The University of Sydney

MATH2902 Vector Spaces

(http://www.maths.usyd.edu.au/u/UG/IM/MATH2902/)

Semester1, 2001

Lecturer: R. Howlett

Tutorial 3

- 1. Which of the following functions are linear transformations?
 - (i) $T: \mathbb{R}^2 \to \mathbb{R}^2$ defined by $T\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$ (ii) $S: \mathbb{R}^2 \to \mathbb{R}^2$ defined by $S\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$ (iii) $g: \mathbb{R}^2 \to \mathbb{R}^3$ defined by $g\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 2x + y \\ y \\ x - y \end{pmatrix}$ (iv) $f: \mathbb{R} \to \mathbb{R}^2$ defined by $f(x) = \begin{pmatrix} x \\ x + 1 \end{pmatrix}$

Solution.

(i) This function is linear. To prove this we must show that T(a + b) = T(a) + T(b) and $T(\lambda a) = \lambda T(a)$ for all $a, b \in \mathbb{R}^2$ and all $\lambda \in \mathbb{R}$. So, let $a, b \in \mathbb{R}^2, \lambda \in \mathbb{R}$. Then $a = \begin{pmatrix} x \\ y \end{pmatrix}$ and $b = \begin{pmatrix} u \\ v \end{pmatrix}$ for some $x, y, u, v \in \mathbb{R}$, and we have $T(a + b) = T\left(\begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} u \\ v \end{pmatrix}\right) = T\begin{pmatrix} x + u \\ y + v \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} x + u \\ y + v \end{pmatrix}$ $= \begin{pmatrix} (x + u) + 2(y + v) \\ 2(x + u) + (y + v) \end{pmatrix} = \begin{pmatrix} x + 2y \\ 2x + y \end{pmatrix} + \begin{pmatrix} u + 2v \\ 2u + v \end{pmatrix}$ $= \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} = T(a) + T(b).$

Similarly

$$T(\lambda a) = \begin{pmatrix} 1 & 2\\ 2 & 1 \end{pmatrix} \begin{pmatrix} \lambda x\\ \lambda y \end{pmatrix} = \begin{pmatrix} \lambda x + 2\lambda y\\ 2\lambda x + \lambda y \end{pmatrix} = \begin{pmatrix} \lambda(x+2y)\\ \lambda(2x+y) \end{pmatrix}$$
$$= \lambda \begin{pmatrix} x+2y\\ 2x+y \end{pmatrix} = \lambda \begin{pmatrix} \begin{pmatrix} 1 & 2\\ 2 & 1 \end{pmatrix} \begin{pmatrix} x\\ y \end{pmatrix} = \lambda T(a).$$

- (*ii*) This function is also linear, by exactly the same reasoning as in (*i*) above. Indeed, the same would work for any 2×2 matrix.
- (*iii*) This function is also linear, since

$$g\left(\binom{x}{y} + \binom{u}{v}\right) = g\binom{x+u}{y+v} = \binom{2(x+u) + (y+v)}{y+v}$$
$$= \binom{2x+y}{y} + \binom{2u+v}{v} = g\binom{x}{y} + g\binom{u}{v}$$

 $\mathbf{2}$

and similarly

$$g\left(\lambda\begin{pmatrix}x\\y\end{pmatrix}\right) = g\begin{pmatrix}\lambda x\\\lambda y\end{pmatrix} = \begin{pmatrix}2\lambda x + \lambda y\\\lambda y\\\lambda x - \lambda y\end{pmatrix} = \lambda g\begin{pmatrix}x\\y\end{pmatrix}.$$

(iv) This function is not linear, since (for instance)

$$f(0+0) = f(0) = \begin{pmatrix} 0\\1 \end{pmatrix} \neq \begin{pmatrix} 0\\1 \end{pmatrix} + \begin{pmatrix} 0\\1 \end{pmatrix} = f(0) + f(0).$$

- **2.** Let \mathcal{A} be the set of all 2-component column vectors whose entries are differentiable functions from \mathbb{R} to \mathbb{R} . Thus, for example, if h and k are the functions defined by $h(t) = \cos t$ and $k(t) = t^2 + 1$ for all $x \in \mathbb{R}$ then $\binom{h}{k}$ is an element of \mathcal{A} .
 - (i) How should addition and scalar multiplication be defined so that \mathcal{A} becomes a vector space over \mathbb{R} ?
 - (*ii*) If f and g are real-valued functions on \mathbb{R} then their *pointwise product* is the function $f \cdot g$ defined by $(f \cdot g)(t) = f(t)g(t)$ for all $t \in \mathbb{R}$. Prove that

$$\binom{f}{g} \mapsto h \cdot f + g'$$

(where h is as above and g' is the derivative of g) defines a linear transformation from \mathcal{A} to the space of all real-valued functions on \mathbb{R} .

Solution.

(i) Let $a, b \in \mathcal{A}$ and $\lambda \in \mathbb{R}$. Then

$$a = \begin{pmatrix} \phi \\ \psi \end{pmatrix}, \qquad b = \begin{pmatrix} \chi \\ \theta \end{pmatrix}$$

for some differentiable functions ϕ , ψ , χ and θ from \mathbb{R} to \mathbb{R} . We define a + b and λa by

$$a+b=\begin{pmatrix}\phi+\chi\\\psi+\theta\end{pmatrix},\qquad\lambda a=\begin{pmatrix}\lambda\phi\\\lambda\psi\end{pmatrix}$$

where addition and scalar multiplication for functions is defined in the usual way. That is, $\phi + \chi$ is the function from \mathbb{R} to \mathbb{R} defined by $(\phi + \chi)(t) = \phi(t) + \chi(t)$ for all $t \in \mathbb{R}$, and $\lambda \phi$ is the function from \mathbb{R} to \mathbb{R} defined by $(\lambda \phi)(t) = \lambda(\phi(t))$ for all $t \in \mathbb{R}$ (and similarly for $\psi + \theta$ and $\lambda \psi$).

Since addition on \mathcal{A} is meant to be a function from $\mathcal{A} \times \mathcal{A}$ to \mathcal{A} , we should check that if $a, b \in \mathcal{A}$ then a + b, as defined above, is also in \mathcal{A} . Now a + b will be in \mathcal{A} if and only if both components of a+b are differentiable functions from \mathbb{R} to \mathbb{R} ; that is, our definition of addition will only be satisfactory if $\phi + \chi$ and $\psi + \theta$ are differentiable functions whenever ϕ, ψ, χ and θ are differentiable functions. Fortunately, this is a elementary theorem of calculus. Similarly, to justify our definition of scalar multiplication we must note that if $\lambda \in \mathbb{R}$ and ϕ, ψ are differentiable functions then $\lambda \phi$ and $\lambda \psi$ are also differentiable functions.

Showing that these definitions of addition and scalar multiplication make \mathcal{A} into a vector space over \mathbb{R} would be a matter of checking that the eight axioms in Definition 3.2 are satisfied. This is more tedious than difficult. The first step is to observe that the set \mathcal{S}

of all functions from \mathbb{R} to \mathbb{R} is a vector space over \mathbb{R} (by #6, p. 54). Now let $a, b, c \in \mathcal{A}$ and $\lambda, \mu \in \mathbb{R}$. Then

$$a = \begin{pmatrix} \phi \\ \psi \end{pmatrix}, \qquad b = \begin{pmatrix} \chi \\ \theta \end{pmatrix}, \qquad c = \begin{pmatrix} \zeta \\ \eta \end{pmatrix},$$

where ϕ , ψ etc. are differentiable functions from \mathbb{R} to \mathbb{R} . Since \mathcal{S} is a vector space we know that addition of functions is associative (vector space axiom (i)), and therefore

$$(a+b) + c = \begin{pmatrix} (\phi+\chi)+\zeta\\ (\psi+\theta)+\eta \end{pmatrix} = \begin{pmatrix} \phi+(chi+\zeta)\\ \psi+(\theta+\eta) \end{pmatrix} = a + (b+c).$$

Similarly, since S satisfies vector space axiom (vi) it follows that

$$\lambda(\mu a) = \begin{pmatrix} \lambda(\mu\phi) \\ \lambda(\mu\psi) \end{pmatrix} = \begin{pmatrix} (\lambda)\mu\phi \\ (\lambda\mu)\psi \end{pmatrix} = (\lambda\mu)a.$$

Thus \mathcal{A} satisfies vector space axioms (i) and (vi). Totally analogous proofs work for all the other axioms. Note that the zero element of \mathcal{A} is $\binom{z}{z}$, where z is the zero function (defined by z(t) = 0 for all t).

Observe that we could alternatively use Exercise 13 on p. 80 of the book. In the notation of that exercise, $\mathcal{A} = \mathcal{D}^2$, where \mathcal{D} is the set of all differentiable functions from \mathbb{R} to \mathbb{R} . Since \mathcal{D} is nonempty (containg the zero function) and closed under addition and scalar multiplication (by elementary calculus, as observed above) it is a subspace of \mathcal{S} , and therefore a vector space itself. The result of Exercise 13 then shows that \mathcal{D}^2 is a vector space.

(*ii*) Let $\Phi: \mathcal{A} \to \mathcal{S}$ be the given function; that is, if $a = \begin{pmatrix} \phi \\ \psi \end{pmatrix} \in \mathcal{A}$ then $\Phi(a) = h \cdot \phi + \psi'$. Recall that \mathcal{S} is the set of all functions from \mathbb{R} to \mathbb{R} , so that $h \cdot \phi + \psi'$ is certainly an element of \mathcal{S} .

Let $a, b \in \mathcal{A}$ and $\lambda \in \mathbb{R}$. As above, let $a = \begin{pmatrix} \phi \\ \psi \end{pmatrix}$ and $b = \begin{pmatrix} \chi \\ \theta \end{pmatrix}$. Then

$$\Phi(a+b) = \Phi\begin{pmatrix}\phi+\chi\\\psi+\theta\end{pmatrix} = h \cdot (\phi+\chi) + (\psi+\theta)' = (h \cdot \phi + h \cdot \chi) + (\psi'+\theta')$$

since elementary calculus tells us that the derivative of $\psi + \theta$ is the sum of the derivatives of ψ and θ , while the definitions of sum and pointwise product of functions give (for all $t \in \mathbb{R}$)

$$(h \cdot (\psi + \chi)(t) = h(t)(\phi + \chi)(t) = h(t)(\phi(t) + \chi(t)) = h(t)\phi(t) + h(t)\chi(t) = (h \cdot \phi)(t) + (h \cdot \chi)(t) = (h \cdot \phi + h \cdot \chi)(t).$$

By commutativity and associativity of addition of functions it follows that

$$\Phi(a+b) = (h \cdot \phi + \psi') + (h \cdot \chi + \theta') = \Phi(a) + \Phi(b).$$

In a similar fashion,

$$\phi(\lambda a) = \Phi\left(\begin{smallmatrix}\lambda\phi\\\lambda\psi\end{smallmatrix}\right) = h \cdot (\lambda\phi) + (\lambda\psi)' = \lambda(h \cdot \phi) + \lambda\psi' = \lambda\Phi(a).$$

So Φ preserves addition and scalar multiplication; that is, Φ is a linear transformation.

- Let V be a vector space and let S and T be subspaces of V. 3.
 - Prove that $S \cap T$ is a subspace of V. (i)
 - (*ii*) Let $S + T = \{x + y \mid x \in S \text{ and } y \in T\}$. Prove that S + T is a subspace of V.

Solution.

- (i)Let $u, v \in S \cap T$, λ a scalar. Since $u, v \in S$ and S is closed under addition and scalar multiplication it follows that u + v, $\lambda u \in S$, and similarly u + v, $\lambda u \in T$. So $u+v, \lambda u \in S \cap T$, and therefore $S \cap T$ is closed under addition and scalar multiplication. Since $0 \in S$ and $0 \in T$ it follows that $0 \in S \cap T$, and so $S \cap T \neq \emptyset$.
- (ii) Let $u, v \in S + T$, λ a scalar. Then u = x + y, v = x' + y' for some $x, x' \in S$, $y, y' \in T$, and by closure of S and T, $u + v = (x + y) + (x' + y') = (x + x') + (y + y') \in S + T$

$$\lambda y - \lambda (x + y) - \lambda x + \lambda y \in S + T$$

 $\lambda u = \lambda (x + y) = \lambda x + \lambda y \in S + T$ so that S + T is closed also. And $S + T \neq \emptyset$ since $0 = 0 + 0 \in S + T$.

Let V be a vector space over the field F and let v_1, v_2, \ldots, v_n be arbitrary elements of V. **4**. Prove that the span of $\{v_1, v_2, \ldots, v_n\}$

 $\operatorname{Span}(v_1, v_2, \dots, v_n) = \{ \lambda_1 v_1 + \lambda_2 v_2 + \dots + \lambda_n v_n \mid \lambda_1, \lambda_2, \dots, \lambda_n \in F \}$ is a subspace of V.

Solution.

Let $x, y \in \text{Span}(v_1, v_2, \dots, v_n)$ and let α be a scalar. Then $x = \lambda_1 v_1 + \lambda_2 v_2 + \dots + \lambda_n v_n$

$$u = \chi_1 v_1 + \chi_2 v_2 + \dots + \chi_n v_n$$

$$y \equiv \mu_1 v_1 + \mu_2 v_2 + \dots + \mu_n v_n$$

for some scalars λ_i and μ_i , and so

 $x + y = (\lambda_1 + \mu_1)v_1 + (\lambda_2 + \mu_2)v_2 + \dots + (\lambda_n + \mu_n)v_n$

and

 $\alpha x = \alpha \lambda_1 v_1 + \alpha \lambda_2 v_2 + \dots + \alpha \lambda_n v_n$ are both in $\operatorname{Span}(v_1, v_2, \dots, v_n)$. Furthermore, $0 = \sum_{i=1}^n 0 v_i \in \operatorname{Span}(v_1, v_2, \dots, v_n)$, which is therefore nonempty.

- Let A and B be $n \times n$ matrices over the field F. We say that B is similar to A if there exists 5. a nonsingular matrix T such that $B = T^{-1}AT$. Prove
 - (i)every $n \times n$ matrix is similar to itself,
 - (*ii*) if B is similar to A then A is similar to B,
 - (*iii*) if C is similar to B and B is similar to A then C is similar to A.

Solution.

For all A we have $I^{-1}AI = A$, and so A is similar to itself. (In the terminology of §1c, this says that similarity is a reflexive relation.)

Suppose that B is similar to A. Then there exists a nonsingular T with $B = T^{-1}AT$, and rearranging this equation slightly gives $A = U^{-1}BU$, where $U = T^{-1}$. We deduce that A is similar to B whenever B is similar to A. (Similarity is a symmetric relation.)

Suppose that C is similar to B and B is similar to A. Then there exist U and T with $C = U^{-1}BU$ and $B = T^{-1}AT$, and it follows that $C = U^{-1}BU = U^{-1}T^{-1}ATU = (TU)^{-1}A(TU),$

whence C is similar to A. (Thus similarity is also transitive, and hence is an equivalence relation.)