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1. Let A be a 4×4 matrix, and suppose that v1, v2, v3 and v4 are column vectors
satisfying Av1 = 2v1, Av2 = 2v2 + v1, Av3 = 3v3 and Av4 = 3v4 + v3. Let T
be the matrix whose columns are v1, v2, v3 and v4 (in that order). Prove that

AT = T


2 1 0 0
0 2 0 0
0 0 3 1
0 0 0 3

 .

Solution.

Define

J =


2 1 0 0
0 2 0 0
0 0 3 1
0 0 0 3

 .

Observe that J is the result of applying the following sequence of elementary
column operations to a 4×4 identity matrix: multiply the second column by 2,
add the first column to the second, multiply the first column by 2, multiply
the fourth column by 3, add the third column to the fourth, multiply the
third column by 3. So TJ must be the result of applying the same sequence
of elementary column operations to T . Hence the columns of TJ are 2v1,
2v2 + v1, 3v3 and 3v4 + v3.
This same result can also be seen by multiplication of partitioned matrices.
The first column of TJ is obtained by multiplying T by the first column of J .
We have T =

(
v1 v2 v3 v4

)
, and so the first column of TJ is

(
v1 v2 v3 v4

) 
2
0
0
0

 = 2v1 + 0v2 + 0v3 + 0v4 = 2v1.

Similarly the second column of TJ is v1 + 2v2 + 0v3 + 0v4, and the third and
fourth columns can also be checked easily.
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As for the other side of the equation, we know that the first column of AT
is Av1 (since v1 is the first column of T ), and we are given that this is 2v1.
Similarly, the second column of AT is Av2, which equals 2v2 + v1, the third
column of AT is Av3 = 3v3 and the last column of AT is Av4 = 3v4 + v3. So
AT = TJ , as required.

2. For each of the following matrices A find a nonsingular matrix T such that
T−1AT is diagonal.

(a) A =

 9 −2 7
4 −1 4
−4 2 −2

 (b) A =

 2 −1 1
−1 2 1
1 1 0


Check that it is possible in part (b) to choose T in such a way that the sum
of the squares of the entries in each column of T is 1, and that if this is done
then T−1 = tT .

Solution.

(a) The first step is to find the values of x for which det(A − xI) = 0. We
have

det(A− xI) = (9− x)((−1− x)(−2− x)− 8) + 2(4(−2− x) + 16)
+ 7(8 + 4(−1− x))

= (9− x)(x2 + 3x− 6) + 2(−4x + 8) + 7(−4x + 4)

= −x3 + 6x2 + 33x− 54− 8x + 16− 28x + 28

= −(x3 − 6x2 + 3x + 10)
= −(x + 1)(x− 2)(x− 5),

so that the eigenvalues are −1, 2 and 5.
Next we must find an eigenvector for each of the eigenvalues; to do this
we must solve (A+I)u = 0, (A−2I)v = 0 and (A−5I)w = 0. Applying
row operations to A + I we obtain the reduced echelon matrix 1 0 1

0 1 3
2

0 0 0


enabling a (−1)-eigenvector to be readily calculated. The calculations
for 2 and 5 are similar, and we find that

u =

 2
3
−2

 , v =

 1
0
−1

 , w =

 17
6
−8
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are eigenvectors. (Note that any nonzero scalar multiples of these would
do equally well.) The matrix T which has u, v and w as its columns is
a suitable diagonalizing matrix.

(b) Using the same procedure as above, we have

det(A− xI) = (2− x)(−x(2− x)− 1) + 1(x− 1) + 1(−1− (2− x))

= (2− x)(x2 − 2x− 1) + x− 1 + x− 3

= −(x3 − 4x2 + x + 6)
= −(x + 1)(x− 2)(x− 3).

Three eigenvectors (corresponding to the eigenvalues −1, 2 and 3 re-
spectively) are  1

1
−2

 ,

 1
1
1

 and

 1
−1
0

 ,

so that

T =

 1 1 1
1 1 −1
−2 1 0


is a suitable diagonalizing matrix.

The sums of the squares of the elements in the columns can be made equal
to 1 by dividing the entries in the first column by

√
6, the entries in the second

column by
√

3 and the entries in the last column by
√

2. It is clear that if
this is done then the diagonal entries of (tT )T are all equal to 1. An easy
computation verifies that the off-diagonal entries are all 0.

3. Prove that if A and B are matrices such that AB is defined then tB tA is
defined, and tB tA = t(AB).

Solution.

Since AB is defined the number of columns of A equals the number of rows
of B. So the number of columns of tB (which equals the number of rows of
B) equals the number of rows of tA (which equals the number of columns of
A). Hence tB tA is defined.
Let A have shape m× n and B shape n× p. Then t(AB) and tB tA are both
p×m matrices. Let i and j be arbitrary subject to 1 ≤ i ≤ p and 1 ≤ j ≤ m.
Then the (i, j)-entry of tB tA is

(tB tA)ij =
n∑

k=1

(tB)ik(tA)kj =
n∑

k=1

BkiAjk =
n∑

k=1

AjkBki = (AB)ji = (t(AB))ij .

Hence t(AB) = tB tA, as required.
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4. Let A be a matrix satisfying tA = A and let u and v be eigenvectors of A
with corresponding eigenvalues λ and µ. (That is, u and v are nonzero and
Au = λu and Av = µv.) Prove that if λ 6= µ then (tu)v = 0. (Hint: Show
that (tu)A = λ(tu), and then expand (tu)Av in two ways.)
Investigate the connection between this exercise and 2 (b).

Solution.

Since transposing reverses products and since Au = λu, we have

(tu)A = (tu)(tA) = t(Au) = t(λu) = λ(tu).

Hence
λ(tu)v =

(
(tu)A

)
v = (tu)(Av) = (tu)(µv) = µ(tu)v,

and since λ 6= µ it follows that (tu)v = 0.
If the columns of T are u, v and w then the off-diagonal entries of (tT )T are
(tu)v and the five other similar expressions. This exercise shows that if u, v
and w are eigenvectors of a symmetric matrix corresponding to eigenvalues
which are distinct then the off-diagonal entries of (tT )T are zero.

5. Show that if α and β are arbitrary complex numbers then (α + β) = α + β
and αβ = α β, where the overline denotes complex conjugation (defined by
(x + iy) = x− iy for all x, y ∈ R, where i =

√
−1).

If A is a complex matrix let A be the matrix whose entries are the complex
conjugates of the entries of A. Use the previous part to show that AB = A B
for all complex matrices A and B such that AB exists.

Solution.

Let α = x + iy and β = u + iv, where x, y, u, v ∈ R. Then

αβ = (x + iy)(u + iv) = (xu− yv) + i(xv + yu)
= (xu− yv)− i(xv + yu) = (x− iy)(u− iv) = αβ.

Similarly α + β = (x + u) + i(y + v) = (x + u)− i(y + v) = α + β.
Let A ∈ Mat(m× n, C) and B ∈ Mat(n× p, C). If 1 ≤ r ≤ m and 1 ≤ s ≤ p
then

(AB)rs = (AB)rs =
n∑

t=1

ArtBts =
n∑

t=1

ArtBts

=
n∑

t=1

Art Bts =
n∑

t=1

(A)rt(B)ts) = (A B)rs,

and it follows that AB = A B.


