The University of Sydney
MATH2902 Vector Spaces
(http://www.maths.usyd.edu.au/u/UG/IM/MATH2902/)
Lecturer: R. Howlett

Assignment 2

1. Let $y=a+b x$ be the equation of the least squares line of best fit for the following points $\left(x_{i}, y_{i}\right)$:
$(0,1)$,
$(1,2)$,
$(2,2)$,
$(3,5)$,
$(4,5)$.
Calculate a and b.
Solution.
If all the points were on the line we would have $y_{i}=a+b x_{i}$ for each i, and so

$$
\left(\begin{array}{ll}
1 & 0 \\
1 & 1 \\
1 & 2 \\
1 & 3 \\
1 & 4
\end{array}\right)\binom{a}{b}=\left(\begin{array}{l}
1 \\
2 \\
2 \\
5 \\
5
\end{array}\right) .
$$

If this were true, the 5 -component column vector on the right-hand side would be in the column space of the 5×2 matrix A on the left-hand side. In fact, it is not possible to find a and b to solve the equations exactly; instead a and b must be chosen so that

$$
a\left(\begin{array}{l}
1 \\
1 \\
1 \\
1 \\
1
\end{array}\right)+b\left(\begin{array}{l}
0 \\
1 \\
2 \\
3 \\
4
\end{array}\right)
$$

is as close as possible to ${ }^{\mathrm{t}}(1,2,2,5,5)$. Thus $a^{\mathrm{t}}(1,1,1,1)+b^{\mathrm{t}}(2,3,4,5)$ must be the projection of ${ }^{\mathrm{t}}(1,2,2,5,5)$ onto the column space of A. According to the theory described in the lectures, to find a and b we must solve the system of linear equations

$$
{ }^{\mathrm{t}} A A\binom{a}{b}={ }^{\mathrm{t}} A\left(\begin{array}{l}
1 \\
2 \\
2 \\
5 \\
5
\end{array}\right)
$$

We find that

$$
{ }^{\mathrm{t}} A A=\left(\begin{array}{lllll}
1 & 1 & 1 & 1 & 1 \\
0 & 1 & 2 & 3 & 4
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
1 & 1 \\
1 & 2 \\
1 & 3 \\
1 & 4
\end{array}\right)=\left(\begin{array}{cc}
5 & 10 \\
10 & 30
\end{array}\right)
$$

and

$$
{ }^{\mathrm{t}} A\left(\begin{array}{l}
1 \\
2 \\
2 \\
5 \\
5
\end{array}\right)=\left(\begin{array}{lllll}
1 & 1 & 1 & 1 & 1 \\
0 & 1 & 2 & 3 & 4
\end{array}\right)\left(\begin{array}{l}
1 \\
2 \\
2 \\
5 \\
5
\end{array}\right)=\binom{15}{41}
$$

and so it follows that

$$
\begin{aligned}
\binom{a}{b}=\left(\begin{array}{cc}
5 & 10 \\
10 & 30
\end{array}\right)^{-1}\binom{15}{41} & =\frac{1}{50}\left(\begin{array}{cc}
30 & -10 \\
-10 & 5
\end{array}\right)\binom{15}{41} \\
=\frac{1}{10}\binom{8}{11} & =\binom{0.8}{1.1}
\end{aligned}
$$

Thus the line of best fit is $y=0.8+1.1 x$.
The points and the line of best fit are shown in the diagram.

2. Let A be a square matrix which satisfies $A^{2}-3 A+2 I=0$. Prove that if λ is an eigenvalue of A then λ must be 1 or 2 .

Solution.

Let v be an eigenvector corresponding to the eigenvalue λ. By definition v is nonzero, and $A v=\lambda v$. Multiplying this equation by A gives $A^{2} v=\lambda A v$, and since $A v=\lambda v$ we deduce that $A^{2} v=\lambda^{2} v$. Now

$$
\left(A^{2}-3 A+2 I\right) v=A^{2} v-3 A v+2 v=\left(\lambda^{2}+3 \lambda+2\right) v
$$

and since $A^{2}-3 A+2 I=0$ it follows that $\left(\lambda^{2}+3 \lambda+2\right) v=0$. Since $v \neq 0$ this gives $\lambda^{2}+3 \lambda+2=0$, whence λ is 1 or 2 .
3. If $f(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{d} x^{d}$ is any polynomial, where the coefficients a_{i} are elements of a field F, and if A is any square matrix over F, we define $f(A)$ to be the matrix $a_{0} I+a_{1} A+a_{2} A^{2}+\cdots+a_{d} A^{d}$.
(i) Suppose that D is an $n \times n$ diagonal matrix and $f(x)=\operatorname{det}(D-x I)$ its characteristic polynomial. Show that $f(D)$ is the zero matrix.
(ii) Use Part (i) to show that if A is any diagonalizable matrix and $f(x)$ its characteristic polynomial then $f(A)=0$.
(iii) In fact it is true for all square matrices A that if $f(x)$ is the characteristic polynomial then $f(A)=0$. Check this by direct calculation in the following cases:

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right), \quad\left(\begin{array}{ccc}
\lambda & 1 & 0 \\
0 & \lambda & 1 \\
0 & 0 & \lambda
\end{array}\right)
$$

Solution.

(i) Suppose that the diagonal entries of D are $d_{1}, d_{2}, \ldots, d_{n}$. Then

$$
\begin{aligned}
f(x)=\operatorname{det}(D-x I) & =\operatorname{det}\left(\begin{array}{ccccc}
d_{1}-x & 0 & 0 & \cdots & 0 \\
0 & d_{2}-x & 0 & \cdots & 0 \\
0 & 0 & d_{3}-x & \cdots & 0 \\
\vdots & \vdots & \vdots & & \vdots \\
0 & 0 & 0 & \ldots & d_{n}-x
\end{array}\right) \\
& =\left(d_{1}-x\right)\left(d_{2}-x\right) \cdots\left(d_{n}-x\right)
\end{aligned}
$$

and so we see that $f\left(d_{1}\right)=f\left(d_{2}\right)=\cdots=f\left(d_{n}\right)=0$. Now for every integer $k \geq 0$ the matrix D^{k} is diagonal, and its diagonal entries are $d_{1}^{k}, d_{2}^{k}, \ldots, d_{n}^{k}$. So for any polynomial $p(x)=\alpha_{0}+\alpha_{1} x+\cdots+\alpha_{r} x^{r}$ we find that

$$
\begin{aligned}
& p(D)=\alpha_{0} I+\alpha_{1} D+\cdots+\alpha_{r} D^{r} \\
& =\left(\begin{array}{cccc}
\alpha_{0} & 0 & \ldots & 0 \\
0 & \alpha_{0} & \ldots & 0 \\
\vdots & \vdots & & \vdots \\
0 & 0 & \ldots & \alpha_{0}
\end{array}\right)+\left(\begin{array}{cccc}
\alpha_{1} d_{1} & 0 & \ldots & 0 \\
0 & \alpha_{1} d_{2} & \ldots & 0 \\
\vdots & \vdots & & \vdots \\
0 & 0 & \ldots & \alpha_{1} d_{n}
\end{array}\right)+\cdots \\
& \cdots+\left(\begin{array}{cccc}
\alpha_{r} d_{1}^{r} & 0 & \cdots & 0 \\
0 & \alpha_{r} d_{2}^{r} & \cdots & 0 \\
\vdots & \vdots & & \vdots \\
0 & 0 & \ldots & \alpha_{r} d_{n}^{r}
\end{array}\right) \\
& =\left(\begin{array}{cccc}
p\left(d_{1}\right) & 0 & \ldots & 0 \\
0 & p\left(d_{2}\right) & \ldots & 0 \\
\vdots & \vdots & & \vdots \\
0 & 0 & \ldots & p\left(d_{n}\right)
\end{array}\right) .
\end{aligned}
$$

In particular, $f(D)$ is a diagonal matrix, and its diagonal entries are, respectively, $f\left(d_{1}\right), f\left(d_{2}\right), \ldots, f\left(d_{n}\right)$, which are all 0 . So $f(D)$ is the zero matrix.
Alternatively, from the formula for $f(x)$ above we can see that

$$
\begin{aligned}
f(D) & =\left(d_{1} I-X\right)\left(d_{2} I-D\right) \cdots\left(d_{n} I-D\right) \\
& =\left(\begin{array}{cccc}
0 & 0 & \ldots & 0 \\
0 & d_{1}-d_{2} & \ldots & 0 \\
\vdots & \vdots & & \vdots \\
0 & 0 & \ldots & d_{1}-d_{n}
\end{array}\right)\left(\begin{array}{ccccc}
d_{2}-d_{1} & 0 & \ldots & 0 \\
0 & 0 & \ldots & 0 \\
\vdots & \vdots & & \vdots \\
0 & 0 & \ldots & d_{2}-d_{n}
\end{array}\right) \\
& \ldots\left(\begin{array}{ccccc}
d_{n}-d_{1} & 0 & \ldots & 0 \\
0 & d_{n}-d_{2} & \ldots & 0 \\
\vdots & \vdots & & \vdots \\
0 & 0 & \ldots & 0
\end{array}\right) .
\end{aligned}
$$

In the i-th factor the i-th diagonal entry is zero, and so when we compute the product we find that all the diagonal entries are zero.
(ii) If A is diagonalizable then there exists an invertible matrix P such that $P^{-1} A P=D$, where the diagonal entries of D are the eigenvalues of A. Thus if $f(x)$ is the characteristic polynomial of A then $f(x)=\left(d_{1}-x\right)\left(d_{2}-x\right) \cdots\left(d_{n}-x\right)$, where $d_{1}, d_{2}, \ldots, d_{n}$ are the diagonal entries of D. In particular, $f(x)$ is also the characteristic polynomial of D. (It is true in general-this was proved in lectures-that similar matrices have the same characteristic polynomial.)
Write $f(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}$. Since $A=P D P^{-1}$ it follows that for all positive integers r,

$$
A^{r}=\left(P D P^{-1}\right)^{r}=\left(P D P^{-1}\right)\left(P D P^{-1}\right) \cdots\left(P D P^{-1}\right)=P D^{r} P^{-1}
$$

since the $P^{-1} P$'s in the middle of the expression cancel out. So

$$
\begin{aligned}
f(A) & =a_{0} I+a_{1} A+a_{2} A^{2}+\cdots+a_{n} A^{n} \\
& =a_{0} I+a_{1} P D P^{-1}+a_{2} P D^{2} P^{-1}+\cdots+a_{n} P D^{n} P^{-1} \\
& =P\left(a_{0} I+a_{1} D+a_{2} D^{2}+\cdots+a_{n} P D^{n}\right) P^{-1}=P f(D) P^{-1}=0
\end{aligned}
$$

since $f(D)=0$ by Part prt (i).
(iii) In the second case the characteristic polynomial of A is $f(x)=(\lambda-x)^{3}$, and so the task is to show that $(\lambda I-A)^{3}$ is the zero matrix. Now $\lambda I-A=\left(\begin{array}{ccc}0 & -1 & 0 \\ 0 & 0 & -1 \\ 0 & 0 & 0\end{array}\right)$, and it is trivial to check that the cube of this is
zero. zero.
In the other case $f(x)=x^{2}-(a+d) x+(a d-b c)$, and
$f(A)=\left(\begin{array}{ll}a^{2}+b c & a b+b d \\ c a+d c & b c+d^{2}\end{array}\right)-(a+d)\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)+\left(\begin{array}{cc}a d-b c & 0 \\ 0 & a d-b c\end{array}\right)$
which is indeed zero.

