The University of Sydney

Tutorial 1

Let X and Y be arbitrary nonempty sets, and $f: X \rightarrow Y$ a function. A function $g: Y \rightarrow X$ is a right inverse of f if the composite function $f g$ is the identity on Y. Similarly g is a left inverse of f if $g f$ is the identity on X.

1. Let A be a set with 5 elements and B a set with 4 elements. Let the elements of A be called $a_{1}, a_{2}, a_{3}, a_{4}$ and a_{5}, so that $A=\left\{a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right\}$. Similarly let $B=\left\{b_{1}, b_{2}, b_{3}, b_{4}\right\}$.
(i) Describe three different surjective functions with domain A and codomain B, and three different injective functions with domain B and codomain A.
(ii) Find right inverses for each of the three surjective functions you found in (i), and left inverses for each of the injective functions.

Solution.

(i) For instance

$$
f_{1}: \begin{array}{llll}
a_{1} \mapsto b_{1} & & a_{1} \mapsto b_{1} & \\
a_{2} \mapsto b_{2} & & a_{2} \mapsto b_{2} & \\
a_{3} \mapsto b_{3} \\
a_{4} \mapsto b_{4} & f_{2}: & a_{3} \mapsto b_{3} & f_{3}: \\
a_{5} & a_{3} \mapsto b_{2} \\
a_{5} \mapsto b_{1} & & a_{4} \mapsto b_{4} & \\
a_{4} \mapsto b_{4} \\
& a_{5} \mapsto b_{2} & & a_{5} \mapsto b_{4}
\end{array}
$$

are three surjective functions from A to B, and

$$
g_{1}: \begin{array}{llll}
b_{1} \mapsto a_{1} \\
b_{2} \mapsto a_{2} \\
b_{3} \mapsto a_{3} & b_{1} \mapsto a_{1} & & b_{1} \mapsto a_{1} \\
b_{4} \mapsto a_{4}: & b_{2} \mapsto a_{2} \\
b_{3} \mapsto a_{3} & g_{3}: & b_{2} \mapsto a_{2} \\
b_{3} \mapsto a_{4} \\
b_{4} \mapsto a_{5} & & b_{4} \mapsto a_{5}
\end{array}
$$

are three injective functions from B to A.
(ii) If $i=1,2,3$ or 4 then $\left(f_{1} g_{1}\right)\left(b_{i}\right)=f_{1}\left(g_{1}\left(a_{i}\right)\right)=f_{1}\left(a_{i}\right)=b_{i}$, showing that f_{1} is a left inverse of g_{1}, and g_{1} a right inverse of f_{1}. Moreover,
since $f_{1}\left(a_{i}\right)=f_{2}\left(a_{i}\right)=f_{3}\left(a_{i}\right)$ for $i \leq 4$, exactly the same calculations show that g_{1} is also a right inverse of both f_{2} and f_{3} as well. Similarly, for $1 \leq i \leq 3$ we find that $\left(f_{3} g_{2}\right)\left(b_{i}\right)=f_{3}\left(a_{i}\right)=b_{i}$, while $\left(f_{3} g_{2}\right)\left(b_{4}\right)=f_{3}\left(a_{5}\right)=b_{4}$, so that $f_{3} g_{2}$ is the identity on B. Thus f_{3} is a left inverse of g_{2}. Finally, one can check that the function defined by $a_{1} \mapsto b_{1}, a_{2} \mapsto b_{2}, a_{3} \mapsto b_{1}, a_{4} \mapsto b_{3}$ and $a_{5} \mapsto b_{4}$ is a left inverse for g_{3}. Note that these examples show that it is sometimes possible for a function to have several left or right inverses.
2. Let A and B be arbitrary nonempty sets.
(i) Let $f: A \rightarrow B$ be an arbitrary function. Prove that if f has a right inverse then f must necessarily be surjective, and prove that if f has a left inverse then f is necessarily injective.
(ii) Prove that if f is surjective then it has a right inverse. Prove also that if f is injective then it has a left inverse.
(iii) Prove that if f has both a right inverse and a left inverse then they are equal.

Solution.
(i) Assume that $g: B \rightarrow A$ is a left inverse of f. Suppose that $x, y \in A$ satisfy $f(x)=f(y)$. Since $g f=\iota_{A}$, the identity on A, we have

$$
x=\iota_{A}(x)=(g f)(x)=g(f(x))=g(f(y))=(g f)(y)=\iota_{A}(y)=y .
$$

So $x=y$ whenever $f(x)=f(y)$; that is, f is injective.
Suppose that $g: B \rightarrow A$ is a right inverse of f, and let $b \in B$. Then

$$
b=\iota_{B}(b)=(f g)(b)=f(a)
$$

where $a=g(b)$. So for each $b \in B$ there is an $a \in A$ with $f(a)=b$. Thus f is surjective.
(ii) Assume that f is injective. Then for each $b \in B$ there is at most one $a \in A$ with $f(a)=b$. Define a function $g: B \rightarrow A$ as follows. If $b \in B$ and $b=f(a)$ for some $a \in A$ define $g(b)=a$. If there is no $a \in A$ with $b=f(a)$ it is irrelevant how $g(b)$ is defined; for instance, we may pick some fixed $a_{0} \in A$ (since A is nonempty) and define $g(b)=a_{0}$ for all such b. Now for all $a \in A$ we have $(g f)(a)=g(b)$ where $b=f(a)$, and the definition of g gives $g(b)=a$ (since there is no other element of A mapped to b by f). Thus $g f$ is the identity, and g is a left inverse of f. Assume that f is surjective, and define $g: B \rightarrow A$ as follows. For each $b \in B$ there is at least one $a \in A$ with $f(a)=b$; we choose any such a and define $g(b)=a$. (The particular choices that are made for each b
are irrelevant, and so there may be many suitable functions g.) Then for each $b \in B$ we have that $g(b)$ satisfies $f(g(b))=b$. That is, $(f g)(b)=b$ for all b, and $f g$ is the identity. So g is a right inverse of f.
(iii) Assume that h is a left inverse of f and k is a right inverse of f. Then we have $h(f(a))=a$ for all $a \in A$ and $f(k(b))=b$ for all $b \in B$. Let $b \in B$ and write $a=k(b)$. Then

$$
h(b)=h(f(k(b))=h(f(a))=a .
$$

Thus $h(b)=k(b)$ for all $b \in B$; that is, $h=k$.
3. If f and g are functions with domain X and codomain Y then the correct way to prove that $f=g$ is to prove that $f(x)=g(x)$ for all $x \in X$. Similarly, if A and B are $m \times n$ matrices then proving that $A=B$ is done by proving that $A_{i j}=B_{i j}$ for all $i \in\{1,2, \ldots, m\}$ and $j \in\{1,2, \ldots, n\}$.
Prove that if A is an $m \times n$ matrix and I is the $n \times n$ identity matrix then $A I=A$. Prove also that if J is the $m \times m$ identity then $J A=A$.

Solution.
Let $(i, j) \in\{1,2, \ldots, m\} \times\{1,2, \ldots, n\} ;$ We must prove that $(A I)_{i j}=A_{i j}$. By definition of matrix multiplication we have

$$
(A I)_{i j}=\sum_{k=1}^{n} A_{i k} \delta_{k j}
$$

and since $\delta_{k j}$ is zero unless $k=j$ all terms in the sum corresponding to other values of k vanish. Thus $(A I)_{i j}=A_{i j} \delta_{j j}=A_{i j}$, as required.
Similarly, $(J A)_{i j}=\sum_{k=1}^{m} \delta_{i k} A_{k j}=\delta_{i i} A_{i j}=A_{i j}$, and since this holds for all values of i and j it follows that $J A=A$.
4. Let A be an $n \times n$ matrix. A matrix B is an inverse of A if $A B=B A=I$. Use the previous exercise and associativity of matrix multiplication to prove that if B and C are both inverses of A then $B=C$.

Solution.

$$
B=B I=B(A C)=(B A) C=I C=C
$$

5. Let F be any field. Prove that if $x, y \in F$ are such that $x y=0$ then either $x=0$ or $y=0$.

Solution.

Let us first prove that $z 0=0$, for all $z \in F$. By field axiom (ii) we have

$$
\begin{array}{rlr}
0+z 0 & =z 0 \\
& =z(0+0) \quad & \\
& =z 0+z 0 \quad \text { (axiom (ii) again) } \\
& \text { (by axiom (ix)). }
\end{array}
$$

By axiom (iii) there is an element $b \in F$ such that $z 0+b=0$, and adding this to both sides of the equation just proved gives, with a few applications of axioms (ii) and (i),
$0=0+0=0+(z 0+b)=(0+z 0)+b=(z 0+z 0)+b=z 0+(z 0+b)=z 0+0=z 0$.
Now let $x, y \in F$ and assume that $x y=0$. Assume $x \neq 0$. Then by field axiom (vii) there exists $z \in F$ with $z x=1$. This gives

$$
y=1 y=(z x) y=z(x y)=z 0=0
$$

We have now shown that if $x \neq 0$ then $y=0$; that is, either $x=0$ or $y=0$.

