The University of Sydney
MATH2008 Introduction to Modern Algebra
(http://www.maths.usyd.edu.au/u/UG/IM/MATH2008/)

Tutorial 2

1. Calculate the projection of the vector $\underset{\sim}{v}=(1,1,0) \in\left(\mathbb{R}^{3}\right)^{\prime}$ onto the onedimensional space spanned by $\underset{\sim}{a}=(1,-2,1)$. Check that if $\underset{\sim}{p}$ is this projection then $\underset{\sim}{p}-\underset{\sim}{v}$ is orthogonal to $\underset{\sim}{a}$.

Solution.
We have $\underset{\sim}{p}=\frac{(\underset{\sim}{a} \cdot \underline{v})}{(\underset{\sim}{a} \cdot a)} \underset{\sim}{a}=\frac{(-1)}{6}(1,-2,1)=\left(-\frac{1}{6}, \frac{1}{3},-\frac{1}{6}\right) ;$ so $\underset{\sim}{p}-\underset{\sim}{v}=\left(-\frac{7}{6},-\frac{2}{3},-\frac{1}{6}\right)$, and consequently $(\underset{\sim}{p}-\underset{\sim}{v}) \cdot \underset{\sim}{a}=-\frac{7}{6}+\frac{4}{3}-\frac{1}{6}=0$.
2. Calculate the projection $\underset{\sim}{p}$ of $\underset{\sim}{v}=(1,2,3,4)^{T}$ onto the subspace of \mathbb{R}^{4} spanned by the following three vectors:

$$
\underset{\sim}{a}=\left(\begin{array}{c}
1 \\
0 \\
-1 \\
0
\end{array}\right), \quad \underset{\sim}{a}=\left(\begin{array}{c}
-1 \\
0 \\
0 \\
1
\end{array}\right), \quad{\underset{\sim}{a}}_{3}=\left(\begin{array}{l}
0 \\
0 \\
1 \\
1
\end{array}\right) .
$$

Check that $\underset{\sim}{v}-\underset{\sim}{p}$ is orthogonal to each of $\underset{\sim}{a},{\underset{\sim}{a}}_{2}$ and ${\underset{\sim}{a}}_{3}$.

Solution.

Let $W=\operatorname{Span}\left(a_{1}, a_{2}, a_{3}\right)$. To apply the formulas given in lectures, we need a basis for the space W. In fact the vectors ${\underset{\sim}{a}}_{1},{\underset{\sim}{2}}_{2},{\underset{\sim}{a}}_{3}$ are linearly independent, and hence form a basis. To check this, suppose that

$$
\lambda_{1}\left(\begin{array}{c}
1 \\
0 \\
-1 \\
0
\end{array}\right)+\lambda_{2}\left(\begin{array}{c}
-1 \\
0 \\
0 \\
1
\end{array}\right)+\lambda_{3}\left(\begin{array}{l}
0 \\
0 \\
1 \\
1
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right)
$$

The first equation gives $\lambda_{1}=\lambda_{2}$ and the third gives $\lambda_{1}=\lambda_{3}$. So λ_{1}, λ_{2} and λ_{3} are all equal; let us call their common value λ. The fourth equation now gives $2 \lambda=0$; so all the coefficients λ_{i} must be zero, and this proves that the a_{i} are linearly independent.
Let A be the 4×3 matrix whose columns are $\underset{\sim}{a},{\underset{\sim}{~}}_{2},{\underset{\sim}{a}}_{3}$. Then

$$
A^{T} A=\left(\begin{array}{cccc}
1 & 0 & -1 & 0 \\
-1 & 0 & 0 & 1 \\
0 & 0 & 1 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & -1 & 0 \\
0 & 0 & 0 \\
-1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right)=\left(\begin{array}{ccc}
2 & -1 & -1 \\
-1 & 2 & 1 \\
-1 & 1 & 2
\end{array}\right)
$$

and

$$
A^{T} \underline{v}=\left(\begin{array}{cccc}
1 & 0 & -1 & 0 \\
-1 & 0 & 0 & 1 \\
0 & 0 & 1 & 1
\end{array}\right)\left(\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right)=\left(\begin{array}{c}
-2 \\
3 \\
7
\end{array}\right)
$$

The projection is given by $\underset{\sim}{p}=A \underset{\sim}{x}$, where $A^{T} A \underset{\sim}{x}=A^{T} \underset{\sim}{v}$; so we start by solving this system.

$$
\begin{aligned}
&\left(\begin{array}{ccc|c}
2 & -1 & -1 & -2 \\
-1 & 2 & 1 & 3 \\
-1 & 1 & 2 & 7
\end{array}\right) \xrightarrow{\substack{R_{2} \\
R_{3}:=R_{3}-R_{2}+2 R_{1}}} \begin{aligned}
R_{1} \leftrightarrow R_{2} \\
\hline
\end{aligned}\left(\begin{array}{ccc|c}
-1 & 2 & 1 & 3 \\
0 & 3 & 1 & 4 \\
0 & -1 & 1 & 4
\end{array}\right) \\
& \xrightarrow{\substack{R_{2} \leftrightarrow R_{3} \\
R_{3}:=R_{3}+3 R_{2}}}\left(\begin{array}{ccc|c}
-1 & 2 & 1 & 3 \\
0 & -1 & 1 & 4 \\
0 & 0 & 4 & 16
\end{array}\right)
\end{aligned}
$$

and now back substitution gives $x_{3}=4, x_{2}=0$ and $x_{1}=1$ (where x_{1}, x_{2} and x_{3} are the entries of $\underset{\sim}{x}$. So

$$
\underset{\sim}{p}=\left(\begin{array}{ccc}
1 & -1 & 0 \\
0 & 0 & 0 \\
-1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right)\left(\begin{array}{l}
1 \\
0 \\
4
\end{array}\right)=\left(\begin{array}{l}
1 \\
0 \\
3 \\
4
\end{array}\right)
$$

So $\underset{\sim}{v}-\underset{\sim}{p}=(0,2,0,0)^{T}$. If we compute the dot product of this with an arbitrary column vector $\underset{\sim}{a} \in \mathbb{R}^{4}$ then it is clear that the answer will be zero if the second component of $\underset{\sim}{\tilde{a}}$ is zero, since

$$
\left(\begin{array}{l}
0 \\
2 \\
0 \\
0
\end{array}\right)\left(\begin{array}{l}
\alpha \\
\beta \\
\gamma \\
\delta
\end{array}\right)=0 \alpha+2 \beta+0 \gamma+0 \delta=2 \beta=0 \quad \text { if and only if } \beta=0
$$

Since $\underset{\sim}{a},{\underset{\sim}{2}}_{2}$ and ${\underset{\sim}{a}}_{3}$ all satisfy this condition, it is true that $\underset{\sim}{v}-\underset{\sim}{p}$ is orthogonal to ${\underset{\sim}{a}}_{1},{\underset{\sim}{a}}_{2}$ and ${\underset{\sim}{a}}_{3}$.
3. Let $\left\{{\underset{\sim}{1}}_{1}, a_{2}, \ldots, a_{k}\right\}$ be a basis for a subspace W of \mathbb{R}^{n}, and let v be any vector in \mathbb{R}^{n}. Show that $\underset{v}{v}$ is orthogonal to each of $a_{1}, a_{2}, \ldots, a_{k}$ if and only if v is orthogonal to every vector in W.

Solution.

Since ${\underset{\sim}{c}}_{1},{\underset{\sim}{2}}_{2}, \ldots,{\underset{\sim}{x}}_{k}$ are vectors in W, if $\underset{\sim}{v}$ is orthogonal to every vector in W then it is certainly orthogonal to ${\underset{\sim}{1}}^{a_{1}},{\underset{\sim}{2}}_{2}, \ldots,{\underset{\sim}{k}}_{k}$. Conversely, suppose that $\underset{\sim}{v}$ is orthogonal to each of $a_{1}, a_{2}, \ldots,{\underset{\sim}{a}}_{k}$ and let $\underset{w}{w}$ be an arbitrary vector in W. Then $\underset{\sim}{w}=\lambda_{1}{\underset{\sim}{a}}_{1}+\lambda_{2}{\underset{\sim}{a}}_{2}+\cdots+\lambda_{n}{\underset{\sim}{a}}_{k}$ for some scalars λ_{i} (since the a_{i} span W), and so $\underset{\sim}{w} \cdot \underset{\sim}{v}=\lambda_{1}{\underset{\sim}{c}}_{1} \cdot \underset{\sim}{v}+\lambda_{2}{\underset{\sim}{a}}_{2} \cdot \underset{\sim}{v}+\cdots+\lambda_{n}{\underset{\sim}{a}}_{n} \cdot \underset{\sim}{v}=0$, because $\underset{\sim}{a_{i}} \cdot \underset{\sim}{v}=0$ for all i. Since $\underset{\sim}{w}$ was chosen as an arbitrary element of W, this shows that $\underset{\sim}{v}$ is orthogonal to all elements of W, as required.
4. Find the least squares line of best fit for the four points $(0,1),(2,0),(3,1)$ and (3,2).

Solution.

Let A be the 4×2 matrix whose 1 st column consists of 1 's and whose 2 nd column consists of the x-coordinates of the data points. We must solve $A^{T} A\binom{a}{b}=A^{T} \underset{\sim}{y}$, where the entries of $\underset{\sim}{y}$ are the y-coordinates of the data points. We have

$$
A^{T} A=\left(\begin{array}{llll}
1 & 1 & 1 & 1 \\
0 & 2 & 3 & 3
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
1 & 2 \\
1 & 3 \\
1 & 3
\end{array}\right)=\left(\begin{array}{cc}
4 & 8 \\
8 & 22
\end{array}\right)
$$

and

$$
A^{T} \underset{\sim}{y}=\left(\begin{array}{llll}
1 & 1 & 1 & 1 \\
0 & 2 & 3 & 3
\end{array}\right)\left(\begin{array}{l}
1 \\
0 \\
1 \\
2
\end{array}\right)=\binom{4}{9}
$$

The equation to be solved is therefore

$$
\left(\begin{array}{cc}
4 & 8 \\
8 & 22
\end{array}\right)\binom{a}{b}=\binom{4}{9}
$$

and the solution is

$$
\binom{a}{b}=\frac{1}{24}\left(\begin{array}{cc}
22 & -8 \\
-8 & 4
\end{array}\right)\binom{4}{9}=\binom{2 / 3}{1 / 6}
$$

Thus the line of best fit has equation $y=\frac{2}{3}+\frac{1}{6} x$.
5. For each collection of data points below, find the parabola $y=a+b x+c x^{2}$ of best fit.
(i) $(-1,0),(0,0),(0,1),(1,2)$.
(ii) $(-1,0),(0,0),(0,1),(1,1)$.
(iii) $(-1,0),(0,0),(0,1),(1,0)$.

Solution.
The 1st column of A should be all 1's, the 2 nd should consist of the x coordintates of the data points, the third should consist of the squares of these x-coordinates. We see that for all parts of this question, A is the same, namely

$$
A=\left(\begin{array}{ccc}
1 & -1 & 1 \\
1 & 0 & 0 \\
1 & 0 & 0 \\
1 & 1 & 1
\end{array}\right)
$$

We must solve the equation $A^{T} A \underset{\sim}{a}=A^{T} \underset{\sim}{y}$ for $\underset{\sim}{a}$, where the entries of $\underset{\sim}{y}$ are the y-coordinates of the data points. Observe that

$$
A^{T} A=\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
-1 & 0 & 0 & 1 \\
1 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & -1 & 1 \\
1 & 0 & 0 \\
1 & 0 & 0 \\
1 & 1 & 1
\end{array}\right)=\left(\begin{array}{lll}
4 & 0 & 2 \\
0 & 2 & 0 \\
2 & 0 & 2
\end{array}\right)
$$

In Part $(i), \underset{\sim}{y}=(0,0,1,2)^{T}$ and so

$$
A^{T} \underset{\sim}{y}=\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
-1 & 0 & 0 & 1 \\
1 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
0 \\
0 \\
1 \\
2
\end{array}\right)=\left(\begin{array}{l}
3 \\
2 \\
2
\end{array}\right)
$$

Solving

$$
\left(\begin{array}{lll}
4 & 0 & 2 \\
0 & 2 & 0 \\
2 & 0 & 2
\end{array}\right)\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=\left(\begin{array}{l}
3 \\
2 \\
2
\end{array}\right)
$$

gives $a=1 / 2, b=1$ and $c=1 / 2$. So the parabola of best fit is $y=\frac{1}{2}+x+\frac{1}{2} x^{2}$. For Part (ii) we have $\underset{\sim}{y}=(0,0,1,1)^{T}$, giving $A^{T} \underset{\sim}{y}=(2,1,1)^{T}$. Solving $A^{T} A \underset{\sim}{a}=A^{T} \underset{\sim}{y}$ gives $(a, \tilde{b, c})=(1 / 2,1 / 2,0)$. So the "parabola" is actually the straight line $\tilde{y}=\frac{1}{2}+\frac{1}{2} x$.
For Part $(i i i), \underset{\sim}{y}=(0,0,1,1)^{T}$ and $A^{T} \underset{\sim}{y}=(1,0,0)^{T}$. Solving $A^{T} A \underset{\sim}{a}=A^{T} \underset{\sim}{y}$ gives $(a, b, c)=\tilde{(}(1 / 2,0,-1 / 2)$. So the parabola of best fit is $y=\frac{1}{2}-\frac{1}{2} x^{2}$.
(For each part of the question it would be a good idea to plot the parabola and the four given points on graph paper to see if the parabola of best fit is reasonable.)
6. Find the cubic curve $y=a+b x+c x^{2}+d x^{3}$ that best fits the following data points: $(-1,-14),(0,-5),(1,-4),(2,1),(3,22)$.
Solution.
Let A be the 5×4 matrix whose 1 st column consists of 1 's, 2 nd column the x coordinates of the data points, 3 rd column the squares of these x-coordinates, 4th column the cubes of the x-coordinates, and solve $A^{T} A \underset{\sim}{a}=A^{T} \underset{\sim}{y}$ for $\underset{\sim}{a}$, the entries of y being the y-coordinates of the data points. The answer is $\underset{\sim}{a}=(-5,3,-4 \tilde{,})^{T}$, and so the cubic of best fit is $y=-5+3 x-4 x^{2}+2 x^{3}$. (It actually goes through all of the data points.)
7. If $A=\left(\begin{array}{cc}1 & x_{1} \\ 1 & x_{2} \\ \vdots & \vdots \\ 1 & x_{k}\end{array}\right)$, show that $A^{T} A=\left(\begin{array}{cc}k & \sum x_{i} \\ \sum x_{i} & \sum x_{i}^{2}\end{array}\right)$.

Solution.

The (i, j) entry of $A^{T} A$ is the dot product of the i-th and j-th columns of A. So the $(1,1)$ entry is $\sum_{i=1}^{k} 1^{2}=k$, the $(1,2)$ and $(2,1)$ entries are both $\sum_{i=1}^{k} 1 x_{i}$, and the $(2,2)$ entry is $\sum_{i=1}^{k} x_{i}^{2}$.

