The University of Sydney
MATH2008 Introduction to Modern Algebra
(http://www.maths.usyd.edu.au/u/UG/IM/MATH2008/)

Tutorial 12

1. Let G be the group of all matrices of the form $\left(\begin{array}{ll}1 & 0 \\ x & 1\end{array}\right)$, where $x \in \mathbb{R}$, with the operation of matrix multiplication. Let H be the group of all real numbers under addition. Define $f: G \rightarrow H$ by

$$
f\left(\begin{array}{ll}
1 & 0 \\
x & 1
\end{array}\right)=x .
$$

Show that f is an isomorphism from G to H.

Solution.

We must prove that f is one-to-one and onto, and that it is a homomorphism.
Let $A, B \in G$ be such that $f(A)=f(B)$. By the definition of G we have $A=\left(\begin{array}{ll}1 & 0 \\ x & 1\end{array}\right)$ and $B=\left(\begin{array}{ll}1 & 0 \\ y & 1\end{array}\right)$ for some $x, y \in \mathbb{R}$, and the definition of f gives $f(A)=x$ and $f(B)=y$. But $f(A)=f(B) ;$ so $x=y$, and so

$$
A=\left(\begin{array}{ll}
1 & 0 \\
x & 1
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
y & 1
\end{array}\right)=B
$$

So $f(A)$ can only equal $f(B)$ if $A=B$; that is, f is one-to-one.
Let t be any element of \mathbb{R}. The matrix A defined by $A=\left(\begin{array}{cc}1 & 0 \\ t & 1\end{array}\right)$ is in G and $f(A)=t$. So every element of \mathbb{R} is in the image of f, and so f is onto.
Recall that f a homomorphism is a function that preserves the group structure. Here, since the group operation in G written as multiplication and the group operation on H is written as addition, to say that f is a homomorphism is to say that $f(A B)=f(A)+f(B)$ for all $A, B \in G$. So, let A, B be arbitrary elements of G. Then $A=\left(\begin{array}{ll}1 & 0 \\ x & 1\end{array}\right)$ and $B=\left(\begin{array}{cc}1 & 0 \\ y & 1\end{array}\right)$ for some $x, y \in \mathbb{R}$, and matrix multiplication gives $A B=\left(\begin{array}{cc}1 & 0 \\ x+y & 1\end{array}\right)$. So $f(A B)=x+y=f(A)+f(B)$, as required.
2. (i) Let C_{n} be a cyclic group of order n. Suppose that k is a number that is a divisor of n. Show that C_{n} contains an element of order k.
(ii) Find an example of a group G of order n and a divisor k of n for which G does not contain any element of order k.

Solution.
(i) Let a be a generator of C_{n}. Then a has order n; that is, $a^{n}=e$ and $a^{j} \neq e$ for $0<j<n$. If k divides n, then $n=m k$ for some positive integer m. and so $\left(a^{m}\right)^{k}=e$. Furthermore, if $0<j<k$ then $0<m j<m k=n$, and so $\left(a^{m}\right)^{j}=a^{m j} \neq e$. Hence the least positive integer j such that $\left(a^{m}\right)^{j}=e$ is $j=k$, and thus a^{m} has order k.
(ii) The group $G=\operatorname{Sym}(3)$ has order $n=6$. The number $k=6$ is a divisor of n, and G does not have any element of order 6 . (Indeed, G has three elements of order 2 (the transpositions), two of order 3 (the 3 -cycles) and one of order 1 (the identity), and these are all the elements of G since its order is 6 .)
3. If G is a group, H a subgroup of G and g an element of G, then we define $g^{-1} H g$ to be the set of all elements of G of the form $g^{-1} h g$, where h is in H.
(i) Let $G=\operatorname{Sym}(4)$ and $H=\{\operatorname{id},(1,2,4),(1,4,2)\}$, and let $g=(2,3,4)$. Calculate all of the elements of $g^{-1} \mathrm{Hg}$.
(ii) Let $G=\operatorname{Sym}(4)$ and $L=\left\{\sigma \in G \mid 3^{\sigma}=3\right\}$. Write out all 6 elements of L. Is L a subgroup of G ?
(iii) Let L be as in Part (ii) and let $g=(2,3,4)$. Show that

$$
g^{-1} H g=\left\{\tau \in G \mid 4^{\tau}=4\right\} .
$$

Solution.

(i) Obviously, $(2,4,3) \operatorname{id}(2,3,4)=$ id. Calculating $(2,4,3)(1,2,4)(2,3,4)$ involves finding the result of applying $(2,4,3)$, followed by $(1,2,4)$, followed by $(2,3,4)$, to each of the numbers $1,2,3,4$. We have

$$
\begin{aligned}
& 1 \xrightarrow{(2,4,3)} 1 \xrightarrow{(1,2,4)} 2 \xrightarrow{(2,3,4)} 3 \\
& 2 \xrightarrow{(2,4,3)} 4 \xrightarrow{(1,2,4)} 1 \xrightarrow{(2,3,4)} 1 \\
& 3 \xrightarrow{(2,4,3)} 2 \xrightarrow{(1,2,4)} 4 \xrightarrow{(2,3,4)} 2 \\
& 4 \xrightarrow{(2,4,3)} 3 \xrightarrow{(1,2,4)} 3 \xrightarrow{(2,3,4)} 4 .
\end{aligned}
$$

Thus $(2,4,3)(1,2,4)(2,3,4)=(1,3,2)$. Products of the form $g^{-1} x g$ can also be calculated using the method described in Question 2 of Computer Tutorial 6 and Question 1 of Assignment 2: $g^{-1} x g$ can be found by writing x as a
product of cycles and replacing each number i that appears there by i^{g} (the number that i "goes to" under g). Thus $g^{-1}(1,4,2) g=\left(1^{g}, 4^{g}, 2^{g}\right)$ (for any g), and when $g=(2,3,4)$ this is $(1,2,3)$. So $g^{-1} H g=\{i d,(1,3,2),(1,2,3)\}$.
(ii) We must list all the permutations of $\{1,2,3,4\}$ that take 3 to 3 , and thus take 1,2 and 4 to 1,2 and 4 in some order. Answer: id, $(1,2),(1,4)$, $(2,4),(1,2,4)$ and $(1,4,2)$.
(iii) You could just calculate all six products $(2,4,3) h(2,3,4)$, where h runs through the six permutations listed in the answer to Part (ii). Three have already been calculated in Part (i); the others are $(2,4,3)(1,2)(2,3,4)=(1,4)$, $(2,4,3)(1,4)(2,3,4)=(1,3)$ and $(2,4,3)(2,4)(2,3,4)=(4,3)$. So you do indeed get the six permutations of $\{1,2,3,4\}$ that take 4 to 4 . One can also apply the principle that is the basis of the CompTut6/Assgt2 method for the calculation of $g^{-1} h g$, namely, if h takes i to j then $g^{-1} h g$ takes i^{g} to j^{g}. So if h takes 3 to 3 then $(2,3,4)^{-1} x(2,3,4)$ takes $3^{(2,3,4)}$ to $3^{(2,3,4)}$. Since $3^{(2,3,4)}=4$, this shows that if h is in the stabilizer of 3 then $(2,3,4)^{-1} h(2,3,4)$ is in the stabilizer of 4 .
More directly, given that h takes 3 to 3, applying $(2,3,4)^{-1}$ followed by h followed by $(2,3,4)$ we find that

$$
4 \xrightarrow{(2,4,3)} 3 \xrightarrow{h} 3 \xrightarrow{(2,3,4)} 4,
$$

and so $(2,3,4)^{-1} h(2,3,4)$ takes 4 to 4 , as required.
4. Let G be any group, H any subgroup of G and g any element of G.

Show that $g^{-1} \mathrm{Hg}$ is a subgroup of G. (Hint: you must use the fact that H satisfies (SG1), (SG2) and (SG3) to show that $g^{-1} \mathrm{Hg}$ also does.)

Solution.

Sice H is a subgroup of G we know that H satisfies (SG1): for all h and k, if $h, k \in H$ then $h k$ in H. We use this to show that $g^{-1} H g$ satisfies (SG1): for all x and y, if $x, y \in g^{-1} H g$ then $x y$ in $g^{-1} H g$.
Let $x, y \in g^{-1} H g$. Then $x=g^{-1} h g$ for some $h \in H$ and $y=g^{-1} k g$ for some $k \in H$. So

$$
x y=\left(g^{-1} h g\right)\left(g^{-1} k g\right)=g^{-1} h\left(g g^{-1}\right) k g=g^{-1}(h e k) g=g^{-1}(h k) g
$$

(where e is the identity element of G). But $h, k \in H$; so by (SG1) for H it follows that $h k \in H$. Hence $g^{-1}(h k) g \in g^{-1} H g$; that is, $x y \in g^{-1} H g$. But x, y were arbitrary elements of $g^{-1} \mathrm{Hg}$. So we have shown that $x y \in g^{-1} \mathrm{Hg}$ for all $x, y \in g^{-1} H g$, as required.
Since H is a subgroup it satisfies (SG2); that is, $e \in H$. So $g^{-1} e g \in g^{-1} H g$. But $g^{-1} e g=g^{-1} g=e$; so $e \in g^{-1} H g$. Thus $g^{-1} H g$ satisfies (SG2).

Since H is a subgroup it satisfies (SG3): for all h, if $h \in H$ then $h^{-1} \in H$. Now suppose that x is an arbitrary element of $g^{-1} H g$. Then $x=g^{-1} h g$ for some $h \in H$. Since taking inverses reverses the order of factors in a productthat is, $(a b)^{-1}=b^{-1} a^{-1}$-it follows that $x^{-1}=g^{-1} h^{-1}\left(g^{-1}\right)^{-1}=g^{-1} h^{-1} g$. But since $h \in H$ it follows from (SG3) for H that $h^{-1} \in H$, and hence $g^{-1} h^{-1} g \in g^{-1} \mathrm{Hg}$. So we have shown that for all x, if $x \in g^{-1} H g$ then $x^{-1} \in g^{-1} H g$. That is, $g^{-1} H g$ satisfies (SG3).
Since $g^{-1} \mathrm{Hg}$ satisfies (SG1), (SG2) and (SG3) it is a subgroup of G.
5. Let H be a subgroup of G, and let g be an element of G. Prove that the map $f: H \rightarrow g^{-1} H g$ defined by $f(h)=g^{-1} h g$ is a homomorphism. Prove also that f is one-to-one and onto.

Solution.
Let h_{1}, h_{2} be arbitrary elements of H. Then

$$
f\left(h_{1}\right) f\left(h_{2}\right)=\left(g^{-1} h_{1} g\right)\left(g^{-1} h_{2} g\right)=g^{-1} h_{1} h_{2} g=f\left(h_{1} h_{2}\right),
$$

and so f is a homomorphism.
By definition, $g^{-1} \mathrm{Hg}$ is the set of all elements of the form $g^{-1} h g$ for some $h \in H$. Since $g^{-1} h g=f(h)$ this says that every element of $g^{-1} H g$ has the form $f(h)$ for some $h \in H$. So f is onto.
Suppose that $h_{1}, h_{2} \in H$ satisfy $f\left(h_{1}\right)=f\left(h_{2}\right)$. Then $g^{-1} h_{1} g=g^{-1} h_{2} g$, and it follows that

$$
h_{1}=g\left(g^{-1} h_{1} g\right) g^{-1}=g\left(g^{-1} h_{2} g\right) g^{-1}=h_{2}
$$

Thus f is one-to-one.

