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If G is a group and x, y ∈ G then it is not necessarily true that xy = yx. If x and
y do satisfy this condition we say that they commute. For example, the elements (1, 2)
and (1, 3) in the group Sym(3) do not commute, whereas the elements (1, 2)(3, 4) and
(1, 3)(2, 4) in the group Sym(4) do commute:

(1, 2)(1, 3) = (1, 2, 3), (1, 3)(1, 2) = (1, 3, 2);
((1, 2)(3, 4))((1, 3)(2, 4)) = (1, 4)(2, 3) = ((1, 3)(2, 4))((1, 2)(3, 4)).

Similarly, in the group of all 2× 2 invertible matrices over R, it is easily checked that(
3 0
2 1

) (
1 0
1 2

)
=

(
3 0
3 2

)
6=

(
3 0
7 2

)
=

(
1 0
1 2

) (
3 0
2 1

)
,

and by contrast (
3 0
2 1

) (
1 0
−1 2

)
=

(
3 0
1 2

)
=

(
1 0
−1 2

) (
3 0
2 1

)
.

Definition. A group G is said to be Abelian (or commutative) if xy = yx for all x, y ∈ G.
Let G be a group with n elements, x1, x2, . . . , xn, and form the multiplication table

in which the rows and columns correspond to x1, x2, . . . , xn, taken in that order. Then
the (i, j)-entry of the table—that is, the entry in row i and column j—is the product xixj ,
while the (j, i)-entry contains the product xjxi. We conclude that the group is Abelian if
and only if the (i, j) and (j, i) entries of the multiplication table are equal for all values of
i and j. Thinking of the table as an n× n matrix, the condition that the (i, j) and (j, i)
entries are always equal says that the matrix is symmetric. So finite Abelian groups can
be characterized in the following way.

A finite group is Abelian if and only if its multiplication table (thought of as a matrix)
is symmetric.

(This characterization assumes that the same ordering of the elements of G is used
for the rows of the table as for the columns of the table.)

Example. Let a = (1, 2)(3, 4), b = (1, 3)(2, 4) and c = (1, 4)(2, 3), elements of Sym(4). We
noted above that ab = c and ba = c. It is very easy to check that a2 = b2 = c2 = id.
It follows without further computation that ac = a(ab) = (aa)b = id b = b. Similarly,
bc = b(ba) = (bb)a = id a = a. Similarly also, ca = ba2 = b and cb = ab2 = a. So we can
now fill in a multiplication table for the set H = {id, a, b, c}.

id a b c

id id a b c

a a id c b

b b c id a

c c b a id

In particular, we find that the product of any two elements in H is also in H; so H is
closed under multiplication. The identity element is in the set H, and our calculations
have also shown that the inverse of every element of H. Indeed, each of the four elements
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of H has the property that its square is the identity, and this implies that each of these
elements is its own inverse. (Recall that y is called an inverse of x if xy = yx = id, and
in a group every element has a unique inverse. If x2 = id then xy = yx = id holds with
y = x; so we can say that x = x−1 whenever x2 = id.)

Since H is closed under multiplication, contains the identity and contains the inverses
of all its elements, it is a subgroup of Sym(4). It is Abelian: the table is symmetric about
the diagonal from the upper left corner to the lower right.

It is a familiar fact that the inverse of a product of two invertible matrices is the
product of the inverses, in the reverse order. The same is easily shown to be true also for
elements of arbitrary groups.

Proposition. Let G be a group and x, y ∈ G. Then (xy)−1 = x−1y−1.

Proof. Let e be the identity element of G. By associativity,

(xy)(y−1x−1) = x(y(y−1x−1)) = x((yy−1)x−1) = x(ex−1) = xx−1 = e,

and similarly

(y−1x−1)(xy) = y−1(x−1(xy)) = y−1((x−1x)y) = y−1(ey) = y−1y = e.

This shows that y−1x−1 is an inverse of xy. But inverses are unique; so it is the inverse
of xy. �

As noted in a previous lecture, it follows from associativity of multiplication that,
in any group G, all possible bracketings of a product of several factors yield the same
element. This result, which is sometimes called the Generalized Associative Law, means
that there is no ambiguity involved in omitting the brackets from extended products.
Adopting this convention, it is clear that the above result about inverses extends to
products involving more than two factors: (x1x2 · · ·xn)−1 = x−1

n x−1
n−1 · · ·x

−1
1 for all n ≥ 0

and x1, x2, . . . , xn ∈ G.

In the example given above, once we had shown that ab = ba, we were able to deduce
readily that all elements of H commute with each other. This is because the elements
a and b generate H, in the sense that all the elements of H can be expressed in terms of
these two elements. It is a general fact that if a group is generated by a set of elements
that commute with each other then the group is Abelian.

Let us make more precise what it means to say that a set of elements in a group
generates that group.

Definition. Let S = {g1, g2, . . . , gk} be a subset of a group G. We define 〈S〉, or
〈g1, g2, . . . , gk〉, to be the set of all elements of G of the form x1x2 · · ·xn, where n is
a nonnegative integer and each factor xi is either an element of S or the inverse of an
element of S. That is, g ∈ 〈g1, g2, . . . , gk〉 if and only if there exists an integer n ≥ 0 such
that g = gε1

i1
gε2

i2
· · · gεn

in
for some i1, i2, . . . , in ∈ {1, 2, . . . , k} and ε1, ε2, . . . , εn ∈ {1,−1}.

We say that S generates G, or g1, g2, . . . , gk generate G, if 〈g1, g2, . . . , gk〉 = G.

Thus if a, b, c ∈ G, where G is a group, then 〈a, b, c〉 is the subset of G consisting of
all elements that can be expressed in terms of a, b and c. It contains, for example, the
elements ab, c−1ab−1c and (ab)17(ca)2, and also the identity element of G.
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In the case that S consists of a single element x, we see that 〈S〉 = 〈x〉 consists of all
the powers of x; it is the subgroup generated by the element x, as defined in a previous
lecture.

It is, indeed, a fact that 〈S〉 is always a subgroup of G, for any subset S of the
group G. A formal proof of this will be given below, but it is helpful to first observe that
〈a, b, c〉 (as described above) is closed under multiplication. It is immediately apparent
that this is true: if g, h ∈ G can both be expressed in terms of a, b and c, then so can gh.
For example, the product of c−1ab−1c and (ab)17(ca)2, namely c−1ab−1c(ab)17(ca)2, is
just as obviously an element of 〈a, b, c〉 as the the separate factors are.

It will be convenient to use the following notation: if S is a subset of a group G, let
S−1 = { g−1 | g ∈ S }. Using this, the definition of 〈S〉 can be stated as

〈S〉 = {x1x2 · · ·xn | n ≥ 0 and xi ∈ S ∪ S−1 for all i ∈ {1, 2, . . . , n} }.

Proposition. Let S be a subset of a group G. Then 〈S〉 is a subgroup of G.

Proof. Let g, h ∈ 〈S〉. Then there exist nonnegative integers n and m, and elements
x1, x2, . . . xn and y1, y2, . . . , ym in S∪S−1 such that g = x1x2 · · ·xn and h = y1y2 · · · ym.
We see that gh = (x1x2 · · ·xn)(y1y2 · · · ym) is an element of 〈S〉, since every factor in this
expression for gh lies in the set S ∪ S−1. So the product gh is in 〈S〉 whenever g and h
are both in 〈S〉; that is, 〈S〉 is closed under multiplication.

The identity element of G lies in the set 〈S〉, since by definition the product x1x2 · · ·xn

equals the identity if n = 0. (Empty products, like x0, are always defined to be the identity
element. This ensures that equations like (x1x2 · · ·xn)(xn+1xn+2 · · ·xm) = x1x2 · · ·xm

remain valid in the case n = 0. But if you do not like this then you can always regard it
as a special definition that the identity element is in the set 〈S〉. This applies even if the
set S itself is empty.)

In the previous two paragraphs we have shown that (SG1) and (SG2) are satisfied
by 〈S〉, and so it remains to show that (SG3) is satisfied also. Now if g ∈ 〈S〉 then
g = x1x2 · · ·xn for some n ≥ 0 and some xi ∈ S ∪ S−1. Since g = x1x2 · · ·xn gives
g−1 = x−1

n x−1
n−1 · · ·x

−1
1 , and since xi ∈ S ∪ S−1 gives x−1

i ∈ S ∪ S−1 also, it follows that
g−1 ∈ 〈S〉. So 〈S〉 contains the inverses of all of its elements, as required. �

In view of the above proposition, we shall henceforth refer to 〈S〉 as the subgroup
generated by S.

In the syntax of MAGMA, if a group G and elements a, b and c have been defined, then
sub < G | a,b,c > constructs the subgroup of G generated by a, b and c. Similarly,
if S is a subset of G then sub < G | S > constructs the subgroup generated by S. For
example, in the following MAGMA session we construct a certain subgroup of Sym(11) and
find out how many elements it has of various orders.

> G := Sym(11);
> M := sub< G | (1,10)(2,8)(3,11)(5,7), (1,4,7,6)(2,11,10,9)>;
> #M;
7920
> S11 := { g : g in M | Order(g) eq 11 };
> #S11;
1440
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> S8 := { g : g in M | Order(g) eq 8 };
> #S8;
1980
> S6 := { g : g in M | Order(g) eq 6 };
> #S6;
1320
> S5 := { g : g in M | Order(g) eq 5 };
> #S5;
1584
> S4 := { g : g in M | Order(g) eq 4 };
> #S4;
990
> S3 := { g : g in M | Order(g) eq 3 };
> #S3;
440
> S2 := { g : g in M | Order(g) eq 2 };
> #S2;
165
> S1 := { g : g in M | Order(g) eq 1 };
> #S1;
1
> #S1+#S2+#S3+#S4+#S5+#S6+#S8+#S11;
7920

The translates of a subset of a group

Let G be a group and W a subset of G. If x ∈ G define

Wx = {wx | w ∈ W }
and

xW = {xw | w ∈ W }.

Thus Wx is the set of all elements of G obtained by multiplying elements of W by x, on
the right hand side. The set Wx is called the right translate of W by x. Similarly, xW
is called a left translate of W . Note that when G is Abelian, the right translates and left
translates of W are the same; however, when G is not Abelian they need not be.

Example 1. Let G = R2, considered as a group under addition, and let

W =
{(

x
y

) ∣∣∣ (x− 2)2 + y2 < 1
}

.

The diagram below shows the set W and the set W +
(

3
0

)
, where we have identified R2
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with the Euclidean plane in the usual way. The set W +
(

3
0

)
is obtained by moving, or

translating, W three units to the right.

W W+

(
3

0

)

x

y

Example 2. Let G = R2 again, and this time let W be the y-axis: the set of all points
with zero x-coordinate. Then

W +
(

a
b

)
=

{(
0
y

)
+

(
a
b

) ∣∣∣ y ∈ R
}

=
{(

a
y′

) ∣∣∣ y′ ∈ R
}

,

a line parallel to the y-axis. Observe that in this case no two distinct right translates
of W have any points in common. We shall show later that the translates of a subgroup
always have this property, whereas distinct translates of other subsets can have points in
common.
Example 3. Let G = Sym(4) and let H be the subset of G consisting of all permuta-
tions σ ∈ G such that 4σ = 4. It is easy to find all the elements of H; indeed,

H = {id, (1, 2), (1, 3), (2, 3), (1, 2, 3), (1, 3, 2)}.

The right translate H(1, 4) = {h(1, 4) | h ∈ H } is found to be

{(1, 4), (1, 2, 4), (1, 3, 4), (1, 4)(2, 3), (1, 2, 3, 4), (1, 3, 2, 4)}.

Proposition. Let W be a finite subset of the group G, and let x be any element of G.
Then the sets W and Wx have the same number of elements.

Proof. Consider the function Φ: W → Wx defined by Φ(w) = wx for all w ∈ W . It is
immediate from the definition of Wx that Φ is onto: if z is an arbitrary element of Wx
then z = wx = Φ(w) for some w ∈ W . Furthermore, Φ is also one-to-one. To see this,
suppose that w1, w2 ∈ W satisfy Φ(w1) = Φ(w2). Then w1x = w2x. Multiplying both
sides of this equation on the right by x−1 gives w1xx−1 = w2xx−1, and so

w1 = w1e = w1xx−1 = w2xx−1 = w2e = w2.

Thus we have shown that for all w1, w2 ∈ W , if Φ(w1) = Φ(w2) then w1 = w2; that is, Φ
is one-to-one, as claimed.

Since the function Φ is one-to-one and onto it establishes a one-to-one correspondence
between the sets W and Wx. So the sets W and Wx have the same number of elements.

�
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We remark that for infinite sets A and B it is usual to intepret the statement that A
and B have the same number of elements as meaning that it is possible to find a one-to-
one correspondence between the two sets. Thus in the proposition above the assumption
that W is finite is unnecessary: the proof as given applies equally well when W is infinite.
However, in this course we do not wish to become involved with the theory of infinite
numbers, and so most of the time we shall consider only finite groups.

Let G be a finite group. We shall investigate the following question: given a fixed
subset W of G, how many distinct right translates of W are there?

Example. Let G and H be as in Example 3 above. It turns out that there are exactly
four distinct sets of the form Hx, where x ∈ G. There are 24 possible choices for the
element x, since G has 24 elements, but the corresponding sets Hx are not all distinct
from one another. Indeed, each of the four translates occurs for six different values of x,
as indicated in the table below. In each row of the table the elements of Wx are listed
in the order id x, (1, 2)x, (1, 3)x, (2, 3)x, (1, 2, 3)x, (1, 3, 2)x. But a set is not altered by
re-ordering its elements, and it can be seen that the first six values of x below give the
same set Wx, as do the next six, and so on.

Wx x

{ id (1, 2) (1, 3) (2, 3) (1, 2, 3) (1, 3, 2) } id
{ (1, 2) id (1, 3, 2) (1, 2, 3) (1, 3) (2, 3) } (1, 2)
{ (1, 3) (1, 2, 3) id (1, 3, 2) (1, 2) (2, 3) } (1, 3)
{ (2, 3) (1, 3, 2) (1, 2, 3) id (1, 3) (1, 2) } (2, 3)
{ (1, 2, 3) (1, 3) (2, 3) (1, 2) (1, 3, 2) id } (1, 2, 3)
{ (1, 3, 2) (2, 3) (1, 2) (1, 3) id (1, 2, 3) } (1, 3, 2)

{ (1, 4) (1, 2, 4) (1, 3, 4) (1, 4)(2, 3) (1, 2, 3, 4) (1, 3, 2, 4) } (1, 4)
{ (1, 2, 4) (1, 4) (1, 3, 2, 4) (1, 2, 3, 4) (1, 4)(2, 3) (1, 3, 4) } (1, 2, 4)
{ (1, 3, 4) (1, 2, 3, 4) (1, 4) (1, 3, 2, 4) (1, 2, 4) (1, 4)(2, 3)} (1, 3, 4)
{(1, 4)(2, 3) (1, 3, 2, 4) (1, 2, 3, 4) (1, 4) (1, 3, 4) (1, 2, 4) } (1, 4)(2, 3)
{ (1, 2, 3, 4) (1, 3, 4) (1, 4)(2, 3) (1, 2, 4) (1, 3, 2, 4) (1, 4) } (1, 2, 3, 4)
{ (1, 3, 2, 4) (1, 4)(2, 3) (1, 2, 4) (1, 3, 4) (1, 4) (1, 2, 3, 4) } (1, 3, 2, 4)

{ (2, 4) (1, 4, 2) (1, 3)(2, 4) (2, 3, 4) (1, 4, 2, 3) (1, 3, 4, 2) } (2, 4)
{ (1, 4, 2) (2, 4) (1, 3, 4, 2) (1, 4, 2, 3) (2, 3, 4) (1, 3)(2, 4)} (1, 4, 2)
{(1, 3)(2, 4) (1, 4, 2, 3) (2, 4) (1, 3, 4, 2) (1, 4, 2) (2, 3, 4) } (1, 3)(2, 4)
{ (2, 3, 4) (1, 3, 4, 2) (1, 4, 2, 3) (2, 4) (1, 3)(2, 4) (1, 4, 2) } (2, 3, 4)
{ (1, 4, 2, 3) (1, 3)(2, 4) (2, 3, 4) (1, 4, 2) (1, 3, 4, 2) (2, 4) } (1, 4, 2, 3)
{ (1, 3, 4, 2) (2, 3, 4) (1, 4, 2) (1, 3)(2, 4) (2, 4) (1, 4, 2, 3) } (1, 3, 4, 2)

{ (3, 4) (1, 2)(3, 4) (1, 4, 3) (2, 4, 3) (1, 2, 4, 3) (1, 4, 3, 2) } (3, 4)
{(1, 2)(3, 4) (3, 4) (1, 4, 3, 2) (1, 2, 4, 3) (2, 4, 3) (1, 4, 3) } (1, 2)(3, 4)
{ (1, 4, 3) (1, 2, 4, 3) (3, 4) (1, 4, 3, 2) (1, 2)(3, 4) (2, 4, 3) } (1, 4, 3)
{ (2, 4, 3) (1, 4, 3, 2) (1, 2, 4, 3) (3, 4) (1, 4, 3) (1, 2)(3, 4)} (2, 4, 3)
{ (1, 2, 4, 3) (1, 4, 3) (2, 4, 3) (1, 2)(3, 4) (1, 4, 3, 2) (3, 4) } (1, 2, 4, 3)
{ (1, 4, 3, 2) (2, 4, 3) (1, 2)(3, 4) (1, 4, 3) (3, 4) (1, 2, 4, 3) } (1, 4, 3, 2)
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The subset H in this example is in fact a subgroup of G. So if x ∈ H then it follows from
the fact that H is closed under multiplication that hx ∈ H for all h ∈ H. Thus the set
Hx = {hx | h ∈ H } must be a subset of H. But the proposition we proved earlier tells
us that Hx has the same number of elements as H, which in this case is 6. So Hx = H
whenever x ∈ H. The first six rows of the table confirm this.

More generally, it can be checked from the table that Hy = Hx whenever y ∈ Hx.
Thus, for example, the six elements of H(1, 4) are (1, 4), (1, 2, 4), (1, 3, 4), (1, 4)(2, 3),
(1, 2, 3, 4) and (1, 3, 2, 4), and the table indicates that

H(1, 4) = H(1, 2, 4) = H(1, 3, 4) = H(1, 4)(2, 3) = H(1, 2, 3, 4) = H(1, 3, 2, 4).

We shall show later that this property (Hy = Hx whenever y ∈ Hx) holds in general
whenever H is a subgroup of G.

If W is a nonempty subset of a group G we define the right-stabilizer of W to be the
set Stab(W ) = { g ∈ G | Wg = W }.
Proposition. Let G be a group, and let W be a nonempty subset of G. Then Stab(W )
is a subgroup of G.

Proof. Let e be the identity element of G. Obviously We = {we | w ∈ W } = W ; so
e ∈ Stab(W ). Thus (SG2) holds for Stab(W ).

Let x, y ∈ Stab(W ) be arbitrary. Then Wx = W and Wy = W . It follows easily
from associativity of multiplication that W (xy) = (Wx)y; so

W (xy) = (Wx)y = Wy = W,

and we conclude that xy ∈ Stab(W ). We have shown that the product of any pair of
elements of Stab(W ) is always an element of Stab(W ); that is, (SG1) holds.

Let x ∈ Stab(W ) be arbitrary. Then W = Wx, and so

Wx−1 = (Wx)x−1 = W (xx−1) = We = W.

Thus x−1 ∈ Stab(W ). Since this holds for all x ∈ Stab(W ), we have shown that (SG3)
holds.

Since (SG1), (SG2) and (SG3) all hold, Stab(W ) is a subgroup of G, as required.
�

Example. Let G be a cyclic group of order 6, generated by t. Thus G = {e, t, t2, t3, t4, t5},
with t6 = t0 = e. Let W = {t, t3, t4, t5}. Multiplying on the right by t we find that

We = {t, t2, t4, t5},
Wt = {t2, t3, t5, e},

Wt2 = {t3, t4, e, t},
Wt3 = {t4, t5, t, t2},
Wt4 = {t5, e, t2, t3},
Wt5 = {e, t, t3, t4}.

Thus we see that Stab(W ) = {e, t3}. It is trivial to confirm directly that this is a subgroup
of G, the principal point being that t3t3 = e.
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We need a notation for the number of elements in a set, and for convenience we shall
adopt MAGMA’s notation.

Notation. If S is a finite set then #S denotes the number of elements of S.

Recall that we are seeking a general method of determining the number of right
translates that there are for a given nonempty subset W of a finite group G. For every
x ∈ G there is a right translate, Wx, but we have seen by example that the number
of distinct sets Wx is not necessarily the same as the number of choices for x, since
repetitions can occur. To obtain the correct answer for the number of distinct sets Wx
we need to determine precisely how much repetition there is.

Let x, y ∈ G. If Wx = Wy then right-multiplying by x−1 gives Wxx−1 = Wyx−1,
and thus

W = We = Wxx−1 = Wyx−1.

Conversely, if W = Wyx−1 then right-multiplying by x gives

Wx = Wyx−1x = Wye = Wy.

So Wx = Wy if and only if Wyx−1 = W . Since Stab(W ) is the set of all elements s such
that Ws = W , we see that Wx = Wy if and only if yx−1 = s for some s ∈ Stab(W ). But
yx−1 = s implies y = sx (right-multiplying by x), and conversely y = sx implies yx−1 = s
(right-multiplying by x−1). So we have proved the following fact, valid for all x, y ∈ G:

Wy = Wx if and only if y = sx for some s ∈ Stab(W ). (1)

If x is fixed then the number of distinct elements of G of the form sx for some
s ∈ Stab(W ) is precisely #Stab(W ), since if s1x = s2x then right-multiplying by x−1

gives s1 = s2. So it follows from (1) above that for each x ∈ G there are precisely
#Stab(W ) elements y ∈ G such that Wy = Wx. So now we know precisely how much
repetition there is: as x runs through all the elements of G, each distinct set Wx occurs
#Stab(W ) times. So the number of such sets is #G, the number of choices for x, divided
by #Stab(W ), the number of times each separate translate is obtained. Thus we have
proved the following theorem.

Theorem. If W is a nonempty subset of the finite group G, then the number of right
translates of W in G is #G/#Stab(W ), where Stab(W ) is the right-stabilizer of W in G.

Example 1. In the last example above, we had G = {e, t, t2, t3, t4, t5}, so that #G = 6, and
we found (for the set W under discussion) that Stab(W ) = {e, t3}, so that #Stab(W ) = 2.
According to the above theorem we should find that #W has exactly 6/2 = 3 right
translates. Our calculations above do indeed confirm this: the three distinct translates
of W are

We = Wt3 = {t, t2, t4, t5},
Wt = Wt4 = {e, t2, t3, t5},
Wt2 = Wt5 = {e, t, t3, t4}.
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Example 2. With G as above, let W = {e, t2, t4}. We find that

We = {e, t2, t4},
Wt = {t, t3, t5},

Wt2 = {t2, t4, e} = We,

Wt3 = Wet = Wt,

Wt4 = Wt2 = We,

Wt5 = Wet = Wt.

Thus Stab(W ) = {e, t2, t4} has three elements, and #G/#Stab(W ) = 6/3 = 2. So
according to the theorem there should be exactly two right translates of W , and indeed
the calculations show that this is the case, the translates being {e, t2, t4} and {t, t3, t5}.

In the second of these two examples we again had a situation in which the subset
whose translates were being considered was in fact a subgroup. Examination of this
example, as well as the earlier example dealing with the right translates of a subgroup of
Sym(4), will confirm the following.

If W is a subgroup of G then
1) Stab(W ) = W ,
2) no two distinct right translates of W have any elements in common, and
3) every element of G lies in exactly one right translate of W .

We shall prove later that this is true in all cases.

Cosets
The translates of a subgroup, being somewhat special, are given another name.

Definition. If W is a subgroup of the group G then the right trnslates of W by elements
of G are called the right cosets of W in G. Similarly, the left translates of W by elements
of G are called the left cosets of W in G.

Example. Let G = Sym(3). It is trivial to check that the set K = {id, (1, 2)} is a subgroup
of G. We determine the right cosets of K in G.

K = K id = {id, (1, 2)},
K(1, 3) = {id (1, 3), (1, 2)(1, 3) = {(1, 3), (1, 2, 3)},
K(2, 3) = {id (2, 3), (1, 2)(2, 3) = {(2, 3), (1, 3, 2)}.

There are three cosets, with two elements each, accounting for all six elements of G.

The parity of a permutation
It is sometimes convenient to represent a permutation σ of {1, 2, . . . , n} by means of

a diagram, constructed as follows: draw two rows of dots labelled 1, 2, . . . , n, and for
each i draw a line from the dot in the upper row labelled i to the dot in the lower row
labelled iσ.
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Let us consider the number of times that lines in this diagram may cross. Consider,
in particular, the lines that start at the points labelled i and j, where i < j. There
are essentially two different situations that may arise: either iσ < jσ, or jσ < iσ. The
following diagram illustrates the latter case.

. . . . . . . . .
1 2 i j n− 1 n

. . . . . . . . .

1 2 jσ iσ n− 1 n

. . . . . .

Li Lj

The initial and final points of the line Lj joining j to jσ are on opposite sides of the line
Li joining i to iσ. Consequently Li and Lj must cross each other an odd number of times.
By altering the way the diagram is drawn it is possible to arrange that they only cross
once, or that they cross 3 times, as in the diagram, or some larger odd number of times,
but since their initial and final points are determined, the number of times they cross is
inevitably odd. (The lines are not allowed to go outside the horizontal strip between the
two rows of dots.)

A similar situation would arise if iσ < jσ, but in that case the number of times Li

and Lj cross would have to be even (possibly zero).
It follows that no matter how one redraws the diagram, the total number of times

that lines cross each other can only be varied by an even number. If the total number
of crossings is even, it remains even, and if the total number is odd it remains odd, no
matter how one attempts to redraw the diagram.

Definition. We say that a permutation σ of {1, 2, . . . , n} is even if an associated diagram
has an even number of line crossings, or odd if an associated diagram has an odd number
of crossings. We define ε(σ) = 1 if σ is even, ε(σ) = −1 if σ is odd.

It is not hard to see that the following statement is equivalent to the definition given:
σ is even if the total number of pairs (i, j) such that i < j and iσ > jσ is even, while σ is
odd if the total number of such pairs is odd.
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