4, x2 = 0 and x1 = 1 (where x1, x2 and
x3 are the entries of x

˜
. So

p
˜

=


1 −1 0
0 0 0
−1 0 1
0 1 1


 1

0
4

 =


1
0
3
4

 .

So v
˜
−p

˜
= (0, 2, 0, 0)T . If we compute the dot product of this with an arbitrary

column vector a
˜
∈ R4 then it is clear that the answer will be zero if the second

component of a
˜

is zero, since
0
2
0
0




α
β
γ
δ

 = 0α + 2β + 0γ + 0δ = 2β = 0 if and only if β = 0.

Since a
˜
1, a

˜
2 and a

˜
3 all satisfy this condition, it is true that v

˜
−p

˜
is orthogonal

to a
˜
1, a

˜
2 and a

˜
3.

3. Let {a
˜
1, a

˜
2, . . . , a

˜
k} be a basis for a subspace W of Rn, and let v

˜
be any vector

in Rn. Show that v
˜

is orthogonal to each of a
˜
1, a

˜
2, . . . , a

˜
k if and only if v

˜
is

orthogonal to every vector in W .

Solution.

Since a
˜
1, a

˜
2, . . . , a

˜
k are vectors in W , if v

˜
is orthogonal to every vector in W

then it is certainly orthogonal to a
˜
1, a

˜
2, . . . , a

˜
k. Conversely, suppose that v

˜is orthogonal to each of a
˜
1, a

˜
2, . . . , a

˜
k and let w

˜
be an arbitrary vector in W .

Then w
˜

= λ1a
˜
1 +λ2a

˜
2 + · · ·+λna

˜
k for some scalars λi (since the a

˜
i span W ),

and so w
˜
· v
˜

= λ1a
˜
1 · v

˜
+ λ2a

˜
2 · v

˜
+ · · · + λna

˜
n · v

˜
= 0, because a

˜
i · v

˜
= 0 for

all i. Since w
˜

was chosen as an arbitrary element of W , this shows that v
˜

is
orthogonal to all elements of W , as required.
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4. Find the least squares line of best fit for the four points (0, 1), (2, 0), (3, 1)
and (3, 2).

Solution.

Let A be the 4 × 2 matrix whose 1st column consists of 1’s and whose 2nd
column consists of the x-coordinates of the data points. We must solve
AT A

( a

b

)
= AT y

˜
, where the entries of y

˜
are the y-coordinates of the data

points. We have

AT A =
(

1 1 1 1
0 2 3 3

) 
1 0
1 2
1 3
1 3

 =
(

4 8
8 22

)
,

and

AT y
˜

=
(

1 1 1 1
0 2 3 3

) 
1
0
1
2

 =
(

4
9

)
.

The equation to be solved is therefore(
4 8
8 22

) (
a
b

)
=

(
4
9

)
,

and the solution is(
a
b

)
=

1
24

(
22 −8
−8 4

) (
4
9

)
=

(
2/3
1/6

)
.

Thus the line of best fit has equation y = 2
3 + 1

6x.

5. For each collection of data points below, find the parabola y = a + bx + cx2

of best fit.

(i) (−1, 0), (0, 0), (0, 1), (1, 2).
(ii) (−1, 0), (0, 0), (0, 1), (1, 1).
(iii) (−1, 0), (0, 0), (0, 1), (1, 0).

Solution.

The 1st column of A should be all 1’s, the 2nd should consist of the x-
coordintates of the data points, the third should consist of the squares of
these x-coordinates. We see that for all parts of this question, A is the same,
namely

A =


1 −1 1
1 0 0
1 0 0
1 1 1

 .

4

We must solve the equation AT Aa
˜

= AT y
˜

for a
˜
, where the entries of y

˜
are

the y-coordinates of the data points. Observe that

AT A =

 1 1 1 1
−1 0 0 1
1 0 0 1




1 −1 1
1 0 0
1 0 0
1 1 1

 =

 4 0 2
0 2 0
2 0 2

 .

In Part (i), y
˜

= (0, 0, 1, 2)T and so

AT y
˜

=

 1 1 1 1
−1 0 0 1
1 0 0 1




0
0
1
2

 =

 3
2
2

 .

Solving  4 0 2
0 2 0
2 0 2

  a
b
c

 =

 3
2
2


gives a = 1/2, b = 1 and c = 1/2. So the parabola of best fit is y = 1

2 +x+ 1
2x2.

For Part (ii) we have y
˜

= (0, 0, 1, 1)T , giving AT y
˜

= (2, 1, 1)T . Solving
AT Aa

˜
= AT y

˜
gives (a, b, c) = (1/2, 1/2, 0). So the “parabola” is actually the

straight line y = 1
2 + 1

2x.
For Part (iii), y

˜
= (0, 0, 1, 1)T and AT y

˜
= (1, 0, 0)T . Solving AT Aa

˜
= AT y

˜gives (a, b, c) = (1/2, 0,−1/2). So the parabola of best fit is y = 1
2 −

1
2x2.

(For each part of the question it would be a good idea to plot the parabola
and the four given points on graph paper to see if the parabola of best fit is
reasonable.)

6. Find the cubic curve y = a + bx + cx2 + dx3 that best fits the following data
points: (−1,−14), (0,−5), (1,−4), (2, 1), (3, 22).

Solution.

Let A be the 5×4 matrix whose 1st column consists of 1’s, 2nd column the x-
coordinates of the data points, 3rd column the squares of these x-coordinates,
4th column the cubes of the x-coordinates, and solve AT Aa

˜
= AT y

˜
for a

˜
,

the entries of y
˜

being the y-coordinates of the data points. The answer is
a
˜

= (−5, 3,−4, 2)T , and so the cubic of best fit is y = −5 + 3x − 4x2 + 2x3.
(It actually goes through all of the data points.)

7. If A =


1 x1

1 x2
...

...
1 xk

, show that AT A =
(

k
∑

xi∑
xi

∑
x2

i

)
.

Solution.

The (i, j) entry of AT A is the dot product of the i-th and j-th columns of A. So
the (1, 1) entry is

∑k
i=1 12 = k, the (1,2) and (2,1) entries are both

∑k
i=1 1xi,

and the (2,2) entry is
∑k

i=1 x2
i .


