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Tutorial 1

Let X and Y be arbitrary nonempty sets, and f :X → Y a function. A function
g:Y → X is a right inverse of f if the composite function fg is the identity on Y .
Similarly g is a left inverse of f if gf is the identity on X.

1. Let A be a set with 5 elements and B a set with 4 elements. Let the elements
of A be called a1, a2, a3, a4 and a5, so that A = {a1, a2, a3, a4, a5}. Similarly
let B = {b1, b2, b3, b4}.

(i) Describe three different surjective functions with domain A and codo-
main B, and three different injective functions with domain B and co-
domain A.

(ii) Find right inverses for each of the three surjective functions you found
in (i), and left inverses for each of the injective functions.

Solution.

(i) For instance

f1:

a1 7→ b1

a2 7→ b2

a3 7→ b3

a4 7→ b4

a5 7→ b1

f2:

a1 7→ b1

a2 7→ b2

a3 7→ b3

a4 7→ b4

a5 7→ b2

f3:

a1 7→ b1

a2 7→ b2

a3 7→ b3

a4 7→ b4

a5 7→ b4

are three surjective functions from A to B, and

g1:

b1 7→ a1

b2 7→ a2

b3 7→ a3

b4 7→ a4

g2:

b1 7→ a1

b2 7→ a2

b3 7→ a3

b4 7→ a5

g3:

b1 7→ a1

b2 7→ a2

b3 7→ a4

b4 7→ a5

are three injective functions from B to A.
(ii) If i = 1, 2, 3 or 4 then (f1g1)(bi) = f1

(
g1(ai)

)
= f1(ai) = bi, showing

that f1 is a left inverse of g1, and g1 a right inverse of f1. Moreover,
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since f1(ai) = f2(ai) = f3(ai) for i ≤ 4, exactly the same calcula-
tions show that g1 is also a right inverse of both f2 and f3 as well.
Similarly, for 1 ≤ i ≤ 3 we find that (f3g2)(bi) = f3(ai) = bi, while
(f3g2)(b4) = f3(a5) = b4, so that f3g2 is the identity on B. Thus f3 is
a left inverse of g2. Finally, one can check that the function defined by
a1 7→ b1, a2 7→ b2, a3 7→ b1, a4 7→ b3 and a5 7→ b4 is a left inverse for g3.
Note that these examples show that it is sometimes possible for a func-
tion to have several left or right inverses.

2. Let A and B be arbitrary nonempty sets.

(i) Let f :A → B be an arbitrary function. Prove that if f has a right
inverse then f must necessarily be surjective, and prove that if f has a
left inverse then f is necessarily injective.

(ii) Prove that if f is surjective then it has a right inverse. Prove also that
if f is injective then it has a left inverse.

(iii) Prove that if f has both a right inverse and a left inverse then they are
equal.

Solution.

(i) Assume that g:B → A is a left inverse of f . Suppose that x, y ∈ A
satisfy f(x) = f(y). Since gf = ιA, the identity on A, we have

x = ιA(x) = (gf)(x) = g(f(x)) = g(f(y)) = (gf)(y) = ιA(y) = y.

So x = y whenever f(x) = f(y); that is, f is injective.
Suppose that g:B → A is a right inverse of f , and let b ∈ B. Then

b = ιB(b) = (fg)(b) = f(a)

where a = g(b). So for each b ∈ B there is an a ∈ A with f(a) = b.
Thus f is surjective.

(ii) Assume that f is injective. Then for each b ∈ B there is at most one
a ∈ A with f(a) = b. Define a function g:B → A as follows. If b ∈ B
and b = f(a) for some a ∈ A define g(b) = a. If there is no a ∈ A with
b = f(a) it is irrelevant how g(b) is defined; for instance, we may pick
some fixed a0 ∈ A (since A is nonempty) and define g(b) = a0 for all
such b. Now for all a ∈ A we have (gf)(a) = g(b) where b = f(a), and
the definition of g gives g(b) = a (since there is no other element of A
mapped to b by f). Thus gf is the identity, and g is a left inverse of f .
Assume that f is surjective, and define g:B → A as follows. For each
b ∈ B there is at least one a ∈ A with f(a) = b; we choose any such a
and define g(b) = a. (The particular choices that are made for each b
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are irrelevant, and so there may be many suitable functions g.) Then for
each b ∈ B we have that g(b) satisfies f(g(b)) = b. That is, (fg)(b) = b
for all b, and fg is the identity. So g is a right inverse of f .

(iii) Assume that h is a left inverse of f and k is a right inverse of f . Then
we have h(f(a)) = a for all a ∈ A and f(k(b)) = b for all b ∈ B. Let
b ∈ B and write a = k(b). Then

h(b) = h(f(k(b)) = h(f(a)) = a.

Thus h(b) = k(b) for all b ∈ B; that is, h = k.

3. If f and g are functions with domain X and codomain Y then the correct way
to prove that f = g is to prove that f(x) = g(x) for all x ∈ X. Similarly, if A
and B are m× n matrices then proving that A = B is done by proving that
Aij = Bij for all i ∈ {1, 2, . . . , m} and j ∈ {1, 2, . . . , n}.
Prove that if A is an m × n matrix and I is the n × n identity matrix then
AI = A. Prove also that if J is the m×m identity then JA = A.

Solution.

Let (i, j) ∈ {1, 2, . . . , m} × {1, 2, . . . , n}; We must prove that (AI)ij = Aij .
By definition of matrix multiplication we have

(AI)ij =
n∑

k=1

Aikδkj

and since δkj is zero unless k = j all terms in the sum corresponding to other
values of k vanish. Thus (AI)ij = Aijδjj = Aij , as required.

Similarly, (JA)ij =
∑m

k=1 δikAkj = δiiAij = Aij , and since this holds for all
values of i and j it follows that JA = A.

4. Let A be an n × n matrix. A matrix B is an inverse of A if AB = BA = I.
Use the previous exercise and associativity of matrix multiplication to prove
that if B and C are both inverses of A then B = C.

Solution.

B = BI = B(AC) = (BA)C = IC = C.

5. Let F be any field. Prove that if x, y ∈ F are such that xy = 0 then either
x = 0 or y = 0.
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Solution.

Let us first prove that z0 = 0, for all z ∈ F . By field axiom (ii) we have

0 + z0 = z0
= z(0 + 0) (axiom (ii) again)
= z0 + z0 (by axiom (ix)).

By axiom (iii) there is an element b ∈ F such that z0 + b = 0, and adding
this to both sides of the equation just proved gives, with a few applications
of axioms (ii) and (i),

0 = 0+0 = 0+(z0+b) = (0+z0)+b = (z0+z0)+b = z0+(z0+b) = z0+0 = z0.

Now let x, y ∈ F and assume that xy = 0. Assume x 6= 0. Then by field
axiom (vii) there exists z ∈ F with zx = 1. This gives

y = 1y = (zx)y = z(xy) = z0 = 0.

We have now shown that if x 6= 0 then y = 0; that is, either x = 0 or y = 0.


