The University of Sydney
MATH2008 Introduction to Modern Algebra
(http://www.maths.usyd.edu.au/u/UG/IM/MATH2008/)
Lecturer: R. Howlett

Tutorial 4

In this tutorial $\mathcal{C}[a, b]$ denotes the inner product space of all continuous functions from $[a, b]$ to \mathbb{R}, with inner product given by $(f, g)=\int_{a}^{b} f(x) g(x) d x$.

1. Define $f, g \in \mathcal{C}[-1,1]$ by $f(x)=x, g(x)=x^{3}$. Work out $\|f\|,\|g\|$ and (f, g).

Solution.

$$
\begin{aligned}
& \|f\|=\sqrt{\int_{-1}^{1} x^{2} d x}=\sqrt{\left.\frac{1}{3} x^{3}\right]_{-1}^{1}}=\sqrt{2 / 3} \\
& \|g\|=\sqrt{\int_{-1}^{1} x^{6} d x}=\sqrt{\left.\frac{1}{7} x^{7}\right]_{-1}^{1}}=\sqrt{2 / 7} \\
& \left.(f, g)=\int_{-1}^{1} x x^{3} d x=\frac{1}{5} x^{5}\right]_{-1}^{1}=2 / 5
\end{aligned}
$$

2. Show that 1 and x are orthogonal in $\mathcal{C}[-1,1]$.

Solution.

We must show that $(f, g)=0$, where f and g are defined by $f(x)=1$ and $g(x)=x$ (for all $x \in[-1,1]$). We have $\left.(f, g)=\int_{-1}^{1} x d x=\frac{1}{2} x^{2}\right]_{-1}^{1}=0$, as required.
3. For which values of k and m are the polynomial functions x^{k} and x^{m} orthogonal in $\mathcal{C}[-1,1]$?

Solution.
Let k and m be arbitrary nonnegative integers. Then

$$
\left.\left(x^{k}, x^{m}\right)=\int_{-1}^{1} x^{k+m} d x=\frac{x^{k+m+1}}{k+m+1}\right]_{-1}^{1}=\frac{1}{k+m+1}\left(1^{k+m+1}-(-1)^{k+m+1}\right)
$$

which is 0 if and only if $k+m+1$ is even.
4. Prove the following properties of the inner product on $\mathcal{C}[-1,1]$.
(i) $(f, g)=(g, f)$ for all $f, g \in \mathcal{C}[-1,1]$.
(ii) $(f+g, h)=(f, h)+(g, h)$ for all $f, g, h \in \mathcal{C}[-1,1]$.
(iii) $(k f, g)=k(f, g)$ for all $k \in \mathbb{R}$ and all $f, g \in \mathcal{C}[-1,1]$.

Solution.
Let f, g and h be arbitrary elements of $\mathcal{C}[-1,1]$, and k an arbitrary real number. Then
(i) $\quad(f, g)=\int_{-1}^{1} f(x) g(x) d x=\int_{-1}^{1} g(x) f(x) d x=(g, f)$;
(ii) $\quad(f+g, h)=\int_{-1}^{1}(f(x)+g(x)) h(x) d x$

$$
\left.=\int_{-1}^{1} f(x) h(x) d x+\int_{-1}^{1} g(x)\right) h(x) d x
$$

$$
=(f, h)+(g, h)
$$

(iii) $(k f, g)=\int_{-1}^{1} k f(x) g(x) d x$

$$
\begin{aligned}
& =k \int_{-1}^{1} f(x) g(x) d x \\
& =k(f, g)
\end{aligned}
$$

Hence the stated properties hold for all $f, g, h \in \mathcal{C}[-1,1]$ and $k \in \mathbb{R}$.
5. Consider the inner product space $\mathcal{C}[1,2]$.
(i) Apply the Gram-Schmidt process to the set $\left\{1, x, x^{2}\right\}$ to produce an orthogonal set.
(ii) Using the results of Part (i), find the parabola that best approximates $\ln x$ over $[1,2]$. (That is, project $\ln x$ onto the subspace spanned by $\left\{1, x, x^{2}\right\}$.)

Solution.

(i) Define $f_{0}, f_{1}, f_{2} \in \mathcal{C}[1,2]$ by $f_{0}(x)=1, f_{1}(x)=x$ and $f_{2}(x)=x^{2}$ (for all $x \in \mathcal{C}[1,2])$. Since $\int_{1}^{2} x^{k} d x=\frac{2^{k+1}-1}{k+1}$, we find that $\left(f_{0}, f_{0}\right)=1$, $\left(f_{0}, f_{1}\right)=3 / 2,\left(f_{1}, f_{1}\right)=\left(f_{0}, f_{2}\right)=7 / 3$, and $\left(f_{1}, f_{2}\right)=15 / 4$. Applying the Gram-Schmidt process to the basis $\left\{f_{0}, f_{1}, f_{2}\right\}$ yields $\left\{g_{0}, g_{1}, g_{2}\right\}$, where

$$
\begin{aligned}
& g_{0}=f_{0} \\
& g_{1}=f_{1}-\frac{\left(f_{1}, g_{0}\right)}{\left(g_{0}, g_{0}\right)} g_{0} \\
& g_{2}=f_{2}-\frac{\left(f_{2}, g_{0}\right)}{\left(g_{0}, g_{0}\right)} g_{0}-\frac{\left(f_{2}, g_{1}\right)}{\left(g_{1}, g_{1}\right)} g_{1}
\end{aligned}
$$

This immediately gives $g_{1}=f_{1}-\frac{3}{2} f_{0}$, and we then find that

$$
\begin{aligned}
\left(f_{2}, g_{1}\right) & =\left(f_{2}, f_{1}\right)-\frac{3}{2}\left(f_{2}, f_{0}\right)=\frac{15}{4}-\frac{7}{2}=\frac{1}{4} \\
\left(g_{1}, g_{1}\right) & =\left(g_{1}, f_{1}-\frac{3}{2} g_{0}\right)=\left(g_{1}, f_{1}\right) \\
& =\left(f_{1}, f_{1}\right)-\frac{3}{2}\left(f_{0}, f_{1}\right)=\frac{7}{3}-\frac{9}{4}=\frac{1}{12}
\end{aligned}
$$

Hence

$$
\begin{aligned}
g_{2} & =f_{2}-\frac{7}{3} f_{0}-\frac{1 / 4}{1 / 12}\left(f_{1}-\frac{3}{2} f_{0}\right) \\
& =f_{2}-\frac{7}{3} f_{0}-3\left(f_{1}-\frac{3}{2} f_{0}\right)=f_{2}-3 f_{1}+\frac{13}{6} f_{0}
\end{aligned}
$$

Thus $g_{0}(x)=1, g_{1}(x)=x-\frac{3}{2}$ and $g_{2}(x)=x^{2}-3 x+\frac{13}{6}$.
(ii) The projection is $p=\frac{\left(\ln , g_{0}\right)}{\left(g_{0}, g_{0}\right)} g_{0}+\frac{\left(\ln , g_{1}\right)}{\left(g_{1}, g_{1}\right)} g_{1}+\frac{\left(\ln x, g_{2}\right)}{\left(g_{2}, g_{2}\right)} g_{2}$. Using integration by parts, or by consulting a list of standard integrals, we find that

$$
\int x^{n} \ln x d x=\frac{x^{n+1}}{n+1}\left(\ln x-\frac{1}{n+1}\right)
$$

and so for each $n=1,2$ or 3 ,

$$
\begin{aligned}
\left(\ln , f_{n}\right) & =\int_{1}^{2} x^{n} \ln x d x \\
& =\frac{2^{n+1}}{n+1}\left(\ln 2-\frac{1}{n+1}\right)-\frac{1}{n+1}\left(\ln 1-\frac{1}{n+1}\right)=\frac{2^{n+1}}{n+1} \ln 2-\frac{2^{n+1}-1}{(n+1)^{2}}
\end{aligned}
$$

since $\ln 1=0$. Thus

$$
\begin{aligned}
\left(\ln , g_{0}\right) & =\left(\ln , f_{0}\right)=2 \ln 2-1 \\
\left(\ln , g_{1}\right) & =\left(\ln , f_{1}\right)-\frac{3}{2}\left(\ln , f_{0}\right) \\
& =\left(2 \ln 2-\frac{3}{4}\right)-\frac{3}{2}(2 \ln 2-1) \\
& =-\ln 2+\frac{3}{4} \\
\left(\ln , g_{2}\right) & =\left(\ln , f_{2}\right)-3\left(\ln , f_{1}\right)+\frac{13}{3}\left(\ln , f_{0}\right) \\
& =\left(\frac{8}{3} \ln 2-\frac{7}{9}\right)-3\left(2 \ln 2-\frac{3}{4}\right)+\frac{13}{6}(2 \ln 2-1) \\
& =\ln 2-\frac{25}{36}
\end{aligned}
$$

We found in Part (i) above that $\left(g_{0}, g_{0}\right)=1$ and $\left(g_{1}, g_{1}\right)=\frac{1}{12}$, and we also have that

$$
\begin{aligned}
\left(g_{2}, g_{2}\right) & =\left(g_{2}, f_{2}-\frac{\left(f_{2}, g_{0}\right)}{\left(g_{0}, g_{0}\right)} g_{0}-\frac{\left(f_{2}, g_{1}\right)}{\left(g_{1}, g_{1}\right)} g_{1}\right) \\
& =\left(g_{2}, f_{2}\right) \\
& =\left(f_{2}-3 f_{1}+\frac{13}{6} f_{0}, f_{2}\right) \\
& =\left(f_{2}, f_{2}\right)-3\left(f_{1}, f_{2}\right)+\frac{13}{6}\left(f_{0}, f_{2}\right) \\
& =\frac{31}{5}-\frac{45}{4}+\frac{91}{18}=\frac{1}{180}
\end{aligned}
$$

So we obtain $p=(2 \ln 2-1) g_{0}+12\left(-\ln 2+\frac{3}{4}\right) g_{1}+180\left(\ln 2-\frac{25}{36}\right) g_{2}$.
(This gives $p(x)=(180 \ln 2-125) x^{2}+(384-552 \ln 2) x+\left(410 \ln 2-\frac{856}{3}\right)$.
According to magma, the distance from \ln to p is about 0.0020333 .)

6. Compute the 3rd degree Legendre polynomial. (That is, apply Gram-Schmidt to $\left\{1, x, x^{2}, x^{3}\right\}$, working in $\mathcal{C}[-1,1]$.)

Solution.

Let $\left\{g_{0}, g_{1}, g_{2}, g_{3}\right\}$ be the basis given by Gram-Schmidt. Then $g_{0}=1$, and since $(1, x)=\int_{-1}^{1} x d x=0$ we find that $g_{1}=x$. Next, $\left(x^{2}, 1\right)=\frac{2}{3},(1,1)=2$ and $\left(x^{2}, x\right)=0$, giving $g_{2}=x^{2}-\frac{1}{3}$. And $\left(x^{3}, g_{0}\right)=\left(x^{3}, g_{2}\right)=0$, so that $g_{3}=x^{3}-\frac{\left(x^{3}, x\right)}{(x, x)} x=x^{3}-\frac{2 / 5}{2 / 3} x=x^{3}-\frac{3}{5} x$.
7. In $\mathcal{C}[0,2 \pi]$, show that $\{1, \sin x, \cos x\}$ is an orthogonal set. Find the lengths in $\mathcal{C}[0,2 \pi]$ of each of $1, \sin x, \cos x$.

Solution.

$$
\begin{aligned}
(1, \sin) & \left.=\int_{0}^{2 \pi} \sin x d x=-\cos x\right]_{0}^{2 \pi}=0 \\
(1, \cos) & \left.=\int_{0}^{2 \pi} \cos x d x=\sin x\right]_{0}^{2 \pi}=0 \\
(\sin , \cos) & \left.=\int_{0}^{2 \pi} \sin x \cos x d x=\frac{1}{2} \int_{0}^{2 \pi} \sin 2 x d x=-\frac{1}{4} \cos 2 x\right]_{0}^{2 \pi}=0
\end{aligned}
$$

This proves orthogonality. Clearly $(1,1)=\int_{0}^{2 \pi} 1 d x=2 \pi$, and

$$
\begin{aligned}
& \left.(\cos , \cos)=\int_{0}^{2 \pi} \cos ^{2} x d x=\frac{1}{2} \int_{0}^{2 \pi}(1+\cos 2 x) d x=\frac{x}{2}+\frac{1}{4} \sin 2 x\right]_{0}^{2 \pi}=\pi \\
& \left.(\sin , \sin)=\int_{0}^{2 \pi} \sin ^{2} x d x=\frac{1}{2} \int_{0}^{2 \pi}(1-\cos 2 x) d x=\frac{x}{2}-\frac{1}{4} \sin 2 x\right]_{0}^{2 \pi}=\pi
\end{aligned}
$$

Thus $\|\cos \|=\sqrt{(\cos , \cos)}=\sqrt{\pi}$ and $\|\sin \|=\sqrt{\pi}$, while $\|1\|=\sqrt{2 \pi}$.
8. In $\mathcal{C}[0,2 \pi]$, find the projection of the function x onto the subspace spanned by $\{1, \sin x, \cos x\}$.

Solution.

The projection p is given by $p(x)=\frac{(x, 1)}{(1,1)} 1+\frac{(x, \sin)}{(\sin , \sin)} \sin x+\frac{(x, \cos)}{(\cos , \cos)} \cos x$. Now $(x, \sin)=\sin x-x \cos x]_{0}^{2 \pi}=-2 \pi$ and $\left.(x, \cos)=x \sin x-\cos x\right]_{0}^{2 \pi}=0$, while $(x, 1)=2 \pi^{2}$. So we conclude that $p(x)=\pi-2 \sin x$.
9. Let V be an inner product space, and $v \in V$. Prove that $(\underset{\sim}{0}, \underset{\sim}{v})=(\underset{\sim}{v}, \underset{\sim}{0})=0$.

Solution.

One of the inner product axioms says that $(k x, y)=k(x, y)$, for all vectors $\underset{\sim}{x}, \underset{\sim}{y}$ and all scalars k. Apply this with $\underset{\sim}{x}=\underset{\sim}{0}$ (the zero vector), $k=0$ (the zero scalar) and $\underset{\sim}{y}=\underset{\sim}{v}$. Since $0 \underset{\sim}{0}=\underset{\sim}{0}$ holds in any vector space-indeed, $0 \underset{\sim}{u}=\underset{\sim}{0}$ for all $\underset{\sim}{u}$-we deduce that $(\underset{\sim}{0}, \underset{\sim}{v})=(0 \underset{\sim}{0}, \underset{\sim}{v})=0(\underset{\sim}{0}, \underset{\sim}{v})=0$, as required.

