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1. In each case decide whether or not the set S is a vector space over the field
F , relative to obvious operations of addition and scalar multiplication. If it
is, decide whether it has finite dimension, and if so, find the dimension.

(i) S = C (complex numbers), F = R.
(ii) S = C, F = C.
(iii) S = R, F = Q (rational numbers).
(iv) S = R[X] (polynomials over R in the variable X—that is, expressions

of the form a0 + a1X + · · ·+ anXn (ai ∈ R)), F = R.
(v) S = Mat(n, C) (n× n matrices over C), F = R.

Solution.

(i) Yes, C is a vector space over R. Since every complex number is uniquely
expressible in the form a + bi with a, b ∈ R we see that (1, i) is a basis
for C over R. Thus the dimension is two.

(ii) Every field is always a 1-dimensional vector space over itself. The one
element sequence (1), where 1 is the multiplicative identity, is a basis.
More generally, if a 6= 0 then (a) is a basis. (There was a minor omission
from the field axioms stated in lectures. The multiplicative identity
axiom should have included the requirement that 1 6= 0. This eliminates
the set with just one element, which is not counted as a field.)

(iii) Ris a vector space over Q. In fact this space is not finite dimensional.
(This can be proved by showing that Q is “countable”—that is, there is
a bijective function Z → Q—whereas R is not. But such things are not
really part of this course.)

(iv) R[X] is a vector space over R. Since (1, X,X2, . . . ) is an infinite linearly
independent sequence in R[X] it follows that the dimension is infinite.

(v) Since

S =




a11 + b11i a12 + b12i . . . a1n + b1ni
a21 + b21i a22 + b22i . . . a2n + b2ni

...
...

...
an1 + bn1i an2 + bn2i . . . ann + bnni


∣∣∣∣∣aij , bij ∈ R
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it can be seen that S is a 2n2-dimensional vector space over R. Indeed
the function f :S → R2n2

such that

f


a11 + b11i a12 + b12i . . . a1n + b1ni
a21 + b21i a22 + b22i . . . a2n + b2ni

...
...

...
an1 + bn1i an2 + bn2i . . . ann + bnni

 =



a11

b11

a12

b12
...

a1n

b1n

a21
...
...

bnn


is a vector space isomorphism.

2. Let Z2 be the field which has just the two elements 0 and 1. (See §1d#10
of the book.) How many elements will there be in a four dimensional vector
space over Z2?

Solution.

Let V be a four dimensional vector space over Z2, and let (v1, v2, v3, v4) be
a basis of V . Then every element of V is uniquely expressible in the form
λ1v1 + λ2v2 + λ3v3 + λ4v4 with each λi in Z2, and since there two choices (0
or 1) for each of the four λi we have 24 = 16 choices altogether. Thus V has
16 elements.

3. (i) Let V be a vector space over a field F and let S be any set. Convince
yourself that that the set of all functions from S to V becomes a vector
space over F if addition and scalar multiplication of functions are defined
in the usual way.

(Hint: To do this in detail requires checking that all the vector space
axioms are satisfied. However, the proof in §3b#6 of the book is
almost word for word the same as the proof required here.)

(ii) Use part (i) to show that if V and W are both vector spaces then the
set of all linear transformations from V to W is a vector space (with the
usual definitions of addition and scalar multiplication of functions).

Solution.

(i) Let F be the set of all functions from S to V . If f, g ∈ F and λ ∈ F
then f + g and λf are the functions defined by (f + g)(s) = f(s) + g(s)
and (λf)(s) = λ(f(s)) for all s ∈ S. We must check that, with addition



3

and scalar multiplication defined in this way, F satisfies the vector space
axioms (listed in Definition 2.3). In each case, the proof that F satisfies
a given axiom makes use of the fact that V satisfies that axiom.
Let f , g and h be arbitrary elements of F and λ, µ arbitrary scalars.
Since addition in V is associative ((x + y) + z = x + (y + z) for all x, y,
z ∈ V ) we find that for all s ∈ S

((f + g) + h)(s) = (f + g)(s) + h(s) = (f(s) + g(s)) + h(s)
= f(s) + (g(s) + h(s)) = f(s) + (g + h)(s) = (f + (g + h))(s),

and so (f + g) + h = f + (g + h). Similarly since (λ + µ)x = λx + µx for
all x ∈ V , we have, for all s ∈ S,

((λ + µ)f)(s) = (λ + µ)(f(s)) = λ(f(s)) + µ(f(s))
= (λf)(s) + (µf)(s) = (λf + µf)(s)

and so (λ + µ)f = λf + µf . Similar proofs show that f + g = g + f ,
λ(f + g) = λf + λg, (λµ)f = λ(µf) and 1f = f . This takes care of six
of the eight axioms; it remains to show that F has a zero element, and
that all elements of F have negatives. Define z:S → V by z(s) = 0

˜
for

all s ∈ S, where 0
˜

is the zero of V . Then z is a zero for F , since for all
f ∈ F and all s ∈ S

(z + f)(s) = z(s) + f(s) = 0
˜

+ f(s) = f(s).

Finally, if f ∈ F then −f defined by (−f)(s) = −(f(s)) satisfies
f + (−f) = z, since

(f + (−f))(s) = f(s) + (−f)(s) = f(s) + (−f(s)) = 0 = z(s).

(ii) Let L be the set of all linear functions from V to W and F the set of all
functions from V to W . Clearly L ⊆ F , and F is a vector space by the
first part. We must show that L is nonempty and closed under addition
and scalar multiplication.
The zero function z is clearly linear: for all u, v ∈ V and λ, µ ∈ F we
have

z(λu + µv) = 0 = λ0 + µ0 = λz(u) + µz(v).

Thus L contains at least the element z, and is therefore nonempty.
Let f, g ∈ L and α ∈ F . For all u, v ∈ V and λ, µ ∈ F we have

(f + g)(λu + µv) = f(λu + µv) + g(λu + µv)
= (λf(u) + µf(v)) + (λg(u) + µg(v))
= λ(f(u) + g(u)) + µ(f(v) + g(v))
= λ(f + g)(u) + µ(f + g)(v),
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the first line and last equalities by the definition of addition of functions,
the second by the fact that f and g are linear, and the third by use of
associative, commutative and distributive laws in the vector space W .
Thus we see that f +g is linear, and we have shown that the sum of two
elements of L is necessarily in L. Similarly,

(αf)(λu + µv) = α(f(λu + µv)
= α(λf(u) + µf(v))
= λ(αf(u)) + µ(αf(v))
= λ((αf)(v)) + µ((αf)(v))

showing that αf is linear, and hence showing that L is closed under
scalar multiplication.

4. Let U and V be vector spaces over a field F . A function f :V → W is called
a vector space isomorphism if f is a bijective linear transformation. Prove
that if f :U → V is a vector space isomorphism then the inverse function
f−1:V → U (defined by the rule that f−1(v) = u if and only if f(u) = v) is
also a vector space isomorphism.

Solution.

It is a general fact about functions that if f :U → V is bijective then there
exists an inverse function f−1:V → U which is also bijective. Let us prove
this first.
We must show that

f−1(v) = u if and only if f(u) = v

is a well defined rule assigning a uniquely determined element of U to each
element of V . So, let v ∈ V (arbitrary). Since f is surjective there exists
u ∈ U with f(u) = v. Since f is injective there is no other element of U
with this property: if f(u′) = v = f(u) then u′ = u. So the stated rule
does indeed assign a unique element of U to each element of V . Suppose that
f−1(v1) = f−1(v2) for some v1 v2 ∈ V . Let u = f−1(v1) = f−1(v2). Then
by definition of f−1, f(u) = v1 and f(u) = v2. So v1 = v2. Hence f−1 is
injective. Let u be an arbitrary element of U . Let v = f(u) ∈ V . Then
f−1(v) = u. Hence f−1 is surjective.
To show that f−1 is an isomorphism it remains to show that it is linear. So,
let v1, v2 ∈ V , λ ∈ F . Let u1 = f−1(v1), u2 = f−1(v2). Then since f is
linear,

f(u1 + u2) = f(u1) + f(u2) = v1 + v2

and
f(λu1) = λf(u1) = λv1
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and therefore

f−1(v1 + v2) = u1 + u2 = f−1(v1) + f−1(v2)
and

f−1(λv1) = λu1 = λf−1(v1).

Hence f−1 is linear, as required.

5. (i) Prove that if v1, v2, . . . , vn are linearly independent elements of a vector
space V and vn+1 ∈ V is not contained in Span(v1, v2, . . . , vn) then
v1, v2, . . . , vn+1 are linearly independent.

(ii) If v1, v2, . . . , vn are linearly independent elements of V and V is spanned
by elements w1, w2, . . . , wm then n ≤ m. (This is Theorem 4.14 of the
book, the proof of which was relatively hard.) Use this result and the
first part to prove that if v1, v2, . . . , vn are linearly independent then
there exist vn+1, vn+2, . . . , vd ∈ V such that v1, v2, . . . , vd form a basis
of V .

Solution.

(i) Since “if p and q then r” is logically equivalent to “if p and not r then
not q” the question can be rephrased as follows: if v1, v2, . . . , vn are
linearly independent and v1, . . . , vn, vn+1 are not linearly independent
then vn+1 is in Span(v1, v2, . . . , vn). This is proved in the book, and
was proved in lectures (Lemma 4.4).
There is no harm in proving it again. Assume that v1, v2, . . . , vn are
linearly independent and vn+1 /∈ Span(v1, . . . , vn). Suppose now that
λ1, λ2, . . . , λn+1 are scalars such that

(∗) λ1v1 + λ2v2 + · · ·+ λn+1vn+1 = 0

If λn+1 6= 0 then (∗) gives vn+1 = −λ−1
n+1

∑n
i=1 λivi ∈ Span(v1, . . . , vn),

a contradiction. So λn+1 = 0, and (∗) becomes

λ1v1 + λ2v2 + · · ·+ λnvn = 0.

Linear independence of v1, v2, . . . , vn gives λi = 0 for i = 1, 2, . . . , n.
So the only solution to (∗) is given by

λ1 = λ2 = · · · = λn+1 = 0.

Hence v1, v2, . . . , vn+1 are linearly independent.
(ii) If v1, v2, . . . , vn span V then they form a basis of V , and the claim is

vacuously true (with d = n). Otherwise there must be at least one el-
ement of V not in Span(v1, v2, . . . , vn). Let vn+1 be any such element.
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By the first part we know that v1, v2, . . . , vn+1 are linearly independent.
If they also span V then they form a basis, and we are finished (tak-
ing d = n + 1). If they do not span then we can repeat the argument,
choosing vn+2 to be outside the subspace they span, thereby obtaining
a longer linearly independent sequence of elements. Either this lot will
be a basis, or we can choose another independent element and increase
the length again. But the number of terms in a linearly independent se-
quence can not exceed m, the number of terms in the spanning sequence.
So in at most m steps a situation will be reached in which the length
of our linearly independent sequence of elements cannot be increased
further, and this can only happen when they span the whole space V .


