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Tutorial 4

1. Use Theorem 3.13 to prove that the solution set of the system of equations
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is a subspace of R3.

Solution.
Let T:R3 — R? be defined by
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for all z, y, z € R. As we have seen in lectures, as well as in Tutorial 3,
multiplication by a m x n matrix over F' is always a linear transformation
from F™ to F™, and so T defined above is linear. By Theorem 3.9 the kernel
of T must be a subspace of R?, and hence must be a vector space. But by
definition of the kernel,

kerT = {veR®|T(v)=0},

which is exactly the solution set of the given system of equations.
See also §3b#9 of the book.

2. (i) Let A be annxn matrix over a field F' and let A be an arbitrary element
of F. The XM-eigenspace of A is defined to be the set of all v € F™ such
that Av = Av. Prove that the \-eigenspace is a subspace of F", and is

nonzero if and only if A is an eigenvalue of A.
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() Calculate the 1-eigenspace of [ 1 2 1
1 1 2

Solution.

(4)

We must prove that the A-eigenspace of A is nonempty and closed under
addition and scalar multiplication.

First of all, since AQ = 0 = A0 it follows that 0, the zero n-tuple, is in
the eigenspace. Hence the eigenspace is nonempty.

Let v and v be arbitrary elements of the eigenspace. Then by the defi-
nition we have Au = Au and Av = Av, and by elementary properties of
matrix multiplication it follows that

Alu+v) = Au+ Av = M+ dv = A(u +v),

whence u + v is also in the eigenspace.

Let v be an arbitrary element of the eigenspace and let a be an arbitrary
scalar. Then

A(av) = a(Av) = a(Mv) = (aN)v = (Aa)v = Maw).

Hence awv is in the eigenspace.

Note that we could have alternatively used the same method as in Ex-
ercise 1: the A-eigenspace of A is the kernel of the linear transformation
T: F™ — F™ defined by T'(v) = (A — Al)v.

We have proved that the eigenspace is a subspace of F™. It is quite
possible that this subspace consists of the zero element alone—the set
{0} is always a subspace. By definition \ is an eigenvalue of A if and
only if there is a nonzero v satisfying Av = Av; that is, if and only if the
A-eigenspace contains a nonzero element.

We must solve the equations

11 1\ (= 0
11 1)|yl=10
11 1) \z 0

If we let y and z take the arbitrary values a and ( then we see that

x = —a — [ solves the system, and we deduce that the general solution
is

T —a—f -1 -1

y | = e =afl 1 |+8| 0

z I6] 0 1

Thus the 1-eigenspace of the given matrix is the span of the two columns
(=1 1 0)and®(—-1 0 1).



3. (i)

(id)
Solution.

(4)

3
1 1 -3 -4
Is 3 in the column space of | 5 —14 —13 |7
-2 2 =2 20

Is (1,1,1,1) in Span((5, —7,2,—13),(—3,5,—1,9))?

In view of 3.20.1 (page 74) of the text, the question can be rephrased as
follows: do the equations

1 -3 -4 x 1
5 —14 -13|(y|=] 3
2 -2 20 2 -2

have a solution? To find out, we apply row operations to the augmented
matrix.

I I N I S W A e A S
5 —-14 -13 3 | Resi=R;—2r; | 0O 1 7 -2
2 =2 20 —2 0 4 28 —4
1 -3 —4 1

Ry=Rs—4Ry [0 1 7 )

0 0 0 4

We have derived the equation 0z+0y+0z = 4, which is clearly impossible
1

1 -3 —4
to solve. Hence ( 3 > is not in the column space of (5 14 13).
—2 2 =2 20

Again the question is whether there is a solution to a system of equations;

in this case the equations are
$(57 _75 27 _13) + y(_37 57 _15 9) = (17 1a 17 1)7

or, in matrix notation,

5 =3 1
-7 5 z\ |1
2 -1 \y/) 7|1
-13 9 1
Form the augmented matrix and use row operations.
o3 ! Ry:=Ra+(7/5)R b3 !
75 RS e |0 4/5 | 12/
2 -1 1 | Ra:=R4+(13/5)R1 | O 1/5 3/5
-13 9 1 0 6/5 18/5
5 =3 1
Ry:=R3—(1/4)R> | 0 4/5 12/5
Ri=Ra—(3/2Ra | o 0
0 0 0
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So this system of equations is consistent. Indeed, z =2 and y = 3 is a
solution. Thus (1,1,1,1) is in the space spanned by (5, —7,2,—13) and
(-3,5,—1,9).

4. Suppose that (vy,ve,v3) is a basis for a vector space V, and define elements
wy, we, wg € V by w; = vy — 2vy + 3v3, wy = —v1 + v, w3 = vy — V3.

(4)

(i)

(iis)
Solution.

(4)

Express v1, vg, vs in terms of wy, wy, ws.
Prove that wy, ws, ws are linearly independent.

Prove that wy, wy, ws span V.

We have
1 -2 3 (% 1 0 0 w1
-1 0 1 vg | =10 1 0 Wa
0 1 -1 V3 0 0 1 w3

and performing the same row operations on both coefficient matrices
will preserve the equality.

1 -2 3 100 1 -2 3 100
-1 0 1 0 1 0| Be=Ret+Ry | 0 —2 4 1 1 0
0 1 -1 0 0 1 0o 1 -1 0 0 1
Ra— Ry 1 0 1 1 0 2
Ra—lat2fa | 0 1 -1 | 0 0 1
>\0 0 2 1 1 2
Ry=(1/2)R; (1 0 0 1/2 —-1/2 1
Fa=hatfs |01 0 | 1/2 1/2 2
—\o0o 0 1 | 1/2 1/2 1

Thus we have shown that

v1 = (1/2)wy — (1/2)w2 + w3
Vg = (1/2)’(1}1 + (1/2)1,02 =+ 211}3
V3 = (1/2)’([)1 + (1/2)71}2 + ws.

Assume that \yw; + Asws + Azws = 0. Using the given expressions for
the w; in terms of the v; gives

()\1 — )\2)1)1 + (—2)\1 + )\3)’1)2 + (3)\1 + Ao — )\)’Ug =0,
and since the v; are linearly independent all the coefficients are zero. In
matrix notation this gives

(M X2 X3)A=(0 0 0)



(iid)

where 1 _92 3
A=1[-1 0 1
0o 1 -1
By our row operations in (i) above we know that
1/2 -1/2 1
B=|1/2 1/2 2
/2 1/2 1

is the inverse of A, and we deduce that
(M X2 A3)=(MA1 X2 X3)AB
=(0 0 0)B
=(0 0 0).
Hence the w; are linearly independent.

Let v € V. Since the v; span V there exist scalars A\i, Ag, A3 such that
v = A1v1 + A2v2 4+ Agvs, and substituting our expressions for the v; in
terms of the w; gives v = pywy + pows + puzws where

(1 p2 p3)=(A A2 A3)B.

5. Let V and W be vector spaces and let T: V' — W be a linear transformation.

(4)
(i)

Solution.

(4)

(i)

Prove that if T is injective and vy, vo, ...
dent then T'(v1), T'(va), ..

Prove that if T is surjective and vy, vs, ..
T(va), ..., T(vy) span W.

, Uy, € V are linearly indepen-
., T(vy,) are linearly independent.

., vy span V then T'(vy),

Suppose that T is injective and vy, va, ... , v, are linearly independent.

Assume that
(%) MT(vy) + AT (ve) + - - + AT (vy,) = 0.
We see that

T()\lvl + )\2’02 —+ 4 )\nvn) = )\1T(U1) + AQT(’UQ) + 4 )\nT(’Un)
=0="1(0)

and since T is injective it follows that Ajvy + Aovg + - - -+ A,v, = 0. By

linear independence of v, va, ... , v, weget Ay = Xo=--- =)\, =0.
So the only solution of (k) is the trivial solution, and therefore T'(vy),
T(va), ... , T(vy) are linearly independent.

Suppose that T is surjective and vq, va, ... ,v, span V.
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Let w € W. Since T is surjective there exists v € V with w = T'(v).
Since vy, vg, ... ,v, span V we have v = A\jv; + Agvg + -+ + \yv, for
some scalars \;. Now

w=T(Av1 + Aovg + -+ + Apvyn) = AT (v1) + AT (ve) + -+ -+ AT (vy)

and we have shown that every element of W is expressible as a linear
combination of T'(v1), T'(vs), ... ,T(v,). Thus these elements span W.

6. Determine whether or not the following two subspaces of R? are the same:

1 2 1 2
Span 2 1,14 and Span 21, 4
-1 1 4 -5
Solution.
1 2 1 2
Let v; = 2 |, =14, w = |2], w = 4 By solving
-1 1 4 -5

simultaneous equations we find that

1 1 2
ol =(-7/3)( 2 | +(5/3) | 4
4 -1 1
2 1 2

4 =41 2 —| 4

) -1 1

and since this gives
Awi + dowa = ((=7/3)A1 + 4X2)v1 + ((5/3) A1 — A2)ve

it follows that every linear combination of w; and ws is also a linear combi-
nation of v; and vy. That is, if T' = span(wi,ws) and S = span(vi,ve) then
T C S. Similarly, if we can express v; and vy as linear combinations of w;
and ws it will follow that S C T'. Solving equations again gives

Hence it is indeed true that S C T, and so S =T.



