The University of Sydney

MATH2008 Introduction to Modern Algebra
(http://www.maths.usyd.edu.au/u/UG/IM/MATH2008/)
Lecturer: R. Howlett

Tutorial 3

1. Check that $\left\{\left(\begin{array}{c}\frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{6}} \\ -\frac{2}{\sqrt{6}}\end{array}\right),\left(\begin{array}{c}\frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \\ 0\end{array}\right)\right\}$ is an orthonormal set.

Solution.

Call the vectors $\underset{\sim}{u}$ and $\underset{\sim}{v}$ (respectively). We find that

$$
\begin{gathered}
\underset{\sim}{u} \cdot \underset{\sim}{u}=\left(\frac{1}{\sqrt{6}}\right)^{2}+\left(\frac{1}{\sqrt{6}}\right)^{2}+\left(-\frac{2}{\sqrt{6}}\right)^{2}=\frac{1+1+4}{6}=1 \\
\underset{\sim}{v} \cdot \underset{\sim}{v}=\left(\frac{1}{\sqrt{2}}\right)^{2}+\left(-\frac{1}{\sqrt{2}}\right)^{2}+0^{2}=\frac{1}{2}+\frac{1}{2}=1 \\
\underset{\sim}{u} \cdot \underset{\sim}{v}=\left(\frac{1}{\sqrt{6}}\right)\left(\frac{1}{\sqrt{2}}\right)+\left(\frac{1}{\sqrt{6}}\right)\left(\frac{-1}{\sqrt{2}}\right)+\left(\frac{-2}{\sqrt{6}}\right) 0=0,
\end{gathered}
$$

as required.
2. Let $\underset{\sim}{a}=(2,2,-1)^{T}$ and $\underset{\sim}{a}=(-1,2,2)^{T}$.
(i) Check that $\left\{{\underset{\sim}{a}}_{1},{\underset{\sim}{2}}_{2}\right\}$ is an orthogonal set of vectors. Normalize ${\underset{\sim}{a}}_{1}$ and a_{2} to produce an orthonormal set.
(ii) Let $\underset{\sim}{v}=(0,3,0)^{T}$. Find the projections of $\underset{\sim}{v}$ onto the one-dimensional spaces spanned by ${\underset{\sim}{1}}^{a_{1}}$ and ${\underset{\sim}{c}}_{2}$.
(iii) Use Part (ii) to find the projection of $\underset{\sim}{v}$ onto the subspace W of \mathbb{R}^{3} spanned by $\left\{a_{1}, a_{2}\right\}$.
(iv) Express $\underset{\sim}{v}$ as the sum of two vectors, one in W and the other orthogonal to W.

Solution.

(i) $\quad{\underset{\sim}{1}}^{a_{1}} \cdot{\underset{\sim}{2}}_{2}=-2+2^{2}-2=0$; so the vectors are orthogonal to each other, as required. Now $\left\|a_{1}\right\|=\sqrt{2^{2}+2^{2}+(-1)^{2}}=\sqrt{9}=3$, and similarly $\left\|{\underset{a}{2}}_{2}\right\|=3$ also. To normalize you divide each vector by its length; you get the following orthonormal set:

$$
\left\{\left(\begin{array}{c}
2 / 3 \\
2 / 3 \\
-1 / 3
\end{array}\right),\left(\begin{array}{c}
-1 / 3 \\
2 / 3 \\
2 / 3
\end{array}\right)\right\}
$$

(ii) The projection of $\underset{\sim}{v}$ onto $\operatorname{Span}\left({\underset{\sim}{a}}_{1}\right)$ is

$$
\underset{\sim}{p}=\frac{a_{1} \cdot v}{{\underset{\sim}{1}}_{1} \cdot \tilde{\sim}_{1}} a_{1}=\frac{6}{9}\left(\begin{array}{c}
2 \\
2 \\
-1
\end{array}\right)=\left(\begin{array}{c}
4 / 3 \\
4 / 3 \\
-2 / 3
\end{array}\right)
$$

and the projection of $\underset{\sim}{v}$ onto $\operatorname{Span}\left(a_{2}\right)$ is

$$
\underset{\sim}{p}=\frac{a_{2} \cdot \underset{\sim}{v}}{a_{2} \cdot a_{2}} a_{2}=\frac{6}{9}\left(\begin{array}{c}
-1 \\
2 \\
2
\end{array}\right)=\left(\begin{array}{c}
-2 / 3 \\
4 / 3 \\
4 / 3
\end{array}\right) .
$$

(iii) Since $\left\{a_{1}, a_{2}\right\}$ is an orthogonal set, the projection of any vector onto $W=\operatorname{Span}\left({\underset{\sim}{1}}_{1},{\underset{\sim}{2}}_{2}\right)$ is the sum of its projections onto $\operatorname{Span}\left({\underset{\sim}{1}}_{1}\right)$ and $\operatorname{Span}\left(a_{2}\right)$. So the projection $\underset{\sim}{p}$ of $\underset{\sim}{v}$ onto W is

$$
\underset{\sim}{p}={\underset{\sim}{p}}_{1}+{\underset{\sim}{p}}_{2}=\left(\begin{array}{c}
\tilde{4} / 3 \\
4 / 3 \\
-2 / 3
\end{array}\right)+\left(\begin{array}{c}
-2 / 3 \\
4 / 3 \\
4 / 3
\end{array}\right)=\left(\begin{array}{c}
2 / 3 \\
8 / 3 \\
2 / 3
\end{array}\right) .
$$

(iv) By the definition of projection, $\underset{\sim}{v}-\underset{\sim}{p}$ is orthogonal W. So the required expression is $\underset{\sim}{v}=\underset{\sim}{p}+(\underset{\sim}{v}-\underset{\sim}{p})=\frac{2}{3}(1, \tilde{4}, 1)+\frac{1}{3}(-2,1,-2)$.
3. Apply the Gram-Schmidt process to the vectors $\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right),\left(\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right)$ and $\left(\begin{array}{l}1 \\ 2 \\ 1\end{array}\right)$.

Solution.

Call the given vectors ${\underset{\sim}{1}}_{1},{\underset{\sim}{2}}_{2}, \underset{\sim}{a}$. Recall that the Gram-Schmidt formula is

$$
{\underset{\sim}{u}}_{i}={\underset{\sim}{a}}_{i}-\sum_{j=1}^{i-1} \frac{{\underset{\sim}{i}}_{i} \cdot \underline{u}_{j}}{u_{j} \cdot{\underset{\sim}{u}}_{j}}{\underset{\sim}{u}}_{j} .
$$

Firstly, ${\underset{\sim}{u}}^{u_{2}}{\underset{\sim}{a}}_{1}=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$. Now since ${\underset{\sim}{2}}_{2} \cdot{\underset{\sim}{u}}^{u_{1}}=\left(\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right) \cdot\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)=-1+1+0=0$,

$$
{\underset{\sim}{u}}_{2}={\underset{\sim}{a}}_{2}-\frac{a_{2} \cdot{\underset{u}{u}}_{1}^{u}}{{\underset{\sim}{1}}_{1} \cdot{\underset{\sim}{u}}_{1}}{\underset{1}{ }}^{u_{1}}=\underset{\sim}{a}=\left(\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right) .
$$

Similarly, since ${\underset{\sim}{1}}_{1} \cdot{\underset{\sim}{u}}_{1}=1^{2}+1^{2}+1^{2}=3$ and ${\underset{\sim}{2}}_{2} \cdot{\underset{\sim}{u}}_{2}=(-1)^{2}+1^{2}+0^{2}=2$, as well as

$$
a_{3} \cdot{\underset{u}{u}}=\left(\begin{array}{l}
1 \\
2 \\
1
\end{array}\right) \cdot\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)=4, \quad \text { and } \quad{\underset{a}{3}}^{3} \cdot{\underset{\sim}{u}}_{2}=\left(\begin{array}{l}
1 \\
2 \\
1
\end{array}\right) \cdot\left(\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right)=1
$$

we obtain that

$$
\begin{aligned}
u_{3} & =a_{3}-\frac{a_{3} \cdot{\underset{u}{1}}_{u}^{u_{1}}}{u_{1} \cdot{\underset{u}{u}}_{1}}-\frac{a_{3} \cdot{\underset{\sim}{u}}_{2}}{u_{2} \cdot{\underset{\sim}{u}}_{2}} \\
& =\left(\begin{array}{l}
1 \\
2 \\
1
\end{array}\right)-\frac{4}{3}\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)-\frac{1}{2}\left(\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right)=\frac{1}{6}\left(\begin{array}{c}
1 \\
1 \\
-2
\end{array}\right) .
\end{aligned}
$$

4. Show that for any real number θ, the matrix $\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)$ is orthogonal.

Solution.

A matrix A is orthogonal if and only if it is square and satisfies $A^{T} A=I$.
The given matrix A is certainly square (it is 2×2), and

$$
\begin{aligned}
A^{T} A & =\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right)\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right) \\
& =\left(\begin{array}{cc}
(\cos \theta)^{2}+(\sin \theta)^{2} & \cos \theta(-\sin \theta)+\sin \theta \cos \theta \\
-\sin \theta \cos \theta+\cos \theta \sin \theta & (-\sin \theta)^{2}+(\cos \theta)^{2}
\end{array}\right)=I
\end{aligned}
$$

as required.
5. Show that if Q is symmetric and orthogonal, then $Q^{2}=I$.

Solution.

Since Q is orthogonal, $Q^{T} Q=I$. Since Q is symmetric, $Q^{T}=Q$. Substituting the value for Q^{T} from the second equation into the first gives $Q^{2}=I$.
6. (i) Let A be an $m \times n$ matrix and B a $p \times q$ matrix. What condition on the numbers n, m, p and q is necessary and sufficient for the product $A B$ to exist? When this condition holds, what is the shape of $A B$?
(ii) Let $\underset{\sim}{u}$ be a (column) vector in \mathbb{R}^{n}. Using Part (i), show that $u^{T}{\underset{\sim}{u}}^{u}$ and \sim_{\sim}^{T} both exist, and determine their shapes. Show, furthermore, that $\left(u u^{T}\right)^{2}$ is a scalar multiple of $u u^{T}$, and show that the scalar involved equals $\|u\|^{2}$.
(iii) Let $\underset{\sim}{u}$ be as in Part (ii), and suppose in addition that $\underset{\sim}{u}$ has length 1 . Show that the matrix $I-2 u u^{T}$ is both symmetric and orthogonal. (Here I is the $n \times n$ identity matrix).

Solution.
(i) $A B$ exists if and only if $n=p$, and then $A B$ is an $m \times q$ matrix. (The product of an $m \times n$ matrix by an $n \times q$ matrix gives an $m \times q$ matrix.)
(ii) $\underset{\sim}{u}$ is $n \times 1$ and ${\underset{u}{u}}^{T}$ is $1 \times n$. So, by Part $(i),{\underset{\sim}{u}}^{T}$ is $n \times n$ and ${\underset{\sim}{u}}^{T} \underset{\sim}{u}$ is $\tilde{1} \times 1$. Note that a 1×1 matrix is just a scalar. Thus ${\underset{\sim}{u}}^{T} \underset{\sim}{u}=k$, some real number. In fact, ${\underset{\sim}{u}}^{T} \underset{\sim}{u}=\underset{\sim}{u} \cdot \underset{\sim}{u}=\|\underset{\sim}{u}\|^{2}$; so $k=\|\underset{\sim}{u}\|^{2}$. Now
since the multiplication of scalars by vectors is commutative. So $\left(\underset{\sim}{u} u^{T}\right)^{2}$ is a scalar multiple of $u u^{T}$, and the scalar is $k=\|u\|^{2}$, as required.
(iii) Let $M=I-2 u{\underset{\sim}{u}}^{T}$. Then

$$
M^{T}=\left(I-2 u u_{u}^{T}\right)^{T}=I^{T}-2\left(\underset{\sim}{u} u^{T}\right)^{T}=I-2\left({\underset{u}{u}}^{T}\right)^{T}{\underset{\sim}{u}}^{T}=I-2{\underset{\sim}{u}}^{T},
$$

since I is symmetric and transposing reverses multiplication. So M^{T} equals M; that is, M is symmetric. To check that M is orthogonal we must show that $M^{T} M=I$, but since $M^{T}=M$ this is just $M^{2}=I$.
Observe that $M=I-2 N$, where $N=u u^{T}$, the matrix we considered in Part ($i i$). There we showed that $N^{2}=k N$, where $k=\|u\|^{2}$. Since we are assuming now that $\underset{\sim}{u}$ has length 1 , we have $k=1$, and $N^{2}=N$. So

$$
M^{2}=(I-2 N)^{2}=I-4 N+4 N^{2}=I-4 N+4 N=I,
$$

as required.

