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Tutorial 4

In this tutorial C[a, b] denotes the inner product space of all continuous functions
from [a, b] to R, with inner product given by (f, g) =

∫ b

a
f(x)g(x) dx.

1. Define f, g ∈ C[−1, 1] by f(x) = x, g(x) = x3. Work out ‖f‖, ‖g‖ and (f, g).

Solution.

‖f‖ =
√∫ 1

−1
x2 dx =

√
1
3x3

]1
−1

=
√

2/3.

‖g‖ =
√∫ 1

−1
x6 dx =

√
1
7x7

]1
−1

=
√

2/7.

(f, g) =
∫ 1

−1
xx3 dx = 1

5x5
]1
−1

= 2/5.

2. Show that 1 and x are orthogonal in C[−1, 1].

Solution.

We must show that (f, g) = 0, where f and g are defined by f(x) = 1 and
g(x) = x (for all x ∈ [−1, 1]). We have (f, g) =

∫ 1

−1
x dx = 1

2x2
]1
−1

= 0, as
required.

3. For which values of k and m are the polynomial functions xk and xm orthog-
onal in C[−1, 1]?

Solution.

Let k and m be arbitrary nonnegative integers. Then

(xk, xm) =
∫ 1

−1

xk+m dx = xk+m+1

k+m+1

]1

−1
= 1

k+m+1 (1k+m+1 − (−1)k+m+1),

which is 0 if and only if k + m + 1 is even.

4. Prove the following properties of the inner product on C[−1, 1].

(i) (f, g) = (g, f) for all f, g ∈ C[−1, 1].
(ii) (f + g, h) = (f, h) + (g, h) for all f, g, h ∈ C[−1, 1].
(iii) (kf, g) = k(f, g) for all k ∈ R and all f, g ∈ C[−1, 1].

Solution.

Let f, g and h be arbitrary elements of C[−1, 1], and k an arbitrary real
number. Then
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(i) (f, g) =
∫ 1

−1
f(x)g(x) dx =

∫ 1

−1
g(x)f(x) dx = (g, f);

(ii) (f + g, h) =
∫ 1

−1

(f(x) + g(x))h(x) dx

=
∫ 1

−1

f(x)h(x) dx +
∫ 1

−1

g(x))h(x) dx

= (f, h) + (g, h);

(iii) (kf, g) =
∫ 1

−1

kf(x)g(x) dx

= k

∫ 1

−1

f(x)g(x) dx

= k(f, g).
Hence the stated properties hold for all f, g, h ∈ C[−1, 1] and k ∈ R.

5. Consider the inner product space C[1, 2].

(i) Apply the Gram-Schmidt process to the set {1, x, x2} to produce an
orthogonal set.

(ii) Using the results of Part (i), find the parabola that best approximates
lnx over [1, 2]. (That is, project ln x onto the subspace spanned by
{1, x, x2}.)

Solution.

(i) Define f0, f1, f2 ∈ C[1, 2] by f0(x) = 1, f1(x) = x and f2(x) = x2 (for
all x ∈ C[1, 2]). Since

∫ 2

1
xk dx = 2k+1−1

k+1 , we find that (f0, f0) = 1,
(f0, f1) = 3/2, (f1, f1) = (f0, f2) = 7/3, and (f1, f2) = 15/4. Applying
the Gram-Schmidt process to the basis {f0, f1, f2} yields {g0, g1, g2},
where

g0 = f0;

g1 = f1 −
(f1, g0)
(g0, g0)

g0;

g2 = f2 −
(f2, g0)
(g0, g0)

g0 −
(f2, g1)
(g1, g1)

g1.

This immediately gives g1 = f1 − 3
2f0, and we then find that

(f2, g1) = (f2, f1)− 3
2 (f2, f0) = 15

4 − 7
2 = 1

4

(g1, g1) = (g1, f1 − 3
2g0) = (g1, f1)

= (f1, f1)− 3
2 (f0, f1) = 7

3 −
9
4 = 1

12 .

Hence
g2 = f2 − 7

3f0 − 1/4
1/12 (f1 − 3

2f0)

= f2 − 7
3f0 − 3(f1 − 3

2f0) = f2 − 3f1 + 13
6 f0.
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Thus g0(x) = 1, g1(x) = x− 3
2 and g2(x) = x2 − 3x + 13

6 .

(ii) The projection is p = (ln,g0)
(g0,g0)

g0 + (ln,g1)
(g1,g1)

g1 + (ln x,g2)
(g2,g2)

g2. Using integration
by parts, or by consulting a list of standard integrals, we find that∫

xn lnx dx =
xn+1

n + 1

(
lnx− 1

n + 1

)
,

and so for each n = 1, 2 or 3,

(ln, fn) =
∫ 2

1

xn lnx dx

= 2n+1

n+1

(
ln 2− 1

n+1

)
− 1

n+1

(
ln 1− 1

n+1

)
= 2n+1

n+1 ln 2− 2n+1−1
(n+1)2

since ln 1 = 0. Thus
(ln, g0) = (ln, f0) = 2 ln 2− 1
(ln, g1) = (ln, f1)− 3

2 (ln, f0)
= (2 ln 2− 3

4 )− 3
2 (2 ln 2− 1)

= − ln 2 + 3
4

(ln, g2) = (ln, f2)− 3(ln, f1) + 13
3 (ln, f0)

= (8
3 ln 2− 7

9 )− 3(2 ln 2− 3
4 ) + 13

6 (2 ln 2− 1)
= ln 2− 25

36 .

We found in Part (i) above that (g0, g0) = 1 and (g1, g1) = 1
12 , and we

also have that

(g2, g2) = (g2, f2 −
(f2, g0)
(g0, g0)

g0 −
(f2, g1)
(g1, g1)

g1)

= (g2, f2)
= (f2 − 3f1 + 13

6 f0, f2)
= (f2, f2)− 3(f1, f2) + 13

6 (f0, f2)
= 31

5 − 45
4 + 91

18 = 1
180 .

So we obtain p = (2 ln 2 − 1)g0 + 12(− ln 2 + 3
4 )g1 + 180(ln 2 − 25

36 )g2.
(This gives p(x) = (180 ln 2−125)x2+(384−552 ln 2)x+(410 ln 2− 856

3 ).
According to magma, the distance from ln to p is about 0.0020333.)

1 2 x

y

ln x

ln x

p(x)

p(x)
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6. Compute the 3rd degree Legendre polynomial. (That is, apply Gram-Schmidt
to {1, x, x2, x3}, working in C[−1, 1].)

Solution.

Let {g0, g1, g2, g3} be the basis given by Gram-Schmidt. Then g0 = 1, and
since (1, x) =

∫ 1

−1
x dx = 0 we find that g1 = x. Next, (x2, 1) = 2

3 , (1, 1) = 2
and (x2, x) = 0, giving g2 = x2 − 1

3 . And (x3, g0) = (x3, g2) = 0, so that

g3 = x3 − (x3,x)
(x,x) x = x3 − 2/5

2/3x = x3 − 3
5x.

7. In C[0, 2π], show that {1, sinx, cos x} is an orthogonal set. Find the lengths
in C[0, 2π] of each of 1, sinx, cos x.

Solution.

(1, sin) =
∫ 2π

0

sinx dx = − cos x
]2π

0
= 0;

(1, cos) =
∫ 2π

0

cos x dx = sinx
]2π

0
= 0;

(sin, cos) =
∫ 2π

0

sinx cos x dx =
1
2

∫ 2π

0

sin 2x dx = −1
4

cos 2x
]2π

0
= 0.

This proves orthogonality. Clearly (1, 1) =
∫ 2π

0
1 dx = 2π, and

(cos, cos) =
∫ 2π

0

cos2 x dx =
1
2

∫ 2π

0

(1 + cos 2x) dx = x
2 + 1

4 sin 2x
]2π

0
= π,

(sin, sin) =
∫ 2π

0

sin2 x dx =
1
2

∫ 2π

0

(1− cos 2x) dx = x
2 −

1
4 sin 2x

]2π

0
= π.

Thus ‖ cos ‖ =
√

(cos, cos) =
√

π and ‖ sin ‖ =
√

π, while ‖1‖ =
√

2π.

8. In C[0, 2π], find the projection of the function x onto the subspace spanned
by {1, sinx, cos x}.

Solution.

The projection p is given by p(x) = (x,1)
(1,1)1+ (x,sin)

(sin,sin) sinx+ (x,cos)
(cos,cos) cos x. Now

(x, sin) = sinx− x cos x
]2π

0
= −2π and (x, cos) = x sinx− cos x

]2π

0
= 0, while

(x, 1) = 2π2. So we conclude that p(x) = π − 2 sinx.

9. Let V be an inner product space, and v ∈ V . Prove that (0
˜
, v
˜
) = (v

˜
, 0
˜
) = 0.

Solution.

One of the inner product axioms says that (kx
˜
, y
˜
) = k(x

˜
, y
˜
), for all vectors

x
˜
, y
˜

and all scalars k. Apply this with x
˜

= 0
˜

(the zero vector), k = 0 (the zero
scalar) and y

˜
= v

˜
. Since 00

˜
= 0

˜
holds in any vector space—indeed, 0u

˜
= 0

˜for all u
˜
—we deduce that (0

˜
, v
˜
) = (00

˜
, v
˜
) = 0(0

˜
, v
˜
) = 0, as required.


