The University of Sydney
 MATH2902 Vector Spaces

(http://www.maths.usyd.edu.au/u/UG/IM/MATH2902/)

Tutorial 3

1. Which of the following functions are linear transformations?
(i) $\quad T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by $T\binom{x}{y}=\left(\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right)\binom{x}{y}$
(ii) $\quad S: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by $S\binom{x}{y}=\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)\binom{x}{y}$
(iii) $g: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ defined by $g\binom{x}{y}=\left(\begin{array}{c}2 x+y \\ y \\ x-y\end{array}\right)$
(iv) $\quad f: \mathbb{R} \rightarrow \mathbb{R}^{2}$ defined by $f(x)=\binom{x}{x+1}$

Solution.

(i) This function is linear. To prove this we must show that $T(a+b)=T(a)+T(b)$ and $T(\lambda a)=\lambda T(a)$ for all $a, b \in \mathbb{R}^{2}$ and all $\lambda \in \mathbb{R}$. So, let $a, b \in \mathbb{R}^{2}, \lambda \in \mathbb{R}$. Then $a=\binom{x}{y}$ and $b=\binom{u}{v}$ for some $x, y, u, v \in \mathbb{R}$, and we have

$$
\begin{gathered}
T(a+b)=T\left(\binom{x}{y}+\binom{u}{v}\right)=T\binom{x+u}{y+v}=\left(\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right)\binom{x+u}{y+v} \\
=\binom{(x+u)+2(y+v)}{2(x+u)+(y+v)}=\binom{x+2 y}{2 x+y}+\binom{u+2 v}{2 u+v} \\
=\left(\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right)\binom{x}{y}+\left(\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right)\binom{u}{v}=T(a)+T(b)
\end{gathered}
$$

Similarly

$$
\begin{aligned}
T(\lambda a)=\left(\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right)\binom{\lambda x}{\lambda y}=\binom{\lambda x+2 \lambda y}{2 \lambda x+\lambda y} & =\binom{\lambda(x+2 y)}{\lambda(2 x+y)} \\
& =\lambda\binom{x+2 y}{2 x+y}=\lambda\left(\left(\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right)\binom{x}{y}\right)=\lambda T(a)
\end{aligned}
$$

(ii) This function is also linear, by exactly the same reasoning as in (i) above. Indeed, the same would work for any 2×2 matrix.
(iii) This function is also linear, since

$$
\begin{aligned}
g\left(\binom{x}{y}+\binom{u}{v}\right)=g\binom{x+u}{y+v}= & \left(\begin{array}{c}
2(x+u)+(y+v) \\
y+v \\
(x+u)-(y+v)
\end{array}\right) \\
& =\left(\begin{array}{c}
2 x+y \\
y \\
x-y
\end{array}\right)+\left(\begin{array}{c}
2 u+v \\
v \\
u-v
\end{array}\right)=g\binom{x}{y}+g\binom{u}{v}
\end{aligned}
$$

and similarly

$$
g\left(\lambda\binom{x}{y}\right)=g\binom{\lambda x}{\lambda y}=\left(\begin{array}{c}
2 \lambda x+\lambda y \\
\lambda y \\
\lambda x-\lambda y
\end{array}\right)=\lambda g\binom{x}{y}
$$

(iv) This function is not linear, since (for instance)

$$
f(0+0)=f(0)=\binom{0}{1} \neq\binom{ 0}{1}+\binom{0}{1}=f(0)+f(0)
$$

2. Let \mathcal{A} be the set of all 2-component column vectors whose entries are differentiable functions from \mathbb{R} to \mathbb{R}. Thus, for example, if h and k are the functions defined by $h(t)=\cos t$ and $k(t)=t^{2}+1$ for all $x \in \mathbb{R}$ then $\binom{h}{k}$ is an element of \mathcal{A}.
(i) How should addition and scalar multiplication be defined so that \mathcal{A} becomes a vector space over \mathbb{R} ?
(ii) If f and g are real-valued functions on \mathbb{R} then their pointwise product is the function $f \cdot g$ defined by $(f \cdot g)(t)=f(t) g(t)$ for all $t \in \mathbb{R}$. Prove that

$$
\binom{f}{g} \mapsto h \cdot f+g^{\prime}
$$

(where h is as above and g^{\prime} is the derivative of g) defines a linear transformation from \mathcal{A} to the space of all real-valued functions on \mathbb{R}.

Solution.

(i) Let $a, b \in \mathcal{A}$ and $\lambda \in \mathbb{R}$. Then

$$
a=\binom{\phi}{\psi}, \quad b=\binom{\chi}{\theta}
$$

for some differentiable functions ϕ, ψ, χ and θ from \mathbb{R} to \mathbb{R}. We define $a+b$ and λa by

$$
a+b=\binom{\phi+\chi}{\psi+\theta}, \quad \lambda a=\binom{\lambda \phi}{\lambda \psi}
$$

where addition and scalar multiplication for functions is defined in the usual way. That is, $\phi+\chi$ is the function from \mathbb{R} to \mathbb{R} defined by $(\phi+\chi)(t)=\phi(t)+\chi(t)$ for all $t \in \mathbb{R}$, and $\lambda \phi$ is the function from \mathbb{R} to \mathbb{R} defined by $(\lambda \phi)(t)=\lambda(\phi(t))$ for all $t \in \mathbb{R}$ (and similarly for $\psi+\theta$ and $\lambda \psi$).
Since addition on \mathcal{A} is meant to be a function from $\mathcal{A} \times \mathcal{A}$ to \mathcal{A}, we should check that if $a, b \in \mathcal{A}$ then $a+b$, as defined above, is also in \mathcal{A}. Now $a+b$ will be in \mathcal{A} if and only if both components of $a+b$ are differentiable functions from \mathbb{R} to \mathbb{R}; that is, our definition of addition will only be satisfactory if $\phi+\chi$ and $\psi+\theta$ are differentiable functions whenever ϕ, ψ, χ and θ are differentiable functions. Fortunately, this is a elementary theorem of calculus. Similarly, to justify our definition of scalar multiplication we must note that if $\lambda \in \mathbb{R}$ and ϕ, ψ are differentiable functions then $\lambda \phi$ and $\lambda \psi$ are also differentiable functions.
Showing that these definitions of addition and scalar multiplication make \mathcal{A} into a vector space over \mathbb{R} would be a matter of checking that the eight axioms in Definition 3.2 are satisfied. This is more tedious than difficult. The first step is to observe that the set \mathcal{S}
of all functions from \mathbb{R} to \mathbb{R} is a vector space over \mathbb{R} (by $\# 6$, p. 54). Now let $a, b, c \in \mathcal{A}$ and $\lambda, \mu \in \mathbb{R}$. Then

$$
a=\binom{\phi}{\psi}, \quad b=\binom{\chi}{\theta}, \quad c=\binom{\zeta}{\eta},
$$

where ϕ, ψ etc. are differentiable functions from \mathbb{R} to \mathbb{R}. Since \mathcal{S} is a vector space we know that addition of functions is associative (vector space axiom (i)), and therefore

$$
(a+b)+c=\binom{(\phi+\chi)+\zeta}{(\psi+\theta)+\eta}=\binom{\phi+(c h i+\zeta)}{\psi+(\theta+\eta)}=a+(b+c) .
$$

Similarly, since \mathcal{S} satisfies vector space axiom (vi) it follows that

$$
\lambda(\mu a)=\binom{\lambda(\mu \phi)}{\lambda(\mu \psi)}=\binom{(\lambda) \mu \phi}{(\lambda \mu) \psi}=(\lambda \mu) a .
$$

Thus \mathcal{A} satisfies vector space axioms (i) and (vi). Totally analogous proofs work for all the other axioms. Note that the zero element of \mathcal{A} is $\binom{z}{z}$, where z is the zero function (defined by $z(t)=0$ for all t).
Observe that we could alternatively use Exercise 13 on p. 80 of the book. In the notation of that exercise, $\mathcal{A}=\mathcal{D}^{2}$, where \mathcal{D} is the set of all differentiable functions from \mathbb{R} to \mathbb{R}. Since \mathcal{D} is nonempty (containg the zero function) and closed under addition and scalar multiplication (by elementary calculus, as observed above) it is a subspace of \mathcal{S}, and therefore a vector space itself. The result of Exercise 13 then shows that \mathcal{D}^{2} is a vector space.
(ii) Let $\Phi: \mathcal{A} \rightarrow \mathcal{S}$ be the given function; that is, if $a=\binom{\phi}{\psi} \in \mathcal{A}$ then $\Phi(a)=h \cdot \phi+\psi^{\prime}$. Recall that \mathcal{S} is the set of all functions from \mathbb{R} to \mathbb{R}, so that $h \cdot \phi+\psi^{\prime}$ is certainly an element of \mathcal{S}.
Let $a, b \in \mathcal{A}$ and $\lambda \in \mathbb{R}$. As above, let $a=\binom{\phi}{\psi}$ and $b=\binom{\chi}{\theta}$. Then

$$
\Phi(a+b)=\Phi\binom{\phi+\chi}{\psi+\theta}=h \cdot(\phi+\chi)+(\psi+\theta)^{\prime}=(h \cdot \phi+h \cdot \chi)+\left(\psi^{\prime}+\theta^{\prime}\right)
$$

since elementary calculus tells us that the derivative of $\psi+\theta$ is the sum of the derivatives of ψ and θ, while the definitions of sum and pointwise product of functions give (for all $t \in \mathbb{R})$

$$
\begin{aligned}
(h \cdot(\psi+\chi)(t) & =h(t)(\phi+\chi)(t)=h(t)(\phi(t)+\chi(t)) \\
& =h(t) \phi(t)+h(t) \chi(t)=(h \cdot \phi)(t)+(h \cdot \chi)(t)=(h \cdot \phi+h \cdot \chi)(t)
\end{aligned}
$$

By commutativity and associativity of addition of functions it follows that

$$
\Phi(a+b)=\left(h \cdot \phi+\psi^{\prime}\right)+\left(h \cdot \chi+\theta^{\prime}\right)=\Phi(a)+\Phi(b)
$$

In a similar fashion,

$$
\phi(\lambda a)=\Phi\binom{\lambda \phi}{\lambda \psi}=h \cdot(\lambda \phi)+(\lambda \psi)^{\prime}=\lambda(h \cdot \phi)+\lambda \psi^{\prime}=\lambda \Phi(a) .
$$

So Φ preserves addition and scalar multiplication; that is, Φ is a linear transformation.
3. Let V be a vector space and let S and T be subspaces of V.
(i) Prove that $S \cap T$ is a subspace of V.
(ii) Let $S+T=\{x+y \mid x \in S$ and $y \in T\}$. Prove that $S+T$ is a subspace of V.

Solution.
(i) Let $u, v \in S \cap T$, λ a scalar. Since $u, v \in S$ and S is closed under addition and scalar multiplication it follows that $u+v, \lambda u \in S$, and similarly $u+v, \lambda u \in T$. So $u+v, \lambda u \in S \cap T$, and therefore $S \cap T$ is closed under addition and scalar multiplication. Since $\underset{\sim}{0} \in S$ and $\underset{\sim}{0} \in T$ it follows that $\underset{\sim}{0} \in S \cap T$, and so $S \cap T \neq \emptyset$.
(ii) Let $u, v \in S+T, \lambda$ a scalar. Then $u=x+y, v=x^{\prime}+y^{\prime}$ for some $x, x^{\prime} \in S, y, y^{\prime} \in T$, and by closure of S and T,

$$
\begin{gathered}
u+v=(x+y)+\left(x^{\prime}+y^{\prime}\right)=\left(x+x^{\prime}\right)+\left(y+y^{\prime}\right) \in S+T \\
\lambda u=\lambda(x+y)=\lambda x+\lambda y \in S+T
\end{gathered}
$$

so that $S+T$ is closed also. And $S+T \neq \emptyset$ since $\underset{\sim}{0}=\underset{\sim}{0}+\underset{\sim}{0} \in S+T$.
4. Let V be a vector space over the field F and let $v_{1}, v_{2}, \ldots, v_{n}$ be arbitrary elements of V.

Prove that the span of $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$

$$
\operatorname{Span}\left(v_{1}, v_{2}, \ldots, v_{n}\right)=\left\{\lambda_{1} v_{1}+\lambda_{2} v_{2}+\cdots+\lambda_{n} v_{n} \mid \lambda_{1}, \lambda_{2}, \ldots, \lambda_{n} \in F\right\}
$$

is a subspace of V.

Solution.

Let $x, y \in \operatorname{Span}\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ and let α be a scalar. Then

$$
\begin{aligned}
& x=\lambda_{1} v_{1}+\lambda_{2} v_{2}+\cdots+\lambda_{n} v_{n} \\
& y=\mu_{1} v_{1}+\mu_{2} v_{2}+\cdots+\mu_{n} v_{n}
\end{aligned}
$$

for some scalars λ_{i} and μ_{i}, and so

$$
x+y=\left(\lambda_{1}+\mu_{1}\right) v_{1}+\left(\lambda_{2}+\mu_{2}\right) v_{2}+\cdots+\left(\lambda_{n}+\mu_{n}\right) v_{n}
$$

and

$$
\alpha x=\alpha \lambda_{1} v_{1}+\alpha \lambda_{2} v_{2}+\cdots+\alpha \lambda_{n} v_{n}
$$

are both in $\operatorname{Span}\left(v_{1}, v_{2}, \ldots, v_{n}\right)$. Furthermore, $\underset{\sim}{0}=\sum_{i=1}^{n} 0 v_{i} \in \operatorname{Span}\left(v_{1}, v_{2}, \ldots, v_{n}\right)$, which is therefore nonempty.
5. Let A and B be $n \times n$ matrices over the field F. We say that B is similar to A if there exists a nonsingular matrix T such that $B=T^{-1} A T$. Prove
(i) every $n \times n$ matrix is similar to itself,
(ii) if B is similar to A then A is similar to B,
(iii) if C is similar to B and B is similar to A then C is similar to A.

Solution.

For all A we have $I^{-1} A I=A$, and so A is similar to itself. (In the terminology of $\S 1 \mathrm{c}$, this says that similarity is a reflexive relation.)
Suppose that B is similar to A. Then there exists a nonsingular T with $B=T^{-1} A T$, and rearranging this equation slightly gives $A=U^{-1} B U$, where $U=T^{-1}$. We deduce that A is similar to B whenever B is similar to A. (Similarity is a symmetric relation.)
Suppose that C is similar to B and B is similar to A. Then there exist U and T with $C=U^{-1} B U$ and $B=T^{-1} A T$, and it follows that

$$
C=U^{-1} B U=U^{-1} T^{-1} A T U=(T U)^{-1} A(T U)
$$

whence C is similar to A. (Thus similarity is also transitive, and hence is an equivalence relation.)

