The University of Sydney
MATH2902 Vector Spaces
(http://www.maths.usyd.edu.au/u/UG/IM/MATH2902/)

Tutorial 2

1. Let A be a 4×4 matrix, and suppose that v_{1}, v_{2}, v_{3} and v_{4} are column vectors satisfying $A v_{1}=2 v_{1}, A v_{2}=2 v_{2}+v_{1}, A v_{3}=3 v_{3}$ and $A v_{4}=3 v_{4}+v_{3}$. Let T be the matrix whose columns are v_{1}, v_{2}, v_{3} and v_{4} (in that order). Prove that

$$
A T=T\left(\begin{array}{cccc}
2 & 1 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & 3 & 1 \\
0 & 0 & 0 & 3
\end{array}\right)
$$

Solution.

Define

$$
J=\left(\begin{array}{llll}
2 & 1 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & 3 & 1 \\
0 & 0 & 0 & 3
\end{array}\right)
$$

Observe that J is the result of applying the following sequence of elementary column operations to a 4×4 identity matrix: multiply the second column by 2 , add the first column to the second, multiply the first column by 2 , multiply the fourth column by 3 , add the third column to the fourth, multiply the third column by 3 . So $T J$ must be the result of applying the same sequence of elementary column operations to T. Hence the columns of $T J$ are $2 v_{1}$, $2 v_{2}+v_{1}, 3 v_{3}$ and $3 v_{4}+v_{3}$.
This same result can also be seen by multiplication of partitioned matrices. The first column of $T J$ is obtained by multiplying T by the first column of J. We have $T=\left(\begin{array}{l|l|l|l}v_{1} & v_{2} & v_{3} & v_{4}\end{array}\right)$, and so the first column of $T J$ is

$$
\left(\begin{array}{l|l|l|l}
v_{1} & v_{2} & v_{3} & v_{4}
\end{array}\right)\left(\begin{array}{l}
2 \\
0 \\
0 \\
0
\end{array}\right)=2 v_{1}+0 v_{2}+0 v_{3}+0 v_{4}=2 v_{1}
$$

Similarly the second column of $T J$ is $v_{1}+2 v_{2}+0 v_{3}+0 v_{4}$, and the third and fourth columns can also be checked easily.

As for the other side of the equation, we know that the first column of $A T$ is $A v_{1}$ (since v_{1} is the first column of T), and we are given that this is $2 v_{1}$. Similarly, the second column of $A T$ is $A v_{2}$, which equals $2 v_{2}+v_{1}$, the third column of $A T$ is $A v_{3}=3 v_{3}$ and the last column of $A T$ is $A v_{4}=3 v_{4}+v_{3}$. So $A T=T J$, as required.
2. For each of the following matrices A find a nonsingular matrix T such that $T^{-1} A T$ is diagonal.
(a) $\quad A=\left(\begin{array}{ccc}9 & -2 & 7 \\ 4 & -1 & 4 \\ -4 & 2 & -2\end{array}\right)$
(b) $\quad A=\left(\begin{array}{ccc}2 & -1 & 1 \\ -1 & 2 & 1 \\ 1 & 1 & 0\end{array}\right)$

Check that it is possible in part (b) to choose T in such a way that the sum of the squares of the entries in each column of T is 1 , and that if this is done then $T^{-1}={ }^{\mathrm{t}} T$.

Solution.

(a) The first step is to find the values of x for which $\operatorname{det}(A-x I)=0$. We have

$$
\begin{aligned}
\operatorname{det}(A-x I)= & (9-x)((-1-x)(-2-x)-8)+2(4(-2-x)+16) \\
& \quad+7(8+4(-1-x)) \\
= & (9-x)\left(x^{2}+3 x-6\right)+2(-4 x+8)+7(-4 x+4) \\
= & -x^{3}+6 x^{2}+33 x-54-8 x+16-28 x+28 \\
= & -\left(x^{3}-6 x^{2}+3 x+10\right) \\
= & -(x+1)(x-2)(x-5)
\end{aligned}
$$

so that the eigenvalues are $-1,2$ and 5 .
Next we must find an eigenvector for each of the eigenvalues; to do this we must solve $(A+I) u=0,(A-2 I) v=0$ and $(A-5 I) w=0$. Applying row operations to $A+I$ we obtain the reduced echelon matrix

$$
\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & \frac{3}{2} \\
0 & 0 & 0
\end{array}\right)
$$

enabling a (-1)-eigenvector to be readily calculated. The calculations for 2 and 5 are similar, and we find that

$$
u=\left(\begin{array}{c}
2 \\
3 \\
-2
\end{array}\right), \quad v=\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right), \quad w=\left(\begin{array}{c}
17 \\
6 \\
-8
\end{array}\right)
$$

are eigenvectors. (Note that any nonzero scalar multiples of these would do equally well.) The matrix T which has u, v and w as its columns is a suitable diagonalizing matrix.
(b) Using the same procedure as above, we have

$$
\begin{aligned}
\operatorname{det}(A-x I) & =(2-x)(-x(2-x)-1)+1(x-1)+1(-1-(2-x)) \\
& =(2-x)\left(x^{2}-2 x-1\right)+x-1+x-3 \\
& =-\left(x^{3}-4 x^{2}+x+6\right) \\
& =-(x+1)(x-2)(x-3)
\end{aligned}
$$

Three eigenvectors (corresponding to the eigenvalues $-1,2$ and 3 respectively) are

$$
\left(\begin{array}{c}
1 \\
1 \\
-2
\end{array}\right), \quad\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right)
$$

so that

$$
T=\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & 1 & -1 \\
-2 & 1 & 0
\end{array}\right)
$$

is a suitable diagonalizing matrix.
The sums of the squares of the elements in the columns can be made equal to 1 by dividing the entries in the first column by $\sqrt{6}$, the entries in the second column by $\sqrt{3}$ and the entries in the last column by $\sqrt{2}$. It is clear that if this is done then the diagonal entries of $\left({ }^{\mathrm{t}} T\right) T$ are all equal to 1 . An easy computation verifies that the off-diagonal entries are all 0 .
3. Prove that if A and B are matrices such that $A B$ is defined then ${ }^{\mathrm{t}} \mathrm{t}^{\mathrm{t}} A$ is defined, and ${ }^{\mathrm{t}} B^{\mathrm{t}} A={ }^{\mathrm{t}}(A B)$.

Solution.

Since $A B$ is defined the number of columns of A equals the number of rows of B. So the number of columns of ${ }^{\mathrm{t}} B$ (which equals the number of rows of B) equals the number of rows of ${ }^{\mathrm{t}} A$ (which equals the number of columns of A). Hence ${ }^{\mathrm{t}} B^{\mathrm{t}} A$ is defined.

Let A have shape $m \times n$ and B shape $n \times p$. Then ${ }^{\mathrm{t}}(A B)$ and ${ }^{\mathrm{t}} B^{\mathrm{t}} A$ are both $p \times m$ matrices. Let i and j be arbitrary subject to $1 \leq i \leq p$ and $1 \leq j \leq m$. Then the (i, j)-entry of ${ }^{\mathrm{t}} B^{\mathrm{t}} A$ is
$\left({ }^{\mathrm{t}} B^{\mathrm{t}} A\right)_{i j}=\sum_{k=1}^{n}\left({ }^{\mathrm{t}} B\right)_{i k}\left({ }^{\mathrm{t}} A\right)_{k j}=\sum_{k=1}^{n} B_{k i} A_{j k}=\sum_{k=1}^{n} A_{j k} B_{k i}=(A B)_{j i}=\left({ }^{\mathrm{t}}(A B)\right)_{i j}$.
Hence ${ }^{\mathrm{t}}(A B)={ }^{\mathrm{t}} B^{\mathrm{t}} A$, as required.
4. Let A be a matrix satisfying ${ }^{\mathrm{t}} A=A$ and let u and v be eigenvectors of A with corresponding eigenvalues λ and μ. (That is, u and v are nonzero and $A u=\lambda u$ and $A v=\mu v$.) Prove that if $\lambda \neq \mu$ then $\left({ }^{\mathrm{t}} u\right) v=0$. (Hint: Show that $\left({ }^{\mathrm{t}} u\right) A=\lambda\left({ }^{\mathrm{t}} u\right)$, and then expand $\left({ }^{\mathrm{t}} u\right) A v$ in two ways.)
Investigate the connection between this exercise and 2 (b).

Solution.

Since transposing reverses products and since $A u=\lambda u$, we have

$$
\left({ }^{\mathrm{t}} u\right) A=\left({ }^{\mathrm{t}} u\right)\left({ }^{\mathrm{t}} A\right)={ }^{\mathrm{t}}(A u)={ }^{\mathrm{t}}(\lambda u)=\lambda\left({ }^{\mathrm{t}} u\right) .
$$

Hence

$$
\lambda\left({ }^{\mathrm{t}} u\right) v=\left(\left({ }^{\mathrm{t}} u\right) A\right) v=\left({ }^{\mathrm{t}} u\right)(A v)=\left({ }^{\mathrm{t}} u\right)(\mu v)=\mu\left({ }^{\mathrm{t}} u\right) v
$$

and since $\lambda \neq \mu$ it follows that $\left({ }^{\mathrm{t}} u\right) v=0$.
If the columns of T are u, v and w then the off-diagonal entries of $\left({ }^{\mathrm{t}} T\right) T$ are $\left({ }^{\mathrm{t}} u\right) v$ and the five other similar expressions. This exercise shows that if u, v and w are eigenvectors of a symmetric matrix corresponding to eigenvalues which are distinct then the off-diagonal entries of $\left({ }^{(t} T\right) T$ are zero.
5. Show that if α and β are arbitrary complex numbers then $\overline{(\alpha+\beta)}=\bar{\alpha}+\bar{\beta}$ and $\overline{\alpha \beta}=\bar{\alpha} \bar{\beta}$, where the overline denotes complex conjugation (defined by $\overline{(x+i y)}=x-i y$ for all $x, y \in \mathbb{R}$, where $i=\sqrt{-1})$.
If A is a complex matrix let \bar{A} be the matrix whose entries are the complex conjugates of the entries of A. Use the previous part to show that $\overline{A B}=\bar{A} \bar{B}$ for all complex matrices A and B such that $A B$ exists.

Solution

Let $\alpha=x+i y$ and $\beta=u+i v$, where $x, y, u, v \in \mathbb{R}$. Then

$$
\begin{aligned}
\overline{\alpha \beta}=\overline{(x+i y)(u+i v)} & =\overline{(x u-y v)+i(x v+y u)} \\
& =(x u-y v)-i(x v+y u)=(x-i y)(u-i v)=\bar{\alpha} \bar{\beta} .
\end{aligned}
$$

Similarly $\overline{\alpha+\beta}=\overline{(x+u)+i(y+v)}=(x+u)-i(y+v)=\bar{\alpha}+\bar{\beta}$.
Let $A \in \operatorname{Mat}(m \times n, \mathbb{C})$ and $B \in \operatorname{Mat}(n \times p, \mathbb{C})$. If $1 \leq r \leq m$ and $1 \leq s \leq p$ then

$$
\begin{aligned}
(\overline{A B})_{r s}= & \overline{(A B)_{r s}}=\overline{\sum_{t=1}^{n} A_{r t} B_{t s}}=\sum_{t=1}^{n} \overline{A_{r t} B_{t s}} \\
& \left.=\sum_{t=1}^{n} \overline{A_{r t}} \overline{B_{t s}}=\sum_{t=1}^{n}(\bar{A})_{r t}(\bar{B})_{t s}\right)=(\bar{A} \bar{B})_{r s},
\end{aligned}
$$

and it follows that $\overline{A B}=\bar{A} \bar{B}$.

