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1. Use Theorem 3.13 to prove that the solution set of the system of equations

(
1 1 2
3 5 1

)  x
y
z

 =
(

0
0

)

is a subspace of R3.

Solution.

Let T : R3 → R2 be defined by

T

 x
y
z

 =
(

1 1 2
3 5 1

)  x
y
z


for all x, y, z ∈ R. As we have seen in lectures, as well as in Tutorial 3,
multiplication by a m × n matrix over F is always a linear transformation
from Fn to Fm, and so T defined above is linear. By Theorem 3.9 the kernel
of T must be a subspace of R3, and hence must be a vector space. But by
definition of the kernel,

ker T = { v ∈ R3 | T (v) = 0 },

which is exactly the solution set of the given system of equations.
See also §3b#9 of the book.

2. (i) Let A be an n×n matrix over a field F and let λ be an arbitrary element
of F . The λ-eigenspace of A is defined to be the set of all v ∈ Fn such
that Av = λv. Prove that the λ-eigenspace is a subspace of Fn, and is
nonzero if and only if λ is an eigenvalue of A.

(ii) Calculate the 1-eigenspace of

 2 1 1
1 2 1
1 1 2

.
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Solution.

(i) We must prove that the λ-eigenspace of A is nonempty and closed under
addition and scalar multiplication.

First of all, since A0
˜

= 0
˜

= λ0
˜

it follows that 0
˜
, the zero n-tuple, is in

the eigenspace. Hence the eigenspace is nonempty.

Let u and v be arbitrary elements of the eigenspace. Then by the defi-
nition we have Au = λu and Av = λv, and by elementary properties of
matrix multiplication it follows that

A(u + v) = Au + Av = λu + λv = λ(u + v),

whence u + v is also in the eigenspace.

Let v be an arbitrary element of the eigenspace and let α be an arbitrary
scalar. Then

A(αv) = α(Av) = α(λv) = (αλ)v = (λα)v = λ(αv).

Hence αv is in the eigenspace.

Note that we could have alternatively used the same method as in Ex-
ercise 1: the λ-eigenspace of A is the kernel of the linear transformation
T :Fn → Fn defined by T (v) = (A− λI)v.

We have proved that the eigenspace is a subspace of Fn. It is quite
possible that this subspace consists of the zero element alone—the set
{0} is always a subspace. By definition λ is an eigenvalue of A if and
only if there is a nonzero v satisfying Av = λv; that is, if and only if the
λ-eigenspace contains a nonzero element.

(ii) We must solve the equations 1 1 1
1 1 1
1 1 1

  x
y
z

 =

 0
0
0

 .

If we let y and z take the arbitrary values α and β then we see that
x = −α− β solves the system, and we deduce that the general solution
is  x

y
z

 =

−α− β
α
β

 = α

−1
1
0

 + β

−1
0
1

 .

Thus the 1-eigenspace of the given matrix is the span of the two columns
t (−1 1 0 ) and t (−1 0 1 ).
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3. (i) Is

 1
3
−2

 in the column space of

 1 −3 −4
5 −14 −13
2 −2 20

?

(ii) Is (1, 1, 1, 1) in Span
(
(5,−7, 2,−13), (−3, 5,−1, 9)

)
?

Solution.

(i) In view of 3.20.1 (page 74) of the text, the question can be rephrased as
follows: do the equations 1 −3 −4

5 −14 −13
2 −2 20

  x
y
z

 =

 1
3
−2


have a solution? To find out, we apply row operations to the augmented
matrix. 1 −3 −4 1

5 −14 −13 3
2 −2 20 −2

 R2:=R2−5R1
R3:=R3−2R1−−−−−−−→

 1 −3 −4 1
0 1 7 −2
0 4 28 −4


R3:=R3−4R2−−−−−−−→

 1 −3 −4 1
0 1 7 −2
0 0 0 4


We have derived the equation 0x+0y+0z = 4, which is clearly impossible

to solve. Hence
(

1

3

−2

)
is not in the column space of

(
1 −3 −4

5 −14 −13

2 −2 20

)
.

(ii) Again the question is whether there is a solution to a system of equations;
in this case the equations are

x(5,−7, 2,−13) + y(−3, 5,−1, 9) = (1, 1, 1, 1),

or, in matrix notation,
5 −3
−7 5
2 −1

−13 9

 (
x
y

)
=


1
1
1
1

 .

Form the augmented matrix and use row operations.
5 −3 1
−7 5 1
2 −1 1

−13 9 1

 R2:=R2+(7/5)R1
R3:=R3−(2/5)R1
R4:=R4+(13/5)R1−−−−−−−−−−−→


5 −3 1
0 4/5 12/5
0 1/5 3/5
0 6/5 18/5


R3:=R3−(1/4)R2
R4:=R4−(3/2)R2−−−−−−−−−−→


5 −3 1
0 4/5 12/5
0 0 0
0 0 0


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So this system of equations is consistent. Indeed, x = 2 and y = 3 is a
solution. Thus (1, 1, 1, 1) is in the space spanned by (5,−7, 2,−13) and
(−3, 5,−1, 9).

4. Suppose that (v1, v2, v3) is a basis for a vector space V , and define elements
w1, w2, w3 ∈ V by w1 = v1 − 2v2 + 3v3, w2 = −v1 + v3, w3 = v2 − v3.

(i) Express v1, v2, v3 in terms of w1, w2, w3.
(ii) Prove that w1, w2, w3 are linearly independent.
(iii) Prove that w1, w2, w3 span V .

Solution.

(i) We have  1 −2 3
−1 0 1
0 1 −1

  v1

v2

v3

 =

 1 0 0
0 1 0
0 0 1

  w1

w2

w3


and performing the same row operations on both coefficient matrices
will preserve the equality. 1 −2 3 1 0 0

−1 0 1 0 1 0
0 1 −1 0 0 1

 R2:=R2+R1−−−−−−−→

 1 −2 3 1 0 0
0 −2 4 1 1 0
0 1 −1 0 0 1


R2↔R3

R3:=R3+2R2
R1:=R1+2R2−−−−−−−→

 1 0 1 1 0 2
0 1 −1 0 0 1
0 0 2 1 1 2


R3:=(1/2)R3
R2:=R2+R3
R1:=R1−R3−−−−−−−→

 1 0 0 1/2 −1/2 1
0 1 0 1/2 1/2 2
0 0 1 1/2 1/2 1


Thus we have shown that

v1 = (1/2)w1 − (1/2)w2 + w3

v2 = (1/2)w1 + (1/2)w2 + 2w3

v3 = (1/2)w1 + (1/2)w2 + w3.

(ii) Assume that λ1w1 + λ2w2 + λ3w3 = 0. Using the given expressions for
the wi in terms of the vi gives

(λ1 − λ2)v1 + (−2λ1 + λ3)v2 + (3λ1 + λ2 − λ)v3 = 0,

and since the vi are linearly independent all the coefficients are zero. In
matrix notation this gives

( λ1 λ2 λ3 ) A = ( 0 0 0 )
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where

A =

 1 −2 3
−1 0 1
0 1 −1

 .

By our row operations in (i) above we know that

B =

 1/2 −1/2 1
1/2 1/2 2
1/2 1/2 1


is the inverse of A, and we deduce that

(λ1 λ2 λ3 ) = ( λ1 λ2 λ3 ) AB

= ( 0 0 0 )B

= ( 0 0 0 ) .

Hence the wi are linearly independent.
(iii) Let v ∈ V . Since the vi span V there exist scalars λ1, λ2, λ3 such that

v = λ1v1 + λ2v2 + λ3v3, and substituting our expressions for the vi in
terms of the wi gives v = µ1w1 + µ2w2 + µ3w3 where

( µ1 µ2 µ3 ) = ( λ1 λ2 λ3 )B.

5. Let V and W be vector spaces and let T :V → W be a linear transformation.

(i) Prove that if T is injective and v1, v2, . . . , vn ∈ V are linearly indepen-
dent then T (v1), T (v2), . . . , T (vn) are linearly independent.

(ii) Prove that if T is surjective and v1, v2, . . . , vn span V then T (v1),
T (v2), . . . , T (vn) span W .

Solution.

(i) Suppose that T is injective and v1, v2, . . . , vn are linearly independent.
Assume that

(∗) λ1T (v1) + λ2T (v2) + · · ·+ λnT (vn) = 0.

We see that

T (λ1v1 + λ2v2 + · · ·+ λnvn) = λ1T (v1) + λ2T (v2) + · · ·+ λnT (vn)
= 0 = T (0)

and since T is injective it follows that λ1v1 + λ2v2 + · · ·+ λnvn = 0. By
linear independence of v1, v2, . . . , vn we get λ1 = λ2 = · · · = λn = 0.
So the only solution of (∗) is the trivial solution, and therefore T (v1),
T (v2), . . . , T (vn) are linearly independent.

(ii) Suppose that T is surjective and v1, v2, . . . , vn span V .
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Let w ∈ W . Since T is surjective there exists v ∈ V with w = T (v).
Since v1, v2, . . . , vn span V we have v = λ1v1 + λ2v2 + · · · + λnvn for
some scalars λi. Now

w = T (λ1v1 + λ2v2 + · · ·+ λnvn) = λ1T (v1) + λ2T (v2) + · · ·+ λnT (vn)

and we have shown that every element of W is expressible as a linear
combination of T (v1), T (v2), . . . ,T (vn). Thus these elements span W .

6. Determine whether or not the following two subspaces of R3 are the same:

Span

  1
2
−1

 ,

 2
4
1

  and Span

  1
2
4

 ,

 2
4
−5

  .

Solution.

Let v1 =

 1
2
−1

, v2 =

 2
4
1

, w1 =

 1
2
4

, w2 =

 2
4
−5

. By solving

simultaneous equations we find that 1
2
4

 = (−7/3)

 1
2
−1

 + (5/3)

 2
4
1


 2

4
−5

 = 4

 1
2
−1

−

 2
4
1


and since this gives

λ1w1 + λ2w2 = ((−7/3)λ1 + 4λ2)v1 + ((5/3)λ1 − λ2)v2

it follows that every linear combination of w1 and w2 is also a linear combi-
nation of v1 and v2. That is, if T = span(w1, w2) and S = span(v1, v2) then
T ⊆ S. Similarly, if we can express v1 and v2 as linear combinations of w1

and w2 it will follow that S ⊆ T . Solving equations again gives

v1 = (3/13)w1 + (5/13)w2

v2 = (8/13)w1 + (9/13)w2.

Hence it is indeed true that S ⊆ T , and so S = T .


