The University of Sydney

MATH2008 Introduction to Modern Algebra
(http://www.maths.usyd.edu.au/u/UG/IM/MATH2008/)
Lecturer: R. Howlett

Tutorial 6

The square shown below has four reflection symmetries, corresponding to the four "axes of symmetry" $\ell_{1}, \ell_{2}, \ell_{3}$ and ℓ_{4}. It also has four rotation symmetries. Write σ for the reflection in ℓ_{1} and ρ for the anticlockwise rotation through 90° about the centre. Let G be the group of all symmetries of the square.

1. Describe the element $\rho^{3} \sigma$ geometrically. Find expressions in terms of ρ and σ for all 8 elements of G, and describe them all geometrically (as reflections and rotations).

Solution.

Number the locations of the vertices 1, 2, 3, 4, in anticlockwise order starting from the top right-hand corner. Then ρ corresponds to the 4 -cycle $(1,2,3,4)$ and σ to the transposition $(2,4)$. To find out what $\rho^{3} \sigma$ is we can either multiply these permutations, or else follow what happens to each vertex when one first performs the rotation ρ^{3} and then the reflection σ. In fact, ρ^{3} moves the contents of location 1 to location 4 , and 4 to 3,3 to 2 and 2 to 1 . Follow this by σ, which swaps the contents of locations 2 and 4 , and the net effect is to take the contents of location 1 to location 2 , and 2 to 1,3 to 4 and 4 to 3 . Alternatively, computing the permutation product $(1,2,3,4)(2,4)$ gives the answer $(1,2)(3,4)$. (Indeed, this is essentially the same calculation.) We conclude that $\rho^{3} \sigma$ is the reflection in ℓ_{2}.
It turns out that computing all the products ρ^{i} and $\rho^{i} \sigma$ for $i=1,2,3,4$
gives all eight elements of G. The full list of elements of G is as follows:
$e: \quad$ the identity (do nothing)
ρ : the anticlockwise rotation through 90°
ρ^{2} : the rotation through 180°
ρ^{3} : the clockwise rotation through 90°
$\sigma: \quad$ the reflection in ℓ_{1}
$\rho \sigma:$ the reflection in ℓ_{4}
$\rho^{2} \sigma$: the reflection in ℓ_{3}
$\rho^{3} \sigma$: the reflection in ℓ_{2}
2. Construct the multiplication table for the set of symmetries

$$
H=\left\{e, \rho, \rho^{2}, \rho^{3}\right\}
$$

and verify that H is an abelian subgroup of G. (Here e denotes the identity element.)

Solution.

	e	ρ	ρ^{2}	ρ^{3}
e	e	ρ	ρ^{2}	ρ^{3}
ρ	ρ	ρ^{2}	ρ^{3}	e
ρ^{2}	ρ^{2}	ρ^{3}	e	ρ
ρ^{3}	ρ^{3}	e	ρ	ρ^{2}

The product $\rho^{i} \rho^{j}=\rho^{i+j}$, and in those cases in which $i+j \geq 4$ we use the fact that $\rho^{4}=e$ to conclude that $\rho^{i} \rho^{j}=\rho^{i+j-4}$. This gives us the above table, and also shows that H is closed under multiplication. So SG1 holds. The identity is one of the elements of H; so SG2 holds. And the inverse of every element of H is in H : the inverse of e is e, the inverse of ρ^{2} is ρ^{2}, and ρ and ρ^{3} are inverses of each other. So SG3 also holds, and so H is a subgroup of G.
The net effect of a rotation through α followed by a rotation through β (about the same point) is a rotation through $\alpha+\beta$, and doing the rotation through β first and then the rotation through α gives the same result. In the present example this says that $\rho^{i} \rho^{j}=\rho^{j} \rho^{i}$ for all i and j. This is obvious anyway, since both equal ρ^{i+j}.
A finite group is abelian if and only if its multiplication table is symmetric about the main diagonal, since the entry in the row labelled by x and the column labelled by y is $x y$, while the entry in the row labelled by y and the column labelled by x is $y x$ (and transposing the table interchanges these positions). The table above is indeed symmetric.
3. Repeat Question 2 with the following sets in place of H.
(i) $K=\left\{e, \rho^{2}, \sigma, \rho^{2} \sigma\right\}$,
(ii) $L=\left\{e, \rho^{2}, \rho \sigma, \rho^{3} \sigma\right\}$.

Solution.

It is easily checked that the half turn ρ^{2} and the reflection σ commute with each other: $\rho^{2} \sigma=\sigma \rho^{2}$. Combined with the facts that ρ^{4} and σ^{2} are both equal to the identity e, this enables us to write down the multiplication tables for K and L. Note that both are closed under multiplication and contain the identity. Furthermore, all the elements are their own inverses. So K and L are subgroups, and abelian, as the tables are symmetric.

	e	ρ^{2}	σ	$\rho^{2} \sigma$
e	e	ρ^{2}	σ	$\rho^{2} \sigma$
ρ^{2}	ρ^{2}	e	$\rho^{2} \sigma$	σ
σ	σ	$\rho^{2} \sigma$	e	ρ^{2}
$\rho^{2} \sigma$	$\rho^{2} \sigma$	σ	ρ^{2}	e

	e	ρ^{2}	$\rho \sigma$	$\rho^{3} \sigma$
e	e	ρ^{2}	$\rho \sigma$	$\rho^{3} \sigma$
ρ^{2}	ρ^{2}	e	$\rho^{3} \sigma$	$\rho \sigma$
$\rho \sigma$	$\rho \sigma$	$\rho^{3} \sigma$	e	ρ^{2}
$\rho^{3} \sigma$	$\rho^{3} \sigma$	$\rho \sigma$	ρ^{2}	e

4. Show that the group of complex numbers of modulus 1 is a subgroup of the group of all non-zero complex numbers (with multiplication as the group operation).

Solution.

Let $\mathbb{T}=\{z \in \mathbb{C}| | z \mid=1\}$. For all complex numbers z and w we have $|z w|=|z||w|$. So if $|z|=|w|=1$, then $|z w|=1$. Thus \mathbb{T} is closed under multiplication. Certainly $|1|=1$ and so the the identity 1 belongs to \mathbb{T}. If $|z|=1$, then $|1 / z|=1 /|z|=1$; therefore \mathbb{T} contains the inverse of each of its elements. Hence \mathbb{T} is a subgroup.
5. Prove that $H=\{1,-1, i,-i\}$ is a subgroup of the group in Question 4. Determine all subgroups of H.
Solution.

	1	-1	i	$-i$
1	1	-1	i	$-i$
-1	-1	1	$-i$	i
i	i	$-i$	-1	1
$-i$	$-i$	i	1	-1

Every element of H has modulus 1 ; so H is a subset of the group \mathbb{T} of Question 4. Using $i^{2}=-1$, it is straightforward to derive the above multiplication table, and thereby see that H is closed under multiplication. It certainly contains the identity element of \mathbb{T} (namely 1), and contains the inverses of all of its elements: $1^{-1}=1,(-1)^{-1}=-1$, $i^{-1}=-i,(-i)^{-1}=i$.
Every group is a subgroup of itself, and every group has the trivial subgroup whose only element is the identity. So $\{1\}$ and H are subgroups of H. It is easily checked that $\{1,-1\}$ is also a subgroup-the conditions SG1, SG2 and SG3 are obviously satisfied. To see that there are no more, suppose that K is a subgroup. By definition we must have $1 \in K$. If $i \in K$ then closure forces $-1=i^{2}$ and $-i=i^{3}$ to be elements of K. So K contains every element of H; that is, $K=H$. Similarly, if $-i \in K$ then K also contains $-1=(-i)^{2}$ and $i=(-i)^{3}$, and again $K=H$. If neither i nor $-i$ is in K then $K=\{1\}$ or $\{1,-1\}$, depending on whether or not $-1 \in K$. So the only subgroups of H are the ones we have listed.
6. Prove that the set

$$
U=\left\{\left.\left(\begin{array}{ll}
1 & 0 \\
t & 1
\end{array}\right) \right\rvert\, t \in \mathbb{R}\right\}
$$

is an abelian subgroup of the group of all invertible 2×2 real matrices.

Solution.

Everything that needs to be verified follows from the equation

$$
\left(\begin{array}{ll}
1 & 0 \\
t & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
u & 1
\end{array}\right)=\left(\begin{array}{cc}
1 & 0 \\
t+u & 1
\end{array}\right)
$$

Firstly, this immediately shows that U is closed under multiplication. Taking $t=0$ shows that the identity element is in U. Putting $u=-t$ in the above equation, we see that

$$
\left(\begin{array}{ll}
1 & 0 \\
t & 1
\end{array}\right)^{-1}=\left(\begin{array}{cc}
1 & 0 \\
-t & 1
\end{array}\right)
$$

and since this is also in U we conclude that U contains the inverse of all of its elements. Hence U is a subgroup of the group of invertible 2×2 matrices.
We see that U is abelian, since for all $t, u \in \mathbb{R}$ we have
$\left(\begin{array}{ll}1 & 0 \\ t & 1\end{array}\right)\left(\begin{array}{ll}1 & 0 \\ u & 1\end{array}\right)=\left(\begin{array}{cc}1 & 0 \\ t+u & 1\end{array}\right)=\left(\begin{array}{cc}1 & 0 \\ u+t & 1\end{array}\right)=\left(\begin{array}{ll}1 & 0 \\ u & 1\end{array}\right)\left(\begin{array}{ll}1 & 0 \\ t & 1\end{array}\right)$.

