
WEEK 04

Abstract inner product spaces
Definition An inner product space is a vector space V over the real field R equipped
with a rule for multiplying vectors, such that the product of two vectors is a scalar, and
the following properties hold:
IP1) (u

˜
, v
˜
) = (v

˜
, u
˜
) for all u

˜
, v
˜
∈ V ;

IP2) (u
˜

+ v
˜
, w
˜
) = (u

˜
, w
˜
) + (v

˜
, w
˜
) for all u

˜
, v
˜

w
˜
∈ V ;

IP3) (ku
˜
, v
˜
) = k(u

˜
, v
˜
) for all u

˜
, v
˜
∈ V and all k ∈ R;

IP4) (u
˜
, u
˜
) ≥ 0 for all u

˜
∈ V , and if (u

˜
, u
˜
) = 0 then v

˜
= 0

˜
.

The scalar (u, v) is called the inner product of the vectors u and v.

It was pointed out in Lecture 6 that if A is any n×n symmetric matrix with positive
eigenvalues, then the rule

(u
˜
, v
˜
) = u

˜
T Av

˜
defines an inner product on Rn. In the case that A is the identity matrix then this
construction gives the standard inner product on Rn; that is, the dot product.

Now consider C[a, b], the space of continuous functions from the interval [a, b] to R,
and for f, g ∈ C[a, b] define

(f, g) =
∫ b

a

f(x)g(x) dx.

Checking that (IP1), (IP2) and (IP3) are satisfied is quite straightforward. For example,
if f, g and h are arbitrary elements of C[a, b], then

(f + g, h) =
∫ b

a

(f + g)(x) h(x) dx =
∫ b

a

(f(x) + g(x))h(x) dx

=
∫ b

a

f(x)h(x) + g(x)h(x) dx =
∫ b

a

f(x)h(x) dx +
∫ b

a

g(x)h(x) dx = (f, h) + (g, h),

which shows that (IP2) holds. The first part of (IP4) is also clear:

(f, f) =
∫ b

a

f(x)2 dx

is obviously nonnegative. The other assertion of (IP4)—that (f, f) = 0 implies f = 0—
is also intuitively reasonable: if f(x) is nonzero at any point in the interval [a, b], then
continuity of f guarantees that there is some subinterval of [a, b] and some α > 0 such
that f(x)2 > α at all points of this subinterval, and it follows that

∫ b

a
f(x)2 dx > 0. We

omit further details of the proof, since the calculus involved is somewhat removed from
the topics that are the main focus of this course.

We can also use the formula
∫ b

a
f(x)g(x) dx to define an inner product on P[a, b], the

polynomial functions on [a, b] (which is a subspace of C[a, b]).
If V is an inner product space and f ∈ V , then, as in Rn, we define ‖f‖ =

√
(f, f),

and call this the length of f . The Cauchy-Schwarz Inequality says that |(f, g)| ≤ ‖f‖ ‖g‖
for all f, g ∈ V , and the proof of this inequality for inner product spaces in general
is just the same as its proof in Rn, since the proof uses nothing beyond the properties
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(IP1)–(IP4). As in Rn, we define the angle between elements f and g of an inner product
space to be arccos((f, g)/‖f‖ ‖g‖). We say that f and g are orthogonal if (f, g) = 0.
Pythagoras’ Theorem holds for any inner product space, and is proved in the same way
as it is for Rn. And our discussion of projections also goes through unchanged.

Example 1. Let f1, f2 and f3 be the functions [0, 1] → R defined by

f1(x) = 1, f2(x) = 1− 2x, f3(x) = 1− 6x + 6x2.

These form an orthogonal set in P[0, 1]. To see this, we must check that (f1, f2), (f1, f3)
and (f2, f3) are all zero. We have

(f1, f2) =
∫ 1

0

(1− 2x) dx = x− x2
]1

0
= 0− 0 = 0,

(f1, f3) =
∫ 1

0

(1− 6x + 6x2) dx = 1x− 3x2 + 2x3
]1

0
= 0− 0 = 0,

(f2, f3) =
∫ 1

0

(1− 2x)(1− 6x + 6x2) dx =
∫ 1

0

1− 8x + 18x2 − 12x3) dx

= x− 4x2 + 6x3 − 3x4
]1

0
= 0− 0 = 0,

as required.

Projections in inner product spaces

Let {a
˜
1, a

˜
2, . . . , a

˜
k} be a basis for a finite-dimensional subspace W of an inner product

space V . For each v
˜
∈ V there is a unique p

˜
∈ W with the property that (x

˜
, v
˜
− p

˜
) = 0

for all x
˜
∈ W ; that is, v

˜
− p

˜
is orthogonal to all elements of W . The element p

˜
is

called the projection of v
˜

onto W . The condition that (x
˜
, v
˜
− p

˜
) = 0 for all x

˜
∈ W can be

reformulated as (x
˜
, v
˜
) = (x

˜
, p
˜
) for all x

˜
∈ W , and this in turn is equivalent to the condition

that (a
˜

i, v
˜
) = (a

˜
i, p

˜
) for all i = 1, 2, . . . , k. We may write p

˜
as a linear combination of

the basis elements of W ,
p
˜

= λ1a
˜
1 + λ2a

˜
2 + · · ·+ λka

˜
k, (1)

and then the condition becomes
(a
˜
1, v

˜
)

(a
˜
2, v

˜
)

...
(a
˜

k, v
˜
)

 =


(a
˜
1, p

˜
)

(a
˜
2, p

˜
)

...
(a
˜

k, p
˜
)

 =


(a
˜
1, λ1a

˜
1 + λ2a

˜
2 + · · ·+ λka

˜
k)

(a
˜
2, λ1a

˜
1 + λ2a

˜
2 + · · ·+ λka

˜
k)

...
(a
˜

k, λ1a
˜
1 + λ2a

˜
2 + · · ·+ λka

˜
k)



=


(a
˜
1, a

˜
1)λ1 + (a

˜
1, a

˜
2)λ2 + · · ·+ (a

˜
1, a

˜
k)λk

(a
˜
2, a

˜
1)λ1 + (a

˜
2, a

˜
2)λ2 + · · ·+ (a

˜
2, a

˜
k)λk

...
(a
˜

k, a
˜
1)λ1 + (a

˜
k, a

˜
2)λ2 + · · ·+ (a

˜
k, a

˜
k)λk



=


(a
˜
1, a

˜
1) (a

˜
1, a

˜
2) . . . (a

˜
1, a

˜
k)

(a
˜
2, a

˜
1) (a

˜
2, a

˜
2) . . . (a

˜
2, a

˜
k)

...
...

...
(a
˜

k, a
˜
1) (a

˜
k, a

˜
2) . . . (a

˜
k, a

˜
k)




λ1

λ2
...

λk

 .

–2–



In other words, we can find p
˜

by solving the system of linear equations

G


λ1

λ2
...

λk

 =


(a
˜
1, v

˜
)

(a
˜
2, v

˜
)

...
(a
˜

k, v
˜
)

 ,

where the matrix G is the Gram matrix of the basis {a
˜
1, a

˜
2, . . . , a

˜
k}, and then p

˜
is given

by Eq. (1) above.
The above calculation is essentially the same as a calculation we did when discussing

projections in the context of Rn in the first week of lectures. The formula above is the
same as the formula we derived then, since the matrix G above coincides with the matrix
AT A that we had before.

As in Rn, projections become simpler when orthogonal bases are used. So you should
generally not use the above formula to compute projections. Instead, first apply the Gram-
Schmidt process to obtain an orthogonal basis {b

˜
1, b

˜
2, . . . , b

˜
k} for the subspace W , and

then use the formula

p
˜

=
(b
˜
1, v

˜
)

(b
˜
1, b

˜
1)

b
˜
1 +

(b
˜
2, v

˜
)

(b
˜
2, b

˜
2)

b
˜
2 + · · ·+ (b

˜
k, v

˜
)

(b
˜
k, b

˜
k)

b
˜
k (2)

to compute the projection of v
˜

onto W . Remember that Eq. (2) is only valid when the
basis {b

˜
1, b

˜
2, . . . , b

˜
k} is othogonal!

Legendre polynomials

Let C be the space of continuous functions [−1, 1] → R, with inner product defined
by

(f, g) =
∫ 1

−1

f(x)g(x) dx.

Let f0, f1, f2, . . . , fk ∈ C be defined by fn(x) = xn for all x ∈ [−1, 1], and let Pk be
the subspace of C spanned by f0, f1, . . . , fk. That is, Pk is the subspace of C given by
polynomial functions of degree at most k.

Given a continuous function f : [−1, 1] → R, the projection of f onto Pk is the poly-
nomial function of degree at most k that is the best approximation to f on [−1, 1], in the
“least squares” sense: it gives the minimal value for

∫ 1

−1
(f(x) − p(x))2 dx, subject to p

being a polynomial of degree at most k.
As explained above, for the purpose of computing such projections conveniently, we

need an orthogonal basis for Pk. To obtain one, we apply the Gram-Schmidt process,
starting with the basis {f0, f1, . . . , fk}. The formulas are as follows:

g0 = f0

g1 = f1 −
(f1, g0)
(g0, g0)

g0

g2 = f2 −
(f2, g0)
(g0, g0)

g0 −
(f2, g1)
(g1, g1)

g1

g3 = f3 −
(f3, g0)
(g0, g0)

g0 −
(f3, g1)
(g1, g1)

g1 −
(f3, g2)
(g2, g2)

g2

...
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and so on.

Let us compute these. Firstly, we have

(f1, g0) =
∫ 1

−1

x 1 dx = 1
2x2

]1

−1
= 0,

and so it follows that g1 = f1. Next,

(f2, g0) =
∫ 1

−1

x21 dx = 1
3x3

]1

−1
= 2

3

(g0, g0) =
∫ 1

−1

1 dx = x
]1

−1
= 2

(f2, g1) =
∫ 1

−1

x2x dx = 1
4x4

]1

−1
= 0

(g1, g1) =
∫ 1

−1

x2 dx = 2
3 ,

and so
g2 = f2 − (2/3)

2 g0 − 0
(2/3)g1 = f2 − 1

3g0.

Similarly, we find that

(f3, g0) =
∫ 1

−1

x3 dx = 0

(f3, g1) =
∫ 1

−1

x4 dx = 2
5

(f3, g2) =
∫ 1

−1

x3(x2 − 1
3 ) dx = 0,

and this gives
g3 = f3 − 0g0 − (2/5)

(2/3)g1 − 0g2 = f3 − 3
5g1.

Students are invited to compute further terms for themselves.
The polynomials we have been calculating are known as Legendre polynomials. Ex-

pressed in terms of x, the first few are as follows:

g0(x) = 1
g1(x) = x

g2(x) = x2 − 1
3

g3(x) = x3 − 3
5x

g4(x) = x4 − 6
7x2 + 3

35

g5(x) = x5 − 10
9 x3 + 5

21x

g6(x) = x6 − 15
11x4 + 5

11x2 − 5
231 .
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Strictly speaking, the Legendre polynomials are not these, but scalar multiples of these,
the scalars being chosen so that the polynomials take the value 1 at x = 1. Performing
this scaling gives

P0(x) = 1
P1(x) = x

P2(x) = 1
2 (3x2 − 1)

P3(x) = 1
2 (5x3 − 3x)

P4(x) = 1
8 (35x4 − 30x2 + 3)

P5(x) = 1
8 (63x5 − 70x3 + 15x)

P6(x) = 1
16 (231x6 − 315x4 + 105x2 − 5).

In fact, the general formula is

Pn(x) =
[n/2]∑
k=0

(−1)k(2n− k)!
2nk!(n− k)!(n− 2k)!

xn−2k,

but we shall not prove this.
Here is some MAGMA code for calculating Legendre polynomials. It utilizes the MAGMA

functions Integral and Evaluate: if f is a polynomial in x then Integral(f) is the
polynomial with zero constant term whose derivative is f; if f is a polynomial in x and t
a number then Evaluate(f,t) is the number obtained by evaluating f when x is given
the value t. (It is f(t), so to speak, although f(t) is not correct MAGMA syntax.)

> R := RealField();
> P<x> := PolynomialAlgebra(R);
> polyip := func< f,g | Evaluate(Integral(f*g),1) -
> Evaluate(Integral(f*g),-1) >;
> //
> // So polyip(f,g) is the integral of f*g from -1 to 1,
> // which is exactly the inner product of f and g.
> //
> f := [];
> for i in [0..6] do
for> f[i+1] := x^i;
for> end for;
> f;
[
1
x
x^2
x^3
x^4
x^5
x^6

]
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> g := [ ];
> for i in [0..6] do
for> g[i+1]:=f[i+1];
for> for j in [1..i] do
for|for> g[i+1] := g[i+1] - (polyip(g[i+1],g[j])/
for|for> polyip(g[j],g[j]))*g[j];
for|for> end for;
for> end for;
> g;
[
1,
x,
x^2 - 1/3,
x^3 - 3/5*x,
x^4 - 6/7*x^2 + 3/35,
x^5 - 10/9*x^3 + 5/21*x,
x^6 - 15/11*x^4 + 5/11*x^2 - 5/231

]
> q:=[ ];
> for i in [1..7] do
for> q[i] := g[i]/Evaluate(g[i],1);
> end for;
>q;
[
1,
x,
3/2*x^2 - 1/2,
5/2*x^3 - 3/2*x,
35/8*x^4 - 15/4*x^2 + 3/8,
63/8*x^5 - 35/4*x^3 + 15/8*x,
231/16*x^6 - 315/16*x^4 + 105/16*x^2 - 5/16

]

Example 2. Let us use the orthogonal basis {g0, g1, g2} to compute the projection onto
the space W2 of the function f : [−1, 1] → R given by f(x) = ex (for all x ∈ [−1, 1]). By
the formula, the projection p is given by

p =
(f, g0)
(g0, g0)

g0 +
(f, g1)
(g1, g1)

g1 +
(f, g2)
(g2, g2)

g2.

This formula, of course, is only applicable since the gi form an orthogonal set.
We need to calculate a few integrals:

(f, g0) =
∫ 1

−1

ex1 dx = ex
]1

−1
= e− e−1,

(f, g1) =
∫ 1

−1

exx dx = xex − ex
]1

−1
= 2e−1,

(f, g2) =
∫ 1

−1

ex(x2 − 1
3 ) dx = x2ex − 2xex + 5

3ex
]1

−1
= 2

3e− 14
3 e−1.
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We found above that (g0, g0) = 2 and (g1, g1) = 2
3 , and we also need

(g2, g2) =
∫ 1

−1

(x2 − 1
3 )2 dx = 8

45 .

The final answer is

p(x) =
e− e−1

2
+

2e−1

(2/3)
x +

(2/3)e− (14/3)e−1

(8/45)
(x2 − 1

3 )

≈ 0.996 + 1.104x + 0.537x2.

Note that the Taylor series for ex about x = 0 is 1+x+ 1
2x2 + 1

6x3 + · · ·, and in particular
the polynomial we have found is not much different from the degree 2 Taylor polynomial,
1 + x + 1

2x2. The difference is due to the fact that the accuracy of the Taylor polynomial
as an approximation to ex improves the closer x is to zero, whereas the least squares
approximation gives equal weight to all values of x in the interval [−1, 1].

Fourier series

Let C[−π, π] be the space of continuous functions [−π, π] → R, with inner product
(f, g) =

∫ π

−π
f(x)g(x) dx. Let c0, c1, c2, . . . and s1, s2, . . . be the elements of C[−π, π]

defined by

cn(x) = cos(nx)
sn(x) = sin(nx)

for x in the interval [−π, π]. Note that sn is not defined for n = 0, while c0 is the
constant function c0(x) = 1 (since cos(0x) = cos 0 = 1 for all x). To compute inner
products involving these, we need to use some standard trigonometric identities. For all
nonnegative integers n and m,

(sn, cm) =
∫ π

−π

sin(nx) cos(mx) dx

=
∫ π

−π

1
2 (sin(n + m)x− sin(n−m)x) dx

=


1
2 ( −1

n+m cos(n + m)x− −1
n−m cos(n−m)x)

]π

−π
if n 6= m

1
2 (−1

2m cos(2m x))
]π

−π
if n = m

since the term sin(n − m)x vanishes when n = m. The crucial point to observe now is
that, by the periodicity of the cosine function, cos(kx) takes the same value at x = −π
as at x = π, whenever k is an integer. So in both cases the above integral vanishes, and

–7–



we deduce that (sn, cm) = 0. Similarly, if n, m are positive integers,

(sn, sm) =
∫ π

−π

sin(nx) sin(mx) dx

=
∫ π

−π

1
2 (cos(n−m)x− cos(n + m)x) dx

=


1
2 ( 1

n−m sin(n−m)x− 1
n+m sin(n + m)x)

]π

−π
if n 6= m

1
2 (x− 1

2m sin(2m x))
]π

−π
if n = m

=
{

0 if n 6= m
π if n = m,

where again the periodicity of the sin function simplifies the calculations. (Note that in
the case n = m above the term cos(n − m)x becomes simply cos 0 = 1, and integrating
this gives x. The formula 1

n−m sin(n − m)x for the integral of cos(n − m)x is not valid
when n = m, but it is valid for all other values of n and m.)

The calculation of (cn, cm), when n and m are positive integers, is analogous to the
calculation of (sn, sm):

(cn, cm) =
∫ π

−π

cos(nx) cos(mx) dx

=
∫ π

−π

1
2 (cos(n−m)x + cos(n + m)x) dx

=


1
2 ( 1

n−m sin(n−m)x + 1
n+m sin(n + m)x)

]π

−π
if n 6= m

1
2 (x + 1

2m sin(2m x))
]π

−π
if n = m

=
{ 0 if n 6= m

π if n = m.

When n and m are both zero the above calculation does not apply (because of the 1
n+m ),

and in fact (c0, c0) =
∫ π

−π
1 dx = 2π.

These calculations have shown, in particular, that {c0, s1, c1, s2, c2, s3, c3, . . . , sk, ck}
is an orthogonal set in C[−π, π] (for any value of k). If we define Wk to be the subspace
spanned by this set, then we can calculate the projection of any f ∈ C[−π, π] onto this
subspace by means of the general formulas we have obtained. Specifically, if p is the
projection of f then p is given by the formula

p =
(f, c0)
(c0, c0)

c0 +
(f, s1)
(s1, s1)

s1 +
(f, c1)
(c1, c1)

c1 + · · ·+ (f, ck)
(ck, ck)

ck.

In view of the formulas for (cn, cn) and (sn, sn) this yields, for all x ∈ [−π, π],

p(x) =
( 1

2π

∫ π

−π

f(t) dt
)

+
( 1

π

∫ π

−π

f(t) sin t dt
)

sinx +
( 1

π

∫ π

−π

f(t) cos t dt
)

cos x

+
( 1

π

∫ π

−π

f(t) sin(2t) dt
)

sin(2x) + · · ·+
( 1

π

∫ π

−π

f(t) cos(kt) dt
)

cos(kx).

–8–



This is the best approximation—in the least squares sense—to the function f on the
interval [−π, π] by a function in the subspace Wk. The larger k is, the better the ap-
proximation. Letting k tend to ∞ yields an infinite series known as the Fourier series
of f .

Example 3. Let us find the Fourier series for the function f(x) = x on the interval [−π, π].
It is useful to remember that if a function g has the property that g(−x) = −g(x)

for all x ∈ [−a, a], then
∫ a

−a
g(x) dx = 0. In particular, the function g defined by

g(x) = x cos(nx) has this property (for any value of n), and so∫ π

−π

x cos(nx) dx = 0.

Thus the coefficient of cos nx in the Fourier series of x is zero for all n. The coefficient of
sin(nx) is

1
π

∫ π

−π

x sin(nx) dx =
1
π

(
−x

n
cos(nx)

]π

−π
−

∫ π

−π

−1
n

cos(nx) dx

)
=

(
− x

πn
cos(nx) +

1
πn2

sin(nx)
)]π

−π

=
−π

πn
cos(nπ) +

−π

πn
cos(n(−π))

=
2(−1)n+1

n

So the Fourier series of x on [−π, π] is

2(sinx− 1
2 sin(2x) + 1

3 sin(3x)− 1
4 sin(4x) + 1

4 sin(5x)− · · · ).

It can be shown that this series converges to x when x ∈ [−π, π]. When x /∈ [−π, π] the
series still converges, but, rather than x, the limit is x − 2kπ, where k is defined by the
requirement that x− 2kπ ∈ [−π, π].

We conclude the section of the course on inner product spaces with two more examples
of calculations with spaces of continuous functions. The first of these was done incorrectly
in lectures: I inadvertently omitted a couple of square root signs, so that the quantities
which I said were the length of f and the length of g were in fact the squares of these
lengths.

Example 4. We verify the Cauchy-Schwarz inequality for the functions f(x) = x and
g(x) = −ex in C[0, 2].

Recall that the Cauchy-Schwarz inequality says that

|(f.g)| ≤ ‖f‖ ‖g‖.
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Verifying this for f and g as given is simply a matter of evaluating some integrals:

‖f‖ =
√

(f, f) =

√∫ 2

0

x2 dx =

√
1
3x3

]2

0
=

√
8
3 ,

‖g‖ =
√

(g, g) =

√∫ 2

0

e2x dx =

√
1
2e2x

]2

0
=

√
1
2 (e4 − 1),

(f, g) =
∫ 2

0

(−xex) dx = −xex + ex
]2

0
= (e2 − 2e2)− e0 = −1− e2.

Thus |(f, g)| = 1 + e2 ≈ 8.39, which is less than ‖f‖ ‖g‖ =
√

4
3 (e4 − 1) ≈ 8.45.

Note that, by definition, the angle between f and g is cos−1
( (f,g)
‖f‖ ‖g‖

)
, although this

quantity has no geometrical interpretation. In this case (f,g)
‖f‖ ‖g‖ is fairly close to 1, and so

the angle is fairly close to zero. In fact it is approximately 0.127 radians, or 7.09 degrees.

Example 5. For our final example we compute the best approximation to cos x in P2[−π, π]
(the space of polynomial functions of degree at most 2 on the interval [−π, π].

The necessary first step is to find an orthogonal basis for P2[−π, π]. We do this by
applying the Gram-Schmidt process to the basis {f0, f1, f2}, where fi(x) = x2 (for all
x ∈ [0, 2]). This is very similar to the calculation of the Legendre polynomials, but the
numbers come out differently since we are working over a different interval now.

The new basis is
g0 = f0

g1 = f1 −
(f1, g0)
(g0, g0)

g0

g2 = f2 −
(f2, g0)
(g0, g0)

g0 −
(f2, g1)
(g1, g1)

g1.

We have (f1, g0) =
∫ π

−π
x 1 dx = 0, and so g1 = f1. Now

(f2, g0) =
∫ π

−π

x2 dx = 2
3π3,

(f2, g1) =
∫ π

−π

x3 dx = 0,

(g0, g0) =
∫ π

−π

1 dx = 2π.

Thus

g2 = f2 −
(2/3)π3

2π
g0 = f2 −

π2

3
g0,

so that g0(x) = 1, g1(x) = x and g2(x) = x2 − π2

3 , for all x ∈ [−π, π].
Since {g0, g1, g2} is an orthogonal basis for the space, the projection of cos onto this

space is given by
(cos, g0)
(g0, g0)

g0 +
(cos, g1)
(g1, g1)

g1 +
(cos, g2)
(g2, g2)

g2.
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We find that (cos, g0) =
∫ π

−π
cos x dx = sinx

]π

−π
= 0. And (cos, g1) =

∫ π

−π
x cos x dx = 0,

since the function f(x) = x cos x satisfies f(−x) = f(x) for all x ∈ [−π, π]. Now

(cos, g2) =
∫ π

−π

(cos x)(x2 − π2

3 ) dx

=
∫ π

−π

x2(cos x) dx

= x2(sinx)−
∫

2x(sinx) dx
]π

−π

= x2(sinx)−
(
−2x(cos x) +

∫
2(cos x) dx

)]π

−π

= x2(sinx) + 2x(cos x)− 2(sinx)
]π

−π

= 2π(−1)− 2(−π)(−1)
= −4π,

and we also have that

(g2, g2) =
∫ π

−π

x4 − 2π2

3 x2 + π4

9 dx = 2
5π5 − 4

9π5 + 2
9π5 = 8

45π5.

So the projection of cos onto P2[−π, π] is −4π
(8/45)π5 (x2 − π2

3 ) = −45
2π4 (x2 − π2

3 ).
The diagram below is a fairly accurate graph of cos and its projection.
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