THE UNIVERSITY OF SYDNEY
MATH2902 Vector Spaces
(http://www.maths.usyd.edu.au/u/UG/IM/MATH2902/)
Lecturer: R. Howlett

Tutorial 4

1. Use Theorem 3.13 to prove that the solution set of the system of equations

$$
\left(\begin{array}{lll}
1 & 1 & 2 \\
3 & 5 & 1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\binom{0}{0}
$$

is a subspace of \mathbb{R}^{3}.

Solution.

Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ be defined by

$$
T\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{lll}
1 & 1 & 2 \\
3 & 5 & 1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)
$$

for all $x, y, z \in \mathbb{R}$. As we have seen in lectures, as well as in Tutorial 3, multiplication by a $m \times n$ matrix over F is always a linear transformation from F^{n} to F^{m}, and so T defined above is linear. By Theorem 3.9 the kernel of T must be a subspace of \mathbb{R}^{3}, and hence must be a vector space. But by definition of the kernel,

$$
\operatorname{ker} T=\left\{v \in \mathbb{R}^{3} \mid T(v)=0\right\}
$$

which is exactly the solution set of the given system of equations.
See also $\S 3 \mathrm{~b} \# 9$ of the book.
2. (i) Let A be an $n \times n$ matrix over a field F and let λ be an arbitrary element of F. The λ-eigenspace of A is defined to be the set of all $v \in F^{n}$ such that $A v=\lambda v$. Prove that the λ-eigenspace is a subspace of F^{n}, and is nonzero if and only if λ is an eigenvalue of A.
(ii) Calculate the 1-eigenspace of $\left(\begin{array}{lll}2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2\end{array}\right)$.

Solution.

(i) We must prove that the λ-eigenspace of A is nonempty and closed under addition and scalar multiplication.
First of all, since $A \underset{\sim}{0}=\underset{\sim}{0}=\lambda \underline{0}$ it follows that $\underset{\sim}{0}$, the zero n-tuple, is in the eigenspace. Hence the eigenspace is nonempty.
Let u and v be arbitrary elements of the eigenspace. Then by the definition we have $A u=\lambda u$ and $A v=\lambda v$, and by elementary properties of matrix multiplication it follows that

$$
A(u+v)=A u+A v=\lambda u+\lambda v=\lambda(u+v)
$$

whence $u+v$ is also in the eigenspace.
Let v be an arbitrary element of the eigenspace and let α be an arbitrary scalar. Then

$$
A(\alpha v)=\alpha(A v)=\alpha(\lambda v)=(\alpha \lambda) v=(\lambda \alpha) v=\lambda(\alpha v)
$$

Hence αv is in the eigenspace.
Note that we could have alternatively used the same method as in Exercise 1: the λ-eigenspace of A is the kernel of the linear transformation $T: F^{n} \rightarrow F^{n}$ defined by $T(v)=(A-\lambda I) v$.
We have proved that the eigenspace is a subspace of F^{n}. It is quite possible that this subspace consists of the zero element alone - the set $\{0\}$ is always a subspace. By definition λ is an eigenvalue of A if and only if there is a nonzero v satisfying $A v=\lambda v$; that is, if and only if the λ-eigenspace contains a nonzero element.
(ii) We must solve the equations

$$
\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

If we let y and z take the arbitrary values α and β then we see that $x=-\alpha-\beta$ solves the system, and we deduce that the general solution is

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
-\alpha-\beta \\
\alpha \\
\beta
\end{array}\right)=\alpha\left(\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right)+\beta\left(\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right)
$$

Thus the 1-eigenspace of the given matrix is the span of the two columns ${ }^{\mathrm{t}}\left(\begin{array}{lll}-1 & 1 & 0\end{array}\right)$ and ${ }^{\mathrm{t}}\left(\begin{array}{lll}-1 & 0 & 1\end{array}\right)$.
3. (i) Is $\left(\begin{array}{c}1 \\ 3 \\ -2\end{array}\right)$ in the column space of $\left(\begin{array}{ccc}1 & -3 & -4 \\ 5 & -14 & -13 \\ 2 & -2 & 20\end{array}\right)$?
(ii) Is $(1,1,1,1)$ in $\operatorname{Span}((5,-7,2,-13),(-3,5,-1,9))$?

Solution.
(i) In view of 3.20.1 (page 74) of the text, the question can be rephrased as follows: do the equations

$$
\left(\begin{array}{ccc}
1 & -3 & -4 \\
5 & -14 & -13 \\
2 & -2 & 20
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
1 \\
3 \\
-2
\end{array}\right)
$$

have a solution? To find out, we apply row operations to the augmented matrix.

$$
\begin{aligned}
&\left(\begin{array}{ccc|c}
1 & -3 & -4 & 1 \\
5 & -14 & -13 & 3 \\
2 & -2 & 20 & -2
\end{array}\right) \xrightarrow{\substack{R_{2}:=R_{2}-5 R_{1} \\
R_{3}:=R_{3}-2 R_{1}}}\left(\begin{array}{ccc|c}
1 & -3 & -4 & 1 \\
0 & 1 & 7 & -2 \\
0 & 4 & 28 & -4
\end{array}\right) \\
& \xrightarrow{R_{3}:=R_{3}-4 R_{2}}\left(\begin{array}{ccc|c}
1 & -3 & -4 & 1 \\
0 & 1 & 7 & -2 \\
0 & 0 & 0 & 4
\end{array}\right)
\end{aligned}
$$

We have derived the equation $0 x+0 y+0 z=4$, which is clearly impossible to solve. Hence $\left(\begin{array}{c}1 \\ 3 \\ -2\end{array}\right)$ is not in the column space of $\left(\begin{array}{ccc}1 & -3 & -4 \\ 5 & -14 & -13 \\ 2 & -2 & 20\end{array}\right)$.
(ii) Again the question is whether there is a solution to a system of equations; in this case the equations are

$$
x(5,-7,2,-13)+y(-3,5,-1,9)=(1,1,1,1)
$$

or, in matrix notation,

$$
\left(\begin{array}{cc}
5 & -3 \\
-7 & 5 \\
2 & -1 \\
-13 & 9
\end{array}\right)\binom{x}{y}=\left(\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right)
$$

Form the augmented matrix and use row operations.

$$
\begin{aligned}
&\left(\begin{array}{cc|c}
5 & -3 \\
-7 & 5 & 1 \\
2 & -1 \\
-13 & 9 & 1 \\
1
\end{array}\right) \xrightarrow{\substack{R_{2}:=R_{2}+(7 / 5) R_{1} \\
R_{3}:=R_{3}-(2 / 5) R_{1} \\
R_{4}:=R_{4}+(13 / 5) R_{1}}}\left(\begin{array}{cc|c}
5 & -3 & 1 \\
0 & 4 / 5 & 12 / 5 \\
0 & 1 / 5 & 3 / 5 \\
0 & 6 / 5 & 18 / 5
\end{array}\right) \\
& \xrightarrow{\substack{R_{3}:=R_{3}-(1 / 4) R_{2} \\
R_{4}:=R_{4}-(3 / 2) R_{2}}}\left(\begin{array}{cc|c}
5 & -3 & 1 \\
0 & 4 / 5 & 12 / 5 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

So this system of equations is consistent. Indeed, $x=2$ and $y=3$ is a solution. Thus $(1,1,1,1)$ is in the space spanned by $(5,-7,2,-13)$ and $(-3,5,-1,9)$.
4. Suppose that $\left(v_{1}, v_{2}, v_{3}\right)$ is a basis for a vector space V, and define elements $w_{1}, w_{2}, w_{3} \in V$ by $w_{1}=v_{1}-2 v_{2}+3 v_{3}, w_{2}=-v_{1}+v_{3}, w_{3}=v_{2}-v_{3}$.
(i) Express v_{1}, v_{2}, v_{3} in terms of w_{1}, w_{2}, w_{3}.
(ii) Prove that w_{1}, w_{2}, w_{3} are linearly independent.
(iii) Prove that w_{1}, w_{2}, w_{3} span V.

Solution.

(i) We have

$$
\left(\begin{array}{ccc}
1 & -2 & 3 \\
-1 & 0 & 1 \\
0 & 1 & -1
\end{array}\right)\left(\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
w_{1} \\
w_{2} \\
w_{3}
\end{array}\right)
$$

and performing the same row operations on both coefficient matrices will preserve the equality.

$$
\begin{aligned}
&\left(\begin{array}{ccc|ccc}
1 & -2 & 3 \\
-1 & 0 & 1 \\
0 & 1 & -1 & 0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \xrightarrow{\xrightarrow{R_{2}:=R_{2}+R_{1}}\left(\begin{array}{ccc|ccc}
1 & -2 & 3 & 1 & 0 & 0 \\
0 & -2 & 4 & 1 & 1 & 0 \\
0 & 1 & -1 & 0 & 0 & 1
\end{array}\right)} \underset{\substack{R_{3} \\
R_{2} \leftrightarrow R_{3}+2 R_{3} \\
R_{1}:=R_{1}+2 R_{2}}}{ }\left(\begin{array}{ccc|ccc}
1 & 0 & 1 & 1 & 0 & 2 \\
0 & 1 & -1 & 0 & 0 & 1 \\
0 & 0 & 2 & 1 & 1 & 2
\end{array}\right) \\
& \begin{array}{c}
R_{3}:=(1 / 2) R_{3} \\
R_{2}:=R_{2}+R_{3} \\
R_{1}:=R_{1}-R_{3}
\end{array} \\
&\left.\begin{array}{ccc|ccc}
1 & 0 & 0 & 1 / 2 & -1 / 2 & 1 \\
0 & 1 & 0 & 1 / 2 & 1 / 2 & 2 \\
0 & 0 & 1 & 1 / 2 & 1 / 2 & 1
\end{array}\right)
\end{aligned}
$$

Thus we have shown that

$$
\begin{aligned}
& v_{1}=(1 / 2) w_{1}-(1 / 2) w_{2}+w_{3} \\
& v_{2}=(1 / 2) w_{1}+(1 / 2) w_{2}+2 w_{3} \\
& v_{3}=(1 / 2) w_{1}+(1 / 2) w_{2}+w_{3}
\end{aligned}
$$

(ii) Assume that $\lambda_{1} w_{1}+\lambda_{2} w_{2}+\lambda_{3} w_{3}=0$. Using the given expressions for the w_{i} in terms of the v_{i} gives

$$
\left(\lambda_{1}-\lambda_{2}\right) v_{1}+\left(-2 \lambda_{1}+\lambda_{3}\right) v_{2}+\left(3 \lambda_{1}+\lambda_{2}-\lambda_{)} v_{3}=0\right.
$$

and since the v_{i} are linearly independent all the coefficients are zero. In matrix notation this gives

$$
\left(\begin{array}{lll}
\lambda_{1} & \lambda_{2} & \lambda_{3}
\end{array}\right) A=\left(\begin{array}{lll}
0 & 0 & 0
\end{array}\right)
$$

where

$$
A=\left(\begin{array}{ccc}
1 & -2 & 3 \\
-1 & 0 & 1 \\
0 & 1 & -1
\end{array}\right)
$$

By our row operations in (i) above we know that

$$
B=\left(\begin{array}{ccc}
1 / 2 & -1 / 2 & 1 \\
1 / 2 & 1 / 2 & 2 \\
1 / 2 & 1 / 2 & 1
\end{array}\right)
$$

is the inverse of A, and we deduce that

$$
\begin{aligned}
\left(\begin{array}{lll}
\lambda_{1} & \lambda_{2} & \lambda_{3}
\end{array}\right) & =\left(\begin{array}{lll}
\lambda_{1} & \lambda_{2} & \lambda_{3}
\end{array}\right) A B \\
& =\left(\begin{array}{lll}
0 & 0 & 0
\end{array}\right) B \\
& =\left(\begin{array}{lll}
0 & 0 & 0
\end{array}\right) .
\end{aligned}
$$

Hence the w_{i} are linearly independent.
(iii) Let $v \in V$. Since the v_{i} span V there exist scalars $\lambda_{1}, \lambda_{2}, \lambda_{3}$ such that $v=\lambda_{1} v_{1}+\lambda_{2} v_{2}+\lambda_{3} v_{3}$, and substituting our expressions for the v_{i} in terms of the w_{i} gives $v=\mu_{1} w_{1}+\mu_{2} w_{2}+\mu_{3} w_{3}$ where

$$
\left(\begin{array}{lll}
\mu_{1} & \mu_{2} & \mu_{3}
\end{array}\right)=\left(\begin{array}{lll}
\lambda_{1} & \lambda_{2} & \lambda_{3}
\end{array}\right) B .
$$

5. Let V and W be vector spaces and let $T: V \rightarrow W$ be a linear transformation.
(i) Prove that if T is injective and $v_{1}, v_{2}, \ldots, v_{n} \in V$ are linearly independent then $T\left(v_{1}\right), T\left(v_{2}\right), \ldots, T\left(v_{n}\right)$ are linearly independent.
(ii) Prove that if T is surjective and $v_{1}, v_{2}, \ldots, v_{n}$ span V then $T\left(v_{1}\right)$, $T\left(v_{2}\right), \ldots, T\left(v_{n}\right)$ span W.

Solution.
(i) Suppose that T is injective and $v_{1}, v_{2}, \ldots, v_{n}$ are linearly independent. Assume that

$$
\begin{equation*}
\lambda_{1} T\left(v_{1}\right)+\lambda_{2} T\left(v_{2}\right)+\cdots+\lambda_{n} T\left(v_{n}\right)=0 . \tag{*}
\end{equation*}
$$

We see that

$$
\begin{aligned}
T\left(\lambda_{1} v_{1}+\lambda_{2} v_{2}+\cdots+\lambda_{n} v_{n}\right) & =\lambda_{1} T\left(v_{1}\right)+\lambda_{2} T\left(v_{2}\right)+\cdots+\lambda_{n} T\left(v_{n}\right) \\
& =0=T(0)
\end{aligned}
$$

and since T is injective it follows that $\lambda_{1} v_{1}+\lambda_{2} v_{2}+\cdots+\lambda_{n} v_{n}=0$. By linear independence of $v_{1}, v_{2}, \ldots, v_{n}$ we get $\lambda_{1}=\lambda_{2}=\cdots=\lambda_{n}=0$. So the only solution of $(*)$ is the trivial solution, and therefore $T\left(v_{1}\right)$, $T\left(v_{2}\right), \ldots, T\left(v_{n}\right)$ are linearly independent.
(ii) Suppose that T is surjective and $v_{1}, v_{2}, \ldots, v_{n}$ span V.

Let $w \in W$. Since T is surjective there exists $v \in V$ with $w=T(v)$. Since $v_{1}, v_{2}, \ldots, v_{n}$ span V we have $v=\lambda_{1} v_{1}+\lambda_{2} v_{2}+\cdots+\lambda_{n} v_{n}$ for some scalars λ_{i}. Now

$$
w=T\left(\lambda_{1} v_{1}+\lambda_{2} v_{2}+\cdots+\lambda_{n} v_{n}\right)=\lambda_{1} T\left(v_{1}\right)+\lambda_{2} T\left(v_{2}\right)+\cdots+\lambda_{n} T\left(v_{n}\right)
$$

and we have shown that every element of W is expressible as a linear combination of $T\left(v_{1}\right), T\left(v_{2}\right), \ldots, T\left(v_{n}\right)$. Thus these elements span W.
6. Determine whether or not the following two subspaces of \mathbb{R}^{3} are the same:

$$
\operatorname{Span}\left(\left(\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right),\left(\begin{array}{l}
2 \\
4 \\
1
\end{array}\right)\right) \quad \text { and } \quad \operatorname{Span}\left(\left(\begin{array}{l}
1 \\
2 \\
4
\end{array}\right),\left(\begin{array}{c}
2 \\
4 \\
-5
\end{array}\right)\right)
$$

Solution.
Let $v_{1}=\left(\begin{array}{c}1 \\ 2 \\ -1\end{array}\right), v_{2}=\left(\begin{array}{l}2 \\ 4 \\ 1\end{array}\right), w_{1}=\left(\begin{array}{l}1 \\ 2 \\ 4\end{array}\right), w_{2}=\left(\begin{array}{c}2 \\ 4 \\ -5\end{array}\right) . \quad$ By solving simultaneous equations we find that

$$
\begin{aligned}
\left(\begin{array}{l}
1 \\
2 \\
4
\end{array}\right) & =(-7 / 3)\left(\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right)+(5 / 3)\left(\begin{array}{l}
2 \\
4 \\
1
\end{array}\right) \\
\left(\begin{array}{c}
2 \\
4 \\
-5
\end{array}\right) & =4\left(\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right)-\left(\begin{array}{l}
2 \\
4 \\
1
\end{array}\right)
\end{aligned}
$$

and since this gives

$$
\lambda_{1} w_{1}+\lambda_{2} w_{2}=\left((-7 / 3) \lambda_{1}+4 \lambda_{2}\right) v_{1}+\left((5 / 3) \lambda_{1}-\lambda_{2}\right) v_{2}
$$

it follows that every linear combination of w_{1} and w_{2} is also a linear combination of v_{1} and v_{2}. That is, if $T=\operatorname{span}\left(w_{1}, w_{2}\right)$ and $S=\operatorname{span}\left(v_{1}, v_{2}\right)$ then $T \subseteq S$. Similarly, if we can express v_{1} and v_{2} as linear combinations of w_{1} and w_{2} it will follow that $S \subseteq T$. Solving equations again gives

$$
\begin{aligned}
& v_{1}=(3 / 13) w_{1}+(5 / 13) w_{2} \\
& v_{2}=(8 / 13) w_{1}+(9 / 13) w_{2} .
\end{aligned}
$$

Hence it is indeed true that $S \subseteq T$, and so $S=T$.

