Semester 1, 2000

Attachment to Examination Paper (Semester 1, 2000) MATH2902 LINEAR ALGEBRA (Advanced)

Name: **Student Number:**

Section A

Write your answers to this section in the places indicated. Place the completed sheet inside the answer booklet for Section B.

A1. Consider the following functions:

 $T_1: \mathbb{R}^2 \to \mathbb{R}^2: (x, y) \mapsto (x, x+y)$ $T_2: \mathbb{R}^2 \to \mathbb{R}^2: (x, y) \mapsto (x+1, y)$ $T_3 : \mathbb{R}^3 \to \mathbb{R}^3 : (x, y, z) \mapsto (x + z, 0, y)$ $T_4 : \mathbb{R} \to \mathbb{R} : x \mapsto x^3 - 1$ $T_5: \mathbb{R}^2 \to \mathbb{C}: (x, y) \mapsto 2x + 3iy$ $T_6: \operatorname{Mat}_{2,2}(\mathbb{R}) \to \mathbb{R}: A \mapsto \det^{\mathcal{J}} A$ $T_7: \operatorname{Mat}_{2,2}(\mathbb{R}) \to \operatorname{Mat}_{2,2}(\mathbb{R}): A \mapsto A^2$ $T_8: V \to V: p(x) \mapsto p'(x)$

where V is the space of all polynomials over \mathbb{R} and p'(x) is the derivative of p(x). List all of these which are:

(i)	injective	Answer(s):
(ii)	surjective	Answer(s):
(iii)	bijective	Answer(s):
(iv)	linear operators	Answer(s):
(v)	nilpotent operators	Answer(s):
(vi)	linear transformations of rank 1	Answer(s):
(vii)	linear transformations of rank 2	Answer(s):
(viii)	linear transformations of nullity 1	Answer(s):
(ix)	linear transformations of nullity 0	Answer(s):
(x)	isomorphisms	Answer(s):

.../2

A2. Consider each of the following statements. Circle T if you believe the statement to be true, and circle F if you believe it to be false. Marks will be deducted for incorrect answers.

Some questions refer to the following matrices:

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix} \quad B = \begin{pmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9 \end{pmatrix} \quad C = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 2 & 3 \\ 0 & 0 & 0 \end{pmatrix} \quad D = \begin{pmatrix} 0 & 2 & 3 \\ 0 & 0 & 3 \\ 0 & 0 & 0 \end{pmatrix}$$
$$E = \begin{pmatrix} 1 & 2 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \quad F = \begin{pmatrix} 1 & 3 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$
(i) *A* is invertible as a matrix over \mathbb{R} T **F**
(ii) *B* is invertible as a matrix over \mathbb{R} T **F**
(iii) there exists a matrix over the field \mathbb{Z}_7 which is invertible and nilpotent **T F**
(v) *D* is nilpotent as a matrix over \mathbb{R} T **F**
(vi) there exists an invertible matrix *M* such that $ME = F$ **T F**
(vii) the vectors $(1, 3, 4, 5), (2, 2, 0, 1), (0, 0, 1, 0)$ span \mathbb{R}^4 **T F**
(viii) the vectors $(1, 3, 4, 5), (2, 2, 0, 1), (0, 0, 1, 0)$ in \mathbb{R}^4 are linearly independent **T F**
(x) if $p(x)$ is a non-zero polynomial over \mathbb{R} and $p'(x)$ is its derivative
then $p(x)$ and $p'(x)$ are linearly independent **T F**
(xii) the functions $x + 1, x, x^2$ are linearly dependent in $\mathbb{R}^\mathbb{R}$ **T F**
(xii) $\{f : \mathbb{R} \to \mathbb{R} | f(1) \le f(2)\}$ is a subspace of $\mathbb{R}^\mathbb{R}$ **T F**
(xiv) $\{f : \mathbb{R} \to \mathbb{R} | f(1) = f(2)\}$ is a subspace of $\mathbb{R}^\mathbb{R}$ **T F**
(xvii) $(1/\sqrt{3}, 1/\sqrt{3}), (0, 1/\sqrt{2}, -1/\sqrt{2}), (2/\sqrt{6}, -1/\sqrt{6}, -1/\sqrt{6})$ is an
orthonormal basis for \mathbb{R}^3 **T F**
(xix) $||u + v|| \le ||u|| + ||v||$ for all u, v in an inner product space **T F**
(xx) $||u - v|| \ge ||u|| - ||v||$ for all u, v in an inner product space

LAST PAGE OF ATTACHMENT