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1. Which of the following functions are linear transformations?

(i) T:R?— R? defined by T(;) - <; 2) <3y6>
(i) S:R? — R? defined by 5(5) = <8 O> (ZJC>

20 +y

(iii) g:R? — R? defined by g(x> = Y
Yy T —y

—_

—_

(iv) f:R — R? defined by f(z) = <x_ai_1>

Solution.

() This function is linear. To prove this we must show that T'(a + b) = T'(a) + T'(b) and

T(Aa) = XT'(a) for all a, b € R? and all A € R. So, let a, b € R?, A € R. Then a = <§

and b = (5) for some z, y, u, v € R, and we have
raen=1((;)+(2) =)= )G
= (So R = () ()
(3 H6) (D) -raem
Similarly
roa = (5 1) ()= Gn2) = (62)

=(55) A G 1) 6)) e

(4¢) This function is also linear, by exactly the same reasoning as in (i) above. Indeed, the
same would work for any 2 x 2 matrix.

(#i) This function is also linear, since

) ) . 2(x +u) + (y +v)
9<<y>+<v>)_g(yiv>_ (x:u%jq(}j:v)

2v 4y 2u+4v
= + v =g * +g Y
Y y v

T —y U—0



(iv)

and similarly
. \z 2 x + \y .
gAyzg/\yz Ay ZAgy-
Az — Ay

This function is not linear, since (for instance)

ro+0 =0 = () # () (1) =s0+ 50,

2. Let A be the set of all 2-component column vectors whose entries are differentiable functions
from R to R. Thus, for example, if h and k are the functions defined by h(t) = cost and

k(t) =t*>+1 for all z € R then (h) is an element of A.

(4)
(i)

Solution.

(4)

k

How should addition and scalar multiplication be defined so that A becomes a vector
space over R?

If f and g are real-valued functions on R then their pointwise product is the function f-g
defined by (f - g)(t) = f(t)g(t) for all t € R. Prove that

AT /
(g> h-f+g

(where h is as above and ¢’ is the derivative of g) defines a linear transformation from A
to the space of all real-valued functions on R.

Let a, b€ Aand A € R. Then

a=(2). v=(D)

for some differentiable functions ¢, ¥, x and 6 from R to R. We define a + b and Aa by

_ (ot _ (X
a+b—(¢+§>, )\a—(w>
where addition and scalar multiplication for functions is defined in the usual way. That
is, ¢ + x is the function from R to R defined by (¢ + x)(¢t) = ¢(t) + x(t) for all t € R, and

A¢ is the function from R to R defined by (A¢)(t) = A(¢(t)) for all ¢ € R (and similarly
for ¢ 4+ 6 and \).

Since addition on A is meant to be a function from A x A to A, we should check that if
a, b € A then a + b, as defined above, is also in A. Now a + b will be in A if and only if
both components of a+b are differentiable functions from R to R; that is, our definition of
addition will only be satisfactory if ¢ + x and v + 6 are differentiable functions whenever
o, ¥, x and 0 are differentiable functions. Fortunately, this is a elementary theorem of
calculus. Similarly, to justify our definition of scalar multiplication we must note that
if A € R and ¢, ¢ are differentiable functions then A¢ and \i are also differentiable
functions.

Showing that these definitions of addition and scalar multiplication make A into a vector
space over R would be a matter of checking that the eight axioms in Definition 3.2 are
satisfied. This is more tedious than difficult. The first step is to observe that the set S



(i)
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of all functions from R to R is a vector space over R (by #6, p. 54). Now let a, b, c € A
and A, € R. Then

=(2) v ()

where ¢, ¢ etc. are differentiable functions from R to R. Since S is a vector space we
know that addition of functions is associative (vector space axiom (i)), and therefore

_ [ (@+x)+C\ _ [ ¢+(chi+Q) | _
(a+b)+cf((w+6)+n>f<wﬂgﬂ)>fa+(b+c).

Similarly, since S satisfies vector space axiom (vi) it follows that
_ ([ Mud)\ _ (Ve _
Mea) = (300)) = ((he) = v

Thus A satisfies vector space axioms (i) and (vi). Totally analogous proofs work for all
the other axioms. Note that the zero element of A is (j), where z is the zero function
(defined by z(t) = 0 for all ¢).

Observe that we could alternatively use Exercise 13 on p. 80 of the book. In the notation
of that exercise, A = D?, where D is the set of all differentiable functions from R to R.
Since D is nonempty (containg the zero function) and closed under addition and scalar
multiplication (by elementary calculus, as observed above) it is a subspace of S, and
therefore a vector space itself. The result of Exercise 13 then shows that D? is a vector
space.

Let ®: A — S be the given function; that is, if a = (i) € A then ®(a) = h- ¢+ '

Recall that S is the set of all functions from R to R, so that h - ¢ + ¢’ is certainly an
element of S.

Let a, b € A and A € R. As above, let a = (i) and b = (;) Then

c1>(a+b)=<1>(ifg) =h-(p+x)+W+0)=(h-do+h-x)+ @ +6)

since elementary calculus tells us that the derivative of 1)+ 6 is the sum of the derivatives

of 1 and 6, while the definitions of sum and pointwise product of functions give (for all
t € R)

()(&+x)(t) = h(t)(6(t) + x (1))
O)¢(t) + h(t)x(t) = (h-@)(t) + (h-x)(t) = (h-d+ h- X))

By commutativity and associativity of addition of functions it follows that
Pla+b)=(h-¢+¢ )+ (h-x+0)=(a)+ P(b).
In a similar fashion,
6(a) = (37) = h- (A6) + (W) = AR+ 6) + X' = A®(a).

So ® preserves addition and scalar multiplication; that is, ® is a linear transformation.
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3. Let V be a vector space and let S and T be subspaces of V.

(i) Prove that SN T is a subspace of V.

(ii) Let S+T ={x+y|x € SandyecT} Provethat S+ T is a subspace of V.
Solution.

(i) Let u,v € SNT, \ a scalar. Since u, v € S and S is closed under addition and
scalar multiplication it follows that u + v, Au € S, and similarly v + v, Au € T. So
u—+v, Au € SNT, and therefore SNT is closed under addition and scalar multiplication.
Since 0 € S and 0 € T it follows that 0 € SNT, and so SNT # (.

(ii) Letu,v e S+T, \ascalar. Thenu =24y, v=2a"+y for some z, 2’ € S, y,y €T,
and by closure of S and T,

utv=@+y + @ +y)=(+2)+y+y)eS+T
M=Nzx+y)= x+AyeS+T
so that S + T is closed also. And S+ T # () since0=0+0€e€ S+T.
4. Let V be a vector space over the field F' and let vy, va,...,v, be arbitrary elements of V.

Prove that the span of {vi,va,... ,v,}

Span(vi, va, ... ,0n) = { A1v1 + Aova + -+ Apvn [ A1, A2, A € F )

is a subspace of V.

Solution.

Let z, y € Span(vy,vs,... ,v,) and let « be a scalar. Then

T =M1+ A2 + -+ Apup

Y = p1v1 + pHov2 + -+ lpUnp
for some scalars A; and p;, and so

T4y =M+ p)ve + A2+ p2)ve + -+ (An + fin)on
and
ar = a\v] + alavs + -+ al, v,

are both in Span(vy,vs, ... ,v,). Furthermore, 0 = Y"1 | Ov; € Span(vy,vs,... ,v,), which is

therefore nonempty.

5. Let A and B be n x n matrices over the field F. We say that B is similar to A if there exists

a nonsingular matrix 7' such that B = T~'AT. Prove

(i) every n X nm matrix is similar to itself,

(#) if B is similar to A then A is similar to B,

(éi1) if C is similar to B and B is similar to A then C' is similar to A.

Solution.

For all A we have I"*Al = A, and so A is similar to itself. (In the terminology of §lc, this
says that similarity is a reflexive relation.)

Suppose that B is similar to A. Then there exists a nonsingular 7' with B = T-'AT, and
rearranging this equation slightly gives A = U~'BU, where U = T—!. We deduce that A is
similar to B whenever B is similar to A. (Similarity is a symmetric relation.)

Suppose that C' is similar to B and B is similar to A. Then there exist U and T with
C =U"'BU and B = T ' AT, and it follows that

C=U'BU=U'T'ATU = (TU) ' A(TU),
whence C' is similar to A. (Thus similarity is also transitive, and hence is an equivalence
relation.)



