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1.

Tutorial 5

In each case decide whether or not the set S is a vector space over the field
F', relative to obvious operations of addition and scalar multiplication. If it
is, decide whether it has finite dimension, and if so, find the dimension.

(i) S =C (complex numbers), F = R.
(1) S=C,F=C.

(ii) S =R, F =Q (rational numbers).
(

iv) S = R[X] (polynomials over R in the variable X—that is, expressions
of the form ag + a1 X + -+ + a, X" (a; € R)), F =R.

(v) S =Mat(n,C) (n x n matrices over C), F = R.

Solution.

(i)  Yes, C is a vector space over R. Since every complex number is uniquely
expressible in the form a + bt with a, b € R we see that (1,1%) is a basis
for C over R. Thus the dimension is two.

(it) Every field is always a 1-dimensional vector space over itself. The one
element sequence (1), where 1 is the multiplicative identity, is a basis.
More generally, if a # 0 then (a) is a basis. (There was a minor omission
from the field axioms stated in lectures. The multiplicative identity
axiom should have included the requirement that 1 # 0. This eliminates
the set with just one element, which is not counted as a field.)

(ii1) Ris a vector space over Q. In fact this space is not finite dimensional.
(This can be proved by showing that Q is “countable”—that is, there is
a bijective function Z — Q—whereas R is not. But such things are not
really part of this course.)

(iv) R[X] is a vector space over R. Since (1, X, X?,...) is an infinite linearly
independent sequence in R[X] it follows that the dimension is infinite.

(v) Since

a1 +b11t a2 +biet ... aiy +bipt

a1 +ba1%  age +baot ... ag, + bopt
S = . . . Qg bij eR

an1 -+ bnl’l/ an2 + an’L e Ann + bnn’L
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it can be seen that S is 2 2n2-dimensional vector space over R. Indeed
the function f:S — R2"" such that

an
b11

ai2
b12
ayl + b117: a1 + b127: ce ain + blnl
a1 + b2t asa+bat ... az, + bant

: : : bin
anl + bnlz An2 + bn27' CIE Ann + bnnz a1

bnn
is a vector space isomorphism.

2. Let Zy be the field which has just the two elements 0 and 1. (See §1d#10
of the book.) How many elements will there be in a four dimensional vector
space over Zs?

Solution.

Let V be a four dimensional vector space over Za, and let (v1,ve,vs,v4) be
a basis of V. Then every element of V is uniquely expressible in the form
A1v1 + Agva 4+ Azvsg + Agug with each ); in Zg, and since there two choices (0
or 1) for each of the four \; we have 2* = 16 choices altogether. Thus V has
16 elements.

3. (i) Let V be a vector space over a field F' and let S be any set. Convince
yourself that that the set of all functions from S to V becomes a vector
space over F' if addition and scalar multiplication of functions are defined
in the usual way.

(Hint: To do this in detail requires checking that all the vector space
axioms are satisfied. However, the proof in §3b#6 of the book is
almost word for word the same as the proof required here.)

(i) Use part (i) to show that if V and W are both vector spaces then the
set of all linear transformations from V' to W is a vector space (with the
usual definitions of addition and scalar multiplication of functions).

Solution.

(i) Let F be the set of all functions from S to V. If f, g € Fand A € F
then f+ g and A\f are the functions defined by (f + g)(s) = f(s) + g(s)
and (Af)(s) = A(f(s)) for all s € S. We must check that, with addition



(i)
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and scalar multiplication defined in this way, F satisfies the vector space
axioms (listed in Definition 2.3). In each case, the proof that F satisfies
a given axiom makes use of the fact that V satisfies that axiom.

Let f, g and h be arbitrary elements of F and A, p arbitrary scalars.
Since addition in V is associative ((z +y) + 2z =z + (y + z) for all z, y,
z € V) we find that for all s € S

(f +9)+h)(s) = (f + 9)(s) + h(s) = (f(s) + g(s)) + h(s)
= f(s) + (9(s) + h(s)) = f(s) + (9 + h)(s) = (f + (9 + h))(s),

and so (f+¢g)+h = f+(g+h). Similarly since (A + p)x = Az + px for
all x € V, we have, for all s € 5,

(A ))(s) = A+ m)(f(s) = A(f(s)) + n(f(s))
= (Af)(s) + (uf)(s) = (Af 4+ nf)(s)
and so (A + p)f = Af + pf. Similar proofs show that f+¢g = g+ f,
Mf+g9) =M+ Ag, A\w)f =Muf) and 1f = f. This takes care of six
of the eight axioms; it remains to show that F has a zero element, and
that all elements of F have negatives. Define z: S — V by z(s) = 0 for

all s € S, where 0 is the zero of V. Then z is a zero for F, since for all
feFandallse S

(z+ f)(s) = 2(s) + f(5) = 0+ f(s) = f(5)-

Finally, if f € F then —f defined by (—f)(s) = —(f(s)) satisfies
[+ (—=f) =z since

(f+(EN)s) = f(s) + (=F)(s) = fs) + (= (5)) = 0= 2(s).

Let £ be the set of all linear functions from V' to W and F the set of all
functions from V to W. Clearly £ C F, and F is a vector space by the
first part. We must show that £ is nonempty and closed under addition
and scalar multiplication.

The zero function z is clearly linear: for all u, v € V and A\, p € F we
have
z(Au+ pw) =0 = A0+ 0 = Az(u) + pz(v).
Thus £ contains at least the element z, and is therefore nonempty.
Let f,ge Land a € F. For all u, v € V and A\, u € F we have

(f +9) O+ pv) = f(Au+ po) + g(hu + po)
= (Mf(u) + puf(v) + (Ag(u) + pg(v))
= AMf(u) + g(u)) + p(f(v) + g(v))
=AMf+9)(w) + p(f +g)(v),
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the first line and last equalities by the definition of addition of functions,
the second by the fact that f and ¢ are linear, and the third by use of
associative, commutative and distributive laws in the vector space W.
Thus we see that f + g is linear, and we have shown that the sum of two
elements of L is necessarily in £. Similarly,

(@f)(Au + po) = af(du + po)

a(Af(u) + pf(v))
Aaf(w)) + plef (v))
Al(a@f) () + p((af)(v))

showing that af is linear, and hence showing that £ is closed under
scalar multiplication.

Let U and V' be vector spaces over a field F'. A function f:V — W is called
a vector space isomorphism if f is a bijective linear transformation. Prove
that if f:U — V is a vector space isomorphism then the inverse function
f71:V — U (defined by the rule that f~1(v) = u if and only if f(u) = v) is
also a vector space isomorphism.

Solution.

It is a general fact about functions that if f:U — V is bijective then there
exists an inverse function f~1':V — U which is also bijective. Let us prove
this first.
We must show that

f~Y(v) = w if and only if f(u) = v
is a well defined rule assigning a uniquely determined element of U to each
element of V. So, let v € V (arbitrary). Since f is surjective there exists
w € U with f(u) = v. Since f is injective there is no other element of U
with this property: if f(u') = v = f(u) then v/ = w. So the stated rule
does indeed assign a unique element of U to each element of V. Suppose that
fY(v1) = f~1(vg) for some vy vy € V. Let u = f~1(vy) = f~1(v2). Then
by definition of f=!, f(u) = v; and f(u) = va. So vy = ve. Hence f~! is
injective. Let u be an arbitrary element of U. Let v = f(u) € V. Then
f~1(v) = u. Hence f~1 is surjective.
To show that f~! is an isomorphism it remains to show that it is linear. So,
let vy, vo € V, X € F. Let uy = f~'(v1), us = f~(v2). Then since f is
linear,

flur +ug) = f(ur) + fuz) = v1 + vo
and

f()\ul) = )\f(ul) = )\’Ul



and therefore

and

FH o +ve) = ug +ug = 1) + 7 (v2)

f_l()wl) = )\’U,l = )\f_l(vl).

Hence f~! is linear, as required.

Solution.

(4)

Prove that if vy, vo, ... , v, are linearly independent elements of a vector
space V and v,41 € V is not contained in Span(vi,vs,...,v,) then
V1, V2, ... ,Unt+1 are linearly independent.

Ifvy, vg, ... , v, are linearly independent elements of V' and V' is spanned
by elements wy, wa, ... ,w,, then n < m. (This is Theorem 4.14 of the
book, the proof of which was relatively hard.) Use this result and the
first part to prove that if vy, va, ... ,v, are linearly independent then
there exist vy41, Unt2, ... , Vg € V such that vy, ve, ... ,v4 form a basis
of V.

Since “if p and ¢ then r” is logically equivalent to “if p and not r then

not ¢” the question can be rephrased as follows: if vy, vo, ... ,v, are
linearly independent and w1, ... , vy, vn41 are not linearly independent
then v,41 is in Span(vy,vs,...,v,). This is proved in the book, and
was proved in lectures (Lemma 4.4).

There is no harm in proving it again. Assume that vi,vs, ..., v, are
linearly independent and v,4+1 ¢ Span(vi,...,v,). Suppose now that
A1, A2, ..., Apy1 are scalars such that

(*) )\1’[)1 + )\2’02 + -+ )\n+1vn+1 = 0

If A\py1 # 0 then (x) gives vy = —)\;}rl » L Aiv; € Span(vy, ..., vp),

a contradiction. So A,41 = 0, and (*) becomes
)\1’[)1 + )\21)2 + -+ )\nvn =0.

Linear independence of vy, va,... ,v, gives A; = 0 for i = 1,2,... ,n.
So the only solution to (x) is given by

AM=X==X 31 =0.
Hence vy, vg, ... ,v,41 are linearly independent.
If vy, va,... ,u, span V then they form a basis of V', and the claim is

vacuously true (with d = n). Otherwise there must be at least one el-
ement of V' not in Span(vy,va,...,v,). Let v,41 be any such element.

6

By the first part we know that vy, va, ... ,v,11 are linearly independent.
If they also span V then they form a basis, and we are finished (tak-
ing d = n+1). If they do not span then we can repeat the argument,
choosing v, 12 to be outside the subspace they span, thereby obtaining
a longer linearly independent sequence of elements. Either this lot will
be a basis, or we can choose another independent element and increase
the length again. But the number of terms in a linearly independent se-
quence can not exceed m, the number of terms in the spanning sequence.
So in at most m steps a situation will be reached in which the length
of our linearly independent sequence of elements cannot be increased
further, and this can only happen when they span the whole space V.



