
WEEK 03

Projections using orthogonal bases

We showed last time that if {a
˜
1, a

˜
2, . . . , a

˜
k} is an orthonormal basis for a subspace

W of Rn then the projection of v
˜
∈ Rn onto W is given by

p
˜

= (a
˜
1 · v

˜
)a
˜
1 + (a

˜
2 · v

˜
)a
˜
2 + · · ·+ (a

˜
k · v

˜
)a
˜
k. (1)

We now obtain a similar formula for the case when we are given a basis of W that is
merely orthogonal, rather than orthonormal.

Suppose that {b
˜
1, b

˜
2, . . . , v

˜
k} is an orthogonal basis for W . Normalizing, we have that

{ 1

‖b
˜
1‖
b
˜
1,

1

‖b
˜
2‖
b
˜
2, . . . ,

1

‖b
˜

k‖
b
˜
k} is an orthonormal basis for W . Now applying the formula (1)

above (with a
˜
i = 1

‖b
˜

i‖
b
˜
i) we see that the projection of v

˜
onto W is given by

p
˜

=
k∑
i=1

(
1
‖b
˜
i‖
b
˜
i · v

˜

)
1
‖b
˜
i‖
b
˜
i =

k∑
i=1

(b
˜
i · v

˜
)

‖b
˜
i‖2

b
˜
i =

k∑
i=1

(b
˜
i · v

˜
)

(b
˜
i · b

˜
i)
b
˜
i. (2)

Observe again that this is the sum of the projections onto the one-dimensional spaces
spanned by the individual b

˜
i’s. (See the discussion of projections onto one-dimensional

subspaces at the start of the notes for Week 2.)
As an example, let W = Span(b

˜
1, b

˜
2), where b

˜
1 = (1, 1, 1)T and b

˜
2 = (1,−3, 2)T . Note

that b
˜
1 · b

˜
2 = 1 − 3 + 2 = 0, and so we do have an orthogonal basis for the subspace W .

Observe also that b
˜
1 · b

˜
1 = 12 + 12 + 12 = 3 and b

˜
2 · b

˜
2 = 12 + (−3)2 + 22 = 14. Now

let v
˜

= (−6, 8, 1)T . Substituting into the formula above we find that the projection p
˜

is
given by

p
˜

=
(v
˜
· b
˜
1)

3
b
˜
1 +

(v
˜
· b
˜
2)

14
b
˜
2 =

3
3
b
˜
1 +

(−28)
14

b
˜
2 =

 1
1
1

− 2

 1
−3
2

 =

−1
7
−3

 .

The Gram-Schmidt Orthogonalization Process

Since orthogonal bases are so convenient to work with, it is important to have a
procedure for constructing them. There is indeed such a procedure, called the Gram-
Schmidt Orthogonalization Process. The process itself is straightforward, despite its rather
grand sounding name.

We suppose that we are given a basis {a
˜
1, a

˜
2, . . . , a

˜
k} for a subspace W of Rn. The

aim is to construct from it an orthogonal basis {b
˜
1, b

˜
2, . . . , b

˜
k} for the same space W . It

is done as follows: define

b
˜
1 = a

˜
1

b
˜
2 = a

˜
2 − the projection of a

˜
2 onto Span(b

˜
1)

b
˜
3 = a

˜
3 − the projection of a

˜
3 onto Span(b

˜
1, b

˜
2)

b
˜
4 = a

˜
4 − the projection of a

˜
4 onto Span(b

˜
1, b

˜
2, b

˜
3)

...
b
˜
k = a

˜
k − the projection of a

˜
k onto Span(b

˜
1, b

˜
2, . . . , b

˜
k−1).
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Recall that
v
˜
− the projection of v

˜
onto a subspace X

is orthogonal to all elements of X. So the above formulas tell us immediately that

b
˜
2 is orthogonal to all elements of Span(b

˜
1)

b
˜
3 is orthogonal to all elements of Span(b

˜
1, b

˜
2)

b
˜
4 is orthogonal to all elements of Span(b

˜
1, b

˜
2, b

˜
3)

and so on. So the vectors b
˜
j are orthogonal to each other. So we can use Eq. (2) above

when computing the projections.

Before analysing the theory, let us do an example.

Example 1. Suppose that

a
˜
1 =

 1
2
0

 , a
˜
2 =

 0
1
2

 , a
˜
3 =

 1
1
1

 .

We start by setting b
˜
1 = a

˜
1, and then use Eq. (2) to calculate b

˜
2 and b

˜
3.

b
˜
1 = a

˜
1 =

 1
2
0

 ,

b
˜
2 = a

˜
2 −

(a
˜
2 · b

˜
1)

(b
˜
1 · b

˜
1)
b
˜
1

=

 0
1
2

− 2
5

 1
2
0

 =

−2/5
1/5
2

 ,

b
˜
3 = a

˜
3 −

(a
˜
3 · b

˜
1)

(b
˜
1 · b

˜
1)
b
˜
1 −

(a
˜
3 · b

˜
2)

(b
˜
2 · b

˜
2)
b
˜
2

=

 1
1
1

− 3
5

 1
2
0

− 9/5
21/5

−2/5
1/5
2


=

 1
1
1

−

 3/5
6/5
0

 +

 6/35
−3/35
−6/7

 =

 4/7
−2/7
1/7

 .

Multiplying each vector by a nonzero scalar does not affect orthogonality of a set of
vectors. So  1

2
0

 ,

−2
1
10

 ,

 4
−2
1


also form an orthogonal set. And we can normalize the vectors (divide each by its length)
to get three vectors that form an orthonormal basis of R3:

1√
5

 1
2
0

 ,
1√
105

−2
1
10

 ,
1√
21

 4
−2
1

 .
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Let us now look at the process in more detail. To express the formulas above more
compactly, let us use the following notation: if X is a subspace of Rn and a

˜
∈ Rn, let

Proj(X, a
˜
) be the orthogonal projection of the vector a

˜
onto the subspace X. Recall that

Proj(X, a
˜
) is by definition the vector in X that is closest to a

˜
, and that a

˜
−Proj(X, a

˜
) is

orthogonal to all elements of X.
Recall that the subspace spanned by a collection of vectors is by definition the set of

all linear combinations of those vectors. We shall write Xj for the subspace spanned by
b
˜
1, b

˜
2, . . . , b

˜
j (for each j from 1 to k):

Xj
def= Span(b

˜
1, b

˜
2, . . . , b

˜
j).

For each j > 1 the vector b
˜
j is given by

b
˜
j = a

˜
j − Proj(Xj−1, a

˜
j) (3)

and so all elements of Xj−1 are orthogonal to b
˜
j . Now if i < j then b

˜
i is in the space

Xj−1, and so it follows that b
˜
j is orthogonal to b

˜
i. Similarly if j < i then b

˜
j is in Xi−1),

and so b
˜
i is orthogonal to b

˜
j . Hence b

˜
i · b

˜
j = 0 whenever i 6= j; so {b

˜
1, b

˜
2, . . . , b

˜
k} is an

orthogonal set of vectors.
We still have to prove that {b

˜
1, b

˜
2, . . . , b

˜
k} is a basis for W . In fact, we shall prove

more than this. We shall show that for each value of i in the range 1 ≤ i ≤ k, the vectors
b
˜
1, b

˜
2, . . . , b

˜
i span the same subspace as the vectors a

˜
1, a

˜
2, . . . , a

˜
i:

Span(a
˜
1, a

˜
2, . . . , a

˜
i) = Span(b

˜
1, b

˜
2, . . . , b

˜
i) = Xi.

In other words, the vectors b
˜
1, b

˜
2, . . . , b

˜
i can all be expressed as linear combinations of

the vectors a
˜
1, a

˜
2, . . . , a

˜
i, and conversely.

The proof proceeds by induction on i. The case i = 1 is trivial: b
˜
1 = a

˜
1; so b

˜
1 can be

expressed in terms of a
˜
1, and conversely. So let us suppose that i > 1 and that the result

is true for i− 1. Thus our inductive assumption is that

Span(a
˜
1, a

˜
2, . . . , a

˜
i−1) = Span(b

˜
1, b

˜
2, . . . , b

˜
i−1) = Xi−1.

Since b
˜
1, b

˜
2, . . . , b

˜
i−1 are all in Xi−1, they can be expressed as linear combinations of

a
˜
1, a

˜
2, . . . , a

˜
i−1; likewise, since a

˜
1, a

˜
2, . . . , a

˜
i−1 are all in Xi−1, they can be expressed

as linear combinations of b
˜
1, b

˜
2, . . . , b

˜
i−1. To deduce the same result for i, all we have to

do is show that b
˜
i can be expressed as a linear combination of a

˜
1, a

˜
2, . . . , a

˜
i, and a

˜
i can

be expressed as a linear combination of b
˜
1, b

˜
2, . . . , b

˜
i. But this follows readily from the

formula for b
˜
i. By definition,

b
˜
i = a

˜
i − Proj(Xi−1, a

˜
i)

= a
˜
i − some linear combination of {a

˜
1, a

˜
2, . . . , a

˜
i−1}, (4)

since the projection of a
˜
i onto Xi−1 is an element of Xi−1, and a

˜
1, a

˜
2, . . . , a

˜
i−1 span Xi−1.

The equation Eq. (4) shows that b
˜
i is a linear combination of a

˜
1, a

˜
2, . . . , a

˜
i, as required.

Moreover, Proj(Xi−1, a
˜
i) can also be expressed as a linear combination of b

˜
1, b

˜
2, . . . , b

˜
i−1,

since these vectors also span Xi−1; so we see that

a
˜
i = b

˜
i + Proj(Xi−1, a

˜
i)

= b
˜
i + some linear combination of {b

˜
1, b

˜
2, . . . , b

˜
i−1}

= some linear combination of {b
˜
1, b

˜
2, . . . , b

˜
i},
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Thus all of b
˜
1, b

˜
2, . . . , b

˜
i can be expressed in terms of a

˜
1, a

˜
2, . . . , a

˜
i, and conversely, and

this completes the induction.

Since we are given that a
˜
1, a

˜
2, . . . , a

˜
k form a basis for W we know that they are

linearly independent; hence a
˜
1, a

˜
2, . . . , a

˜
j are also linearly independent, and thus form

a basis for the space they span, namely Xj . So Xj is j-dimensional, and since it is also
spanned by b

˜
1, b

˜
2, . . . , b

˜
j , these vectors comprise another basis of Xj . Furthermore, we

have also shown that the vectors b
˜
i have the property that b

˜
i · b

˜
l = 0 whenever i 6= l; so

{b
˜
1, b

˜
2, . . . , b

˜
j} is an orthogonal basis for Xj . In view of this, and using the formula we

derived for the projection in terms of an orthogonal basis, Eq (3) above gives

b
˜
j = a

˜
j −

j−1∑
i=1

(a
˜
j · b

˜
i)

(b
˜
i · b

˜
i)
b
˜
i. (5)

This is the formula to use in practical calculations.

Gram-Schmidt process: summary
The input is a sequence of vectors a

˜
1, a

˜
2, . . . , a

˜
k.

The output is another sequence of vectors, b
˜
1, b

˜
2, . . . , b

˜
k, given by

b
˜
1 = a

˜
1

b
˜
2 = a

˜
2 −

a
˜
2 · b

˜
1

b
˜
1 · b

˜
1
b
˜
1

b
˜
3 = a

˜
3 −

a
˜
3 · b

˜
1

b
˜
1 · b

˜
1
b
˜
1 −

a
˜
3 · b

˜
2

b
˜
2 · b

˜
2
b
˜
2

...

b
˜
k = a

˜
k −

a
˜
k · b

˜
1

b
˜
1 · b

˜
1
b
˜
1 −

a
˜
k · b

˜
2

b
˜
2 · b

˜
2
b
˜
2 − · · · − a

˜
k · b

˜
k−1

b
˜
k−1 · b

˜
k−1

b
˜
k−1.

For each i, the vectors b
˜
1, b

˜
2, . . . , b

˜
i form an orthogonal set spanning the same subspace

as a
˜
1, a

˜
2, . . . , a

˜
i.

Incidentally, we have assumed all along that the input vectors are linearly indepen-
dent. If they are not then everything will still work in the same way, except that some of
the output vectors b

˜
i will be zero.

Example 2. Although we usually use column vectors, the process of course works equally
well for row vectors. Suppose that a

˜
1 = (1, 1, 1), a

˜
2 = (1, 1, 0) and a

˜
3 = (1, 0, 0). Then

we obtain

b
˜
1 = (1, 1, 1)

b
˜
2 = (1, 1, 0)− b

˜
1 · a

˜
2

b
˜
1 · b

˜
1
(1, 1, 1)

= (1, 1, 0)− 2
3 (1, 1, 1)

=
(

1
3 ,

1
3 ,−

2
3

)
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b
˜
3 = (1, 0, 0)− b

˜
1 · a

˜
3

b
˜
1 · b

˜
1
(1, 1, 1)− b

˜
2 · a

˜
2

b
˜
2 · b

˜
2

(
1
3 ,

1
3 ,−

2
3

)
= (1, 0, 0)− 1

3 (1, 1, 1)− 1
2

(
1
3 ,

1
3 ,−

2
3

)
=

(
1
2 ,−

1
3 , 0

)
Thus we have an orthogonal set of vectors:

b
˜
1 = (1, 1, 1), b

˜
2 =

(
1
3 ,

1
3 ,−

2
3

)
, b

˜
3 =

(
1
2 ,−

1
3 , 0

)
.

The corresponding orthonormal basis of (R3)′ is

v
˜
1 =

(
1√
3
, 1√

3
, 1√

3

)
, v

˜
2 =

(
1√
6
, 1√

6
,− 2√

6

)
, v

˜
3 =

(
1√
2
,− 1√

2
, 0

)
.

Using MAGMA, it can be done as follows. (Note that, in a MAGMA command, //
indicates the beginning of a comment: MAGMA ignores everything following // up to the
end of the line).

> R:=RealField();
> V:=VectorSpace(R,3);
> // We now enter the three input vectors as the terms of a
> // sequence of vectors
> a := [V![1,1,1], V![1,1,0], V![1,0,0]];
> // Print it, just as a check
> a;
[

(1,1,1),
(1,1,0),
(1,0,0),

]
> // Now calculate a sequence of vectors whose terms are the
> // Gram-Schmidt output. Initially, the sequence is empty; we then
> // add the terms one at a time.
> b:=[];
> b[1]:=a[1];
> // If a sequence has n terms, then magma permits us to increase
> // its length by 1 by simply defining term number n + 1.
> b;
[

(1,1,1)
]
> b[2]:=a[2];
> b[2]:=b[2]-(InnerProduct(b[2],b[1])/InnerProduct(b[1],b[1]))*b[1];
> b[3]:=a[3];
> b[3]:=b[3]-(InnerProduct(b[3],b[1])/InnerProduct(b[1],b[1]))*b[1];
> b[3]:=b[3]-(InnerProduct(b[3],b[2])/InnerProduct(b[2],b[2]))*b[2];
> b;
[

(1,1,1)
(1/3 1/3 1/3)
(1/2 -1/2 0)

]
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We can save ourselves some typing by using some “for” loops. We define a function
GramSchmidt that takes a sequence a of vectors as its input, and outputs the orthogonal-
ized sequence of vectors b. First, we put b equal to the empty sequence [], then for i
running from 1 to the number of terms in the sequence a, we define b[i] by means of an-
other loop: put b[i] equal to a[i] initially, then for j running from 1 to i - 1, redefine
b[i] via b[i]:=b[i]-(InnerProduct(b[i],b[j])/InnerProduct(b[j],b[j]))*b[j].

> // We assume that a is a sequence of vectors. magma denotes
> // the number of terms in a sequence s by #s.
> GramSchmidt:=function(a);
function> b:=[];
function> for i in [1..#a] do
function|for> b[i]:=a[i]
function|for> for j in [1..i-1] do
function|for|for> b[i]:=b[i]-(InnerProduct(b[i],b[j])
function|for|for> /InnerProduct(b[j],b[j]))*b[j];
function|for|for> end for;
function|for> end for;
function> return(b);
> // Having defined this function, it is now easy to do
> // Example 1 above.
> R:=RealField();
> V:=VectorSpace(R,2);
> a:=[V![1,2,0],V![0,1,2],V![1,1,1]];
> G:=GramSchmidt(a);
> G;
[
(1 2 0),
(-2/5 1/5 2),
( 4/7 -2/7 1/7)
]

Orthogonal matrices

Definition. A matrix is said to be orthogonal if it is square and satisfies ATA = I, the
identity matrix.

Recall that ATA = I if and only if the columns of A form an orthonormal set of
vectors. This is because the (i, j)-entry of ATA is the dot product of the i-th and j-th
columns of A; so ATA = I if and only if this dot product is 0 for i 6= j and 1 for i = j. So
an n×n matrix is orthogonal if and only if its columns form an orthonormal basis of Rn.
(In view of this, it is a pity that such matrices are called orthogonal matrices rather than
orthonormal matrices. However, the terminology has been fixed for so long that it cannot
be changed now.)

It is a fact that you should know from earlier courses that if A is a square matrix and
BA = I then necessarily AB = I also, and so A is invertible and B = A−1. So it follows
from the definition above that a square matrix is orthogonal if and only if its transpose
is also its inverse. Of course, if the transpose of A is the inverse of A then the transpose
of AT (namely, A) is the inverse of AT . In other words, the condition “transpose equals
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inverse”, holds for AT if it holds for A. We conclude that if A is orthogonal then so is AT .
And so if the columns of A form an orthonormal basis of Rn then so do the columns
of AT . But the columns of AT are the transposes of the rows of A, and so the columns
of AT form an orthonormal basis of Rn if and only if the rows of A form an orthonormal
basis of (Rn)′. Thus we have shown that if an n × n matrix has orthonormal columns
then it also has orthonormal rows. The converse of this also holds, by similar reasoning.

The upshot of all this is that, for an n × n matrix A, the following conditions are
equivalent:

• A is orthogonal;
• AT = A−1;
• the columns of A form an orthonormal basis of Rn;
• the rows of A form an orthonormal basis of (Rn)′.

Example 3. Since the set of vectors

{ 0
1
0

 ,

 1
0
0

 ,

 0
0
1

}

is clearly an orthonormal basis of R3, it follows that the matrix

A =

 0 1 0
1 0 0
0 0 1


is orthogonal. So its transpose must be its inverse. Let us check this: 0 1 0

1 0 0
0 0 1

  1 0 0
0 0 1
0 1 0

 =

 1 0 0
0 1 0
0 0 1

 .

Example 4. We saw in our discussion of the Gram-Schmidt process that the following
set of vectors is an orthonormal basis of R3:

1√
5

 1
2
0

 ,
1√
105

−2
1
10

 ,
1√
21

 4
−2
1

 .

So it follows that the matrix 
1√
5

−2√
105

4√
21

2√
5

1√
105

−2√
21

0 10√
105

1√
21


is orthogonal. So its rows must form an orthonormal basis of (R3)′. Let us check that the
dot product of the first two rows is indeed zero:( 1√

5
−2√
105

4√
21

)
·
( 2√

5
1√
105

−2√
21

)
= 2

5 −
2

105 −
8
21 = 42−2−40

105 = 0.
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Example 3. The following orthogonal matrix is one of my favourites:
−1
2

1
2

1
2

1
2

1
2

−1
2

1
2

1
2

1
2

1
2

−1
2

1
2

1
2

1
2

1
2

−1
2

 .

This matrix is also symmetric; so its transpose equals itself as well as its inverse. So it is
self-inverse: A2 = I.

Orthogonal matrices of degree 2

It is not hard to completely determine all 2× 2 orthogonal matrices. If(
a c
b d

) (
a b
c d

)
=

(
1 0
0 1

)
then expanding the left hand side gives the three equations

a2 + c2 = 1
ba+ dc = 0

b2 + d2 = 1.

From the first of these equations we can deduce that there exists a number ψ ∈ R such that
a = cosψ and c = sinψ. Putting this into the second equation gives b cosψ+ d sinψ = 0,
and from this we deduce

b = λ sinψ
d = −λ cosψ

for some scalar λ. (In fact, if cosψ 6= 0 then it is clear that these equations hold with
λ = −d

cosψ . If cosψ = 0 then sinψ 6= 0, and the alternative formula λ = b
sinψ can be used.)

Now b2 + d2 = 1 gives λ2 sin2 ψ + λ2 cos2 ψ = 1, and it follows that λ2 = 1. So λ = ±1,
and we have shown that(

a c
b d

)
=

(
cosψ − sinψ
sinψ cosψ

)
or

(
cosψ sinψ
sinψ − cosψ

)
. (6)

Conversely, it is trivial to check that any 2×2 matrix of either of these forms is orthogonal.
Note that in one case the matrix has determinant cos2 ψ + sin2 ψ = 1, and in the other
case it has determinant −cos2ψ − sin2 ψ = −1.

Geometrically, the first of the two alternatives in Eq. (6)—the one with positive
determinant—corresponds to an anticlockwise rotation through ψ. More precisely, the
linear transformation (

x
y

)
7→

(
x′

y′

)
=

(
cosψ − sinψ
sinψ cosψ

) (
x
y

)
maps the point P in the plane (identified with R2) to the point P ′ the same distance from
the origin O as P , and such that ∠P ′OX = ψ + ∠POX (where X is on the positive x-
axis). To see this, write the coordinates of P as x = r cos θ and y = r sin θ. Thus P has
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distance r from O, and ∠OPX = θ. Since(
x′

y′

)
=

(
cosψ − sinψ
sinψ cosψ

) (
x
y

)
=

(
cosψ − sinψ
sinψ cosψ

) (
r cos θ
r sin θ

)
=

(
r cosψ cos θ − r sinψ sin θ
r sinψ cos θ + r cosψ sin θ

)
=

(
r cos(ψ + θ)
r sin(ψ + θ)

)
,

we see that the distance from P ′ to O is also r, and ∠P ′OX = ψ + θ, as required.

θ
ψ

(
x
y

)
=

(
r cos θ
r sin θ

)

(
x′

y′

)
=

(
r cos(ψ + θ)
r sin(ψ + θ)

)

O

P

P ′

X

In a similar fashion it can be shown that the other matrix in Eq. (6) above corresponds
to the reflection in the line OL such that ∠LOX = ψ/2. This time the calculation goes
as follows:(

x′

y′

)
=

(
cosψ sinψ
sinψ − cosψ

) (
x
y

)
=

(
cosψ sinψ
sinψ − cosψ

) (
r cos θ
r sin θ

)
=

(
r cosψ cos θ + r sinψ sin θ
r sinψ cos θ − r cosψ sin θ

)
=

(
r cos(ψ − θ)
r sin(ψ − θ)

)
As can be seen from the diagram, this ensures that ∠P ′OL = ∠POL = ψ

2 − θ, making
P ′ the mirror image of P relative to OL.

θ

L

ψ
2−θ

ψ
2−θ

(
x
y

)
=

(
r cos θ
r sin θ

)

(
x′

y′

)
=

(
r cos(ψ − θ)
r sin(ψ − θ)

)

O

P

P ′

X
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Example 5. Let A =
(

3/5 4/5
−4/5 3/5

)
. Then

ATA =
(

3/5 −4/5
4/5 3/5

) (
3/5 4/5
−4/5 3/5

)
=

(
1 0
0 1

)
,

so that A is orthogonal. And detA = (3/5)2 + (4/5)2 = 1; so A is a rotation. Pre-
cisely, it is an anticlockwise rotation through an angle θ such that cos θ = 3/4 and
sin θ = −4/5. Since sin θ is negative and cos θ positive, θ is in the fourth quadrant.
And since arcsin(4/5) ≈ 63.13◦, we deduce that θ ≈ −63.13◦. Alternatively put, A
corresponds to a clockwise rotation through 63.13◦ (approximately).

Here is some MAGMA.

> R := RealField();
> root2 := Sqrt(2);
> root3 := Sqrt(3);
> root6 := Sqrt(6);
> M := KMatrixSpace(R,3,3);
> A := M![1/root3,1/root3,1/root3,1/root6,1/root6,-2/root6,
> 1/root2,-1/root2,0];
> A * Transpose(A);
[0.99999999999999999999999999996 0.E-29 0.E-29]
[ 0.E-29 0.99999999999999999999999999996 0.E-29]
[ 0.E-29 0.E-29 0.99999999999999999999999999997]

The answer MAGMA obtains in the above calculation is the identity matrix, to 28
decimal places. Of course, if the calculations had been exact, the answer would have been
exactly the identity matrix.

In fact, MAGMA can do this kind of calculation exactly. Here is how.

> Q := RationalField();
> P<x> := PolynomialRing(Q);
> N< root2, root3 > := NumberField([x∧2-2,x∧2-3]);
> // These commands have declared N to be a field with elements
> // root2 and root3 satisfying root22 = 2 and root32 = 3 (exactly)
> root6 := root2*root3
> M := KMatrixSpace(N,3,3);
> A := M![1/root3,1/root3,1/root3,1/root6,1/root6,-2/root6,
> 1/root2,-1/root2,0];
> A * Transpose(A);
[1 0 0]
[0 1 0]
[0 0 1]

Abstract inner product spaces
So far in this course the only vector spaces we have been concerned with have been

Rn and (Rn)′, and their subspaces. However, there are innumerable other examples of
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vector spaces, and it is quite straightforward to adapt the ideas we have been using so
that they can be applied in a wider context. In particular, we shall be interested in vector
spaces whose elements are continuous real-valued functions defined on subsets of R, and
subspaces of these, such as spaces of polynomial functions.

From the Matrix Applications course, you should know that Pn, the set of polynomials
in the variable X of degree at most n, is a vector space over R. By definition,

Pn = { a0 + a1X + a2X
2 + · · ·+ anX

n | a0, a1, . . . , an ∈ R }

and it is clear that Pn has dimension n+ 1, the set {1, X,X2, . . . , Xn} being a basis.
If a, b ∈ R with a ≤ b then the set F [a, b] consisting of all functions [a, b] → R is a

vector space over R under the operations of addition and scalar multiplication defined as
follows:

(f + g)(t) = f(t) + g(t) for all t ∈ R
(λf)(t) = λ(f(t)) for all t ∈ R

for all f, g ∈ F [a, b] and λ ∈ R. From basic calculus we know that sums and scalar
multiples of continuous functions are continuous, and it follows readily that the set C[a, b]
consisting of all continuous real-valued functions on [a, b] is a subspace of F [a, b]. And
P[a, b], the set of polynomial functions on [a, b], is a subspace of C[a, b].

Let V be any vector space over R. Suppose that we have a rule for multiplying
vectors, such that the product of two vectors is a scalar. We adopt the notation (u

˜
, v
˜
) for

the product of u
˜

and v
˜
. We are interested in products that satisfy the following properties:

IP1) (u
˜
, v
˜
) = (v

˜
, u
˜
) for all u

˜
, v
˜
∈ V ;

IP2) (u
˜

+ v
˜
, w
˜
) = (u

˜
, w
˜
) + (v

˜
, w
˜
) for all u

˜
, v
˜
w
˜
∈ V ;

IP3) (ku
˜
, v
˜
) = k(u

˜
, v
˜
) for all u

˜
, v
˜
∈ V and all k ∈ R;

IP4) (u
˜
, u
˜
) ≥ 0 for all u

˜
∈ V , and if (u

˜
, u
˜
) = 0 then v

˜
= 0

˜
.

We noted in Week 1 that the dot product on Rn has these properties; the proofs are
given in the solutions to Tutorial 1. So the dot product on Rn is an example of an inner
product. It is called the standard inner product on Rn, and it is the motivating example
for the definition. Every other inner product, on any vector space, should be thought of
as a generalization of the standard inner product. We can expect the properties of the
standard inner product to be mirrored by other inner products.

If A is any n× n symmetric matrix with positive eigenvalues, then the rule

(u
˜
, v
˜
) = u

˜
TAv

˜
defines an inner product on Rn. For example, let A =

(
2 0
0 3

)
. This is symmetric, and

its eigenvalues are 2 and 3; so it should determine an inner product on R2. Let us express
the formula in terms of the entries of u

˜
and v

˜
:((

x1

y1

)
,

(
x2

y2

))
= (x1 y1 )A

(
x2

y2

)
= (x1 y1 )

(
2 0
0 3

) (
x2

y2

)
= ( 2x1 3y1 )

(
x2

y2

)
= 2x1x2 + 3y1y2
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It is easy to check that (IP1)–(IP4) are satisfied; the proofs are very similar to those for
the standard inner product. In particular, (IP4) holds since((

x1

y1

)
,

(
x1

y1

))
= 2x2

1 + 3y2
1 ≥ 0,

with equality only if x1 = y1 = 0. It is clear that positivity of the eigenvalues is crucial
for this: if we changed the diagonal entries of A from 2 and 3 to 2 and −3 it would no
longer work.

Note that using the identity matrix in the above construction gives the standard
inner product.
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