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The square shown below has four reflection symmetries, corresponding to
the four “axes of symmetry” `1, `2, `3 and `4. It also has four rotation
symmetries. Write σ for the reflection in `1 and ρ for the anticlockwise
rotation through 900 about the centre. Let G be the group of all symmetries
of the square.

`1`2`3

`4

1. Describe the element ρ3σ geometrically. Find expressions in terms of
ρ and σ for all 8 elements of G, and describe them all geometrically
(as reflections and rotations).

Solution.

Number the locations of the vertices 1, 2, 3, 4, in anticlockwise or-
der starting from the top right-hand corner. Then ρ corresponds to
the 4-cycle (1, 2, 3, 4) and σ to the transposition (2, 4). To find out
what ρ3σ is we can either multiply these permutations, or else follow
what happens to each vertex when one first performs the rotation ρ3

and then the reflection σ. In fact, ρ3 moves the contents of location 1
to location 4, and 4 to 3, 3 to 2 and 2 to 1. Follow this by σ, which
swaps the contents of locations 2 and 4, and the net effect is to take the
contents of location 1 to location 2, and 2 to 1, 3 to 4 and 4 to 3. Alter-
natively, computing the permutation product (1, 2, 3, 4)(2, 4) gives the
answer (1, 2)(3, 4). (Indeed, this is essentially the same calculation.)
We conclude that ρ3σ is the reflection in `2.

It turns out that computing all the products ρi and ρiσ for i = 1, 2, 3, 4
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gives all eight elements of G. The full list of elements of G is as follows:

e : the identity (do nothing)
ρ : the anticlockwise rotation through 90◦

ρ2 : the rotation through 180◦

ρ3 : the clockwise rotation through 90◦

σ : the reflection in `1
ρσ : the reflection in `4

ρ2σ : the reflection in `3
ρ3σ : the reflection in `2

2. Construct the multiplication table for the set of symmetries

H = {e, ρ, ρ2, ρ3}

and verify that H is an abelian subgroup of G. (Here e denotes the
identity element.)

Solution.
e ρ ρ2 ρ3

e e ρ ρ2 ρ3

ρ ρ ρ2 ρ3 e
ρ2 ρ2 ρ3 e ρ
ρ3 ρ3 e ρ ρ2

The product ρiρj = ρi+j , and in those cases in which i + j ≥ 4 we use
the fact that ρ4 = e to conclude that ρiρj = ρi+j−4. This gives us the
above table, and also shows that H is closed under multiplication. So
SG1 holds. The identity is one of the elements of H; so SG2 holds.
And the inverse of every element of H is in H: the inverse of e is e, the
inverse of ρ2 is ρ2, and ρ and ρ3 are inverses of each other. So SG3
also holds, and so H is a subgroup of G.
The net effect of a rotation through α followed by a rotation through
β (about the same point) is a rotation through α + β, and doing the
rotation through β first and then the rotation through α gives the
same result. In the present example this says that ρiρj = ρjρi for all
i and j. This is obvious anyway, since both equal ρi+j .
A finite group is abelian if and only if its multiplication table is sym-
metric about the main diagonal, since the entry in the row labelled by
x and the column labelled by y is xy, while the entry in the row labelled
by y and the column labelled by x is yx (and transposing the table
interchanges these positions). The table above is indeed symmetric.
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3. Repeat Question 2 with the following sets in place of H.

(i) K = {e, ρ2, σ, ρ2σ},
(ii) L = {e, ρ2, ρσ, ρ3σ}.

Solution.

It is easily checked that the half turn ρ2 and the reflection σ commute
with each other: ρ2σ = σρ2. Combined with the facts that ρ4 and
σ2 are both equal to the identity e, this enables us to write down the
multiplication tables for K and L. Note that both are closed under
multiplication and contain the identity. Furthermore, all the elements
are their own inverses. So K and L are subgroups, and abelian, as the
tables are symmetric.

e ρ2 σ ρ2σ

e e ρ2 σ ρ2σ
ρ2 ρ2 e ρ2σ σ
σ σ ρ2σ e ρ2

ρ2σ ρ2σ σ ρ2 e

e ρ2 ρσ ρ3σ

e e ρ2 ρσ ρ3σ
ρ2 ρ2 e ρ3σ ρσ
ρσ ρσ ρ3σ e ρ2

ρ3σ ρ3σ ρσ ρ2 e

4. Show that the group of complex numbers of modulus 1 is a subgroup
of the group of all non-zero complex numbers (with multiplication as
the group operation).

Solution.

Let T = { z ∈ C
∣∣ |z| = 1 }. For all complex numbers z and w we

have |zw| = |z| |w|. So if |z| = |w| = 1, then |zw| = 1. Thus T is
closed under multiplication. Certainly |1| = 1 and so the the identity
1 belongs to T. If |z| = 1, then |1/z| = 1/|z| = 1; therefore T contains
the inverse of each of its elements. Hence T is a subgroup.

5. Prove that H = {1,−1, i,−i} is a subgroup of the group in Question 4.
Determine all subgroups of H.

Solution.

1 −1 i −i

1 1 −1 i −i
−1 −1 1 −i i
i i −i −1 1
−i −i i 1 −1
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Every element of H has modulus 1; so H is a subset of the group T of
Question 4. Using i2 = −1, it is straightforward to derive the above
multiplication table, and thereby see that H is closed under multipli-
cation. It certainly contains the identity element of T (namely 1), and
contains the inverses of all of its elements: 1−1 = 1, (−1)−1 = −1,
i−1 = −i, (−i)−1 = i.
Every group is a subgroup of itself, and every group has the trivial sub-
group whose only element is the identity. So {1} and H are subgroups
of H. It is easily checked that {1,−1} is also a subgroup—the con-
ditions SG1, SG2 and SG3 are obviously satisfied. To see that there
are no more, suppose that K is a subgroup. By definition we must
have 1 ∈ K. If i ∈ K then closure forces −1 = i2 and −i = i3 to be
elements of K. So K contains every element of H; that is, K = H.
Similarly, if −i ∈ K then K also contains −1 = (−i)2 and i = (−i)3,
and again K = H. If neither i nor −i is in K then K = {1} or {1,−1},
depending on whether or not −1 ∈ K. So the only subgroups of H are
the ones we have listed.

6. Prove that the set

U =
{(

1 0
t 1

) ∣∣∣ t ∈ R
}

is an abelian subgroup of the group of all invertible 2×2 real matrices.

Solution.

Everything that needs to be verified follows from the equation(
1 0
t 1

) (
1 0
u 1

)
=

(
1 0

t + u 1

)
.

Firstly, this immediately shows that U is closed under multiplication.
Taking t = 0 shows that the identity element is in U . Putting u = −t
in the above equation, we see that(

1 0
t 1

)−1

=
(

1 0
−t 1

)
,

and since this is also in U we conclude that U contains the inverse of
all of its elements. Hence U is a subgroup of the group of invertible
2× 2 matrices.
We see that U is abelian, since for all t, u ∈ R we have(

1 0
t 1

) (
1 0
u 1

)
=

(
1 0

t + u 1

)
=

(
1 0

u + t 1

)
=

(
1 0
u 1

) (
1 0
t 1

)
.


