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1. Let V be a real inner product space and v, w ∈ V .

(i) Use calculus to prove that the minimum value of 〈v−λw, v−λw〉 occurs
at λ = 〈v, w〉

/
〈w,w〉.

(ii) Put λ = 〈v, w〉
/
〈w,w〉 and use 〈v−λw, v−λw〉 ≥ 0 to prove the Cauchy-

Schwarz inequality (see p.105 of the book).

Solution.

Let f(λ) = 〈v − λw, v − λw〉 = aλ2 + bλ + c where the coefficients a, b and c
are

a = 〈w,w〉, b = −2〈v, w〉, c = 〈v, v〉.

Since a is positive f(λ) has a minimum at the turning point λ = −b/2a.
This proves the first part. Positive definiteness of the inner product gives
〈v − λw, v − λw〉 ≥ 0, and we have that aλ2 + bλ + c ≥ 0, and substituting
λ = −b/2a this gives b2 − 4ac ≤ 0. Thus

(〈v, w〉)2 ≤ 〈v, v〉〈w,w〉

as required.

2. (i) Prove that the following four vectors form an orthonormal subset of R4:

1
2


1
1
1
1

 ,
1
2


1
1
−1
−1

 ,
1
2


1
−1
1
−1

 ,
1
2


1
−1
−1
1

 .

(ii) Express


5
−2
4
−1

 as a linear combination of the vectors in part (i).

Solution.

(i) Let the above four vectors be v1, v2, v3 and v4 respectively. By the
definition of the dot product

v1 · v2 = ( 1
2 )( 1

2 ) + ( 1
2 )( 1

2 ) + ( 1
2 )(− 1

2 ) + ( 1
2 )(− 1

2 ) = 1
4 + 1

4 −
1
4 −

1
4 = 0,

2

and similar calculations apply for the other five dot products vi ·vj with
i 6= j. (In each case two of the terms are 1

4 and the other two are
− 1

4 .) The four dot products vi · vi are similarly seen to be all equal to
1
4 + 1

4 + 1
4 + 1

4 = 1. So vi · vj = δij , as required.
(ii) If v = λ1v1+λ2v2+λ3v3+λ4v4 then taking the dot product of both sides

of this equation with vi gives λi = v ·vi (since the vi form an orthonormal
set). For the given value of v the dot products are as follows:

v · v1 = 5(1
2 ) + (−2)( 1

2 ) + 4( 1
2 ) + (−1)( 1

2 )
v · v2 = 5(1

2 ) + (−2)( 1
2 ) + 4(− 1

2 ) + (−1)(− 1
2 )

v · v3 = 5(1
2 ) + (−2)(− 1

2 ) + 4( 1
2 ) + (−1)(− 1

2 )
v · v4 = 5(1

2 ) + (−2)(− 1
2 ) + 4(− 1

2 ) + (−1)( 1
2 ),

so that the coefficients are λ1 = 3, λ2 = 0, λ3 = 6 and λ4 = 1.

3. Let A be a real n× n matrix which is symmetric (tA = A). We say that A is
positive definite if (tv)Av > 0 for all nonzero v ∈ Rn.

(i) Prove that 〈u, v〉 = (tu)Av defines an inner product on Rn if and only if
A is symmetric and positive definite.

(ii) Prove that a diagonal matrix D ∈ Mat(n× n, R) is positive definite if
and only if all the diagonal entries of D are positive.

(iii) Prove that if A = tTDT where T is invertible and D is positive definite
then A is positive definite.

Solution.

(i) Assume first that A is symmetric and positive definite. If u, v, w ∈ Rn

and λ, µ ∈ R then the above definition of 〈 , 〉 gives

〈u, λv+µw〉= (tu)A(λv+µw) = λ( (tu)Av)+µ( (tu)Aw) = λ〈u, v〉+µ〈u, w〉

by virtue of basic properties of matrix multiplication (see (ii) and (iv)
on page 17 of the book). Since (tu)Av is a 1 × 1 matrix—that is, a
scalar—it is equal to its own transpose. Hence

〈u, v〉 = (tu)Av = t
(
(tu)Av

)
= (tv)(tA)u = (tv)Au = 〈v, u〉

since transposing reverses products and A is its own transpose. Hence
the first two axioms of a real inner product space are satisfied: 〈 , 〉
as we have defined it is symmetric and bilinear. (Linearity in the first
variable is a consequence of linearity in the second, in view of the sym-
metry.) The other axiom says that 〈v, v〉 > 0 whenever v 6= 0, and since
〈v, v〉 = (tv)Av this is exactly what the positive definiteness of A gives
us.
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Conversely, suppose that 〈 , 〉 as defined in the question does satisfy the
inner product axioms. Then 〈v, v〉 > 0 for all v 6= 0, which immediately
gives that A is positive definite. For each i define ei ∈ Rn to be the
column with a 1 in the ith position and zeros elsewhere. In other words,
the kth entry of ei is δki. Then

(tei)Aej =
n∑

k=1

n∑
l=1

δikAklδlj = Aij .

(If you prefer, Aej is the jth column of A, and (tei)Aej is the ith entry
of that.) So 〈ei, ej〉 = Aij , and symmetry of the inner product gives

Aij = 〈ei, ej〉 = 〈ej , ei〉 = Aji.

Thus A is symmetric.
(ii) Let D be the diagonal matrix with ith diagonal entry di (for all i). Then

the (i, j)-entry of D is diδij . If v is the column vector with ith entry
vi we find that (tv)Dv =

∑n
i=1

∑n
j=0 vidiδijvj =

∑n
i=1 div

2
i . If any one

of the diagonal entries—the kth say—is not strictly positive, then we
can find a nonzero v such that (tv)Av ≤ 0. Specifically, if v = ek then∑n

i=1 div
2
i =

∑n
i=1 diδ

2
ik = dk ≤ 0. So D is not positive definite if the

diagonal entries of D are not all positive. Conversely, if the di are all
positive then all terms in the sum

∑
div

2
i are nonnegative, and zero only

if vi = 0. So if v 6= 0 then at least one of the terms is strictly positive,
and (tv)Dv > 0. So D is positive definite in this case.

(iii) Assume that T is invertible, D is positive definite and A = (tT )DT . Let
v ∈ Rn with v 6= 0, and put u = Tv. Clearly invertibility of T forces
u 6= 0, since T−1u = v 6= 0. By positive definiteness of D we deduce
that

0 < (tu)Du = t(Tv)DTv = (tv)(tT )DTv = (tv)Av.

Since this holds for all nonzero v ∈ Rn it follows that A is positive
definite.

4. Show that T ∈ Mat(n× n, R) has the property that tTT = I if and only if
the columns of T form an orthonormal basis of Rn. Show that the matrix

T =
(

1/
√

3 1/
√

2 1/
√

6

1/
√

3 0 −2/
√

6

1/
√

3 −1/
√

2 1/
√

6

)
has this property, and that all of its columns are

eigenvectors for the matrix A =
(

2 1 1

1 2 1

1 1 2

)
. Use the previous exercise to show

that A is positive definite.

Solution.

The (i, j)-entry of tTT is the product of the ith row of tT and the jth column
of T , which is just the dot product of the ith and jth columns of T . This
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equals δij , the (i, j)-entry ofthe identity matrix, if and only if the columns
form an orthonormal set (since this simply means that the dot product of
each column with itself is 1 and the dot product of two distinct columns is 0).
For the given matrix the dot products of the first column with each of the
three columns are (respectively)

( 1√
3
)( 1√

3
) + ( 1√

2
)( 1√

2
) + ( 1√

6
)( 1√

6
) = 1

( 1√
3
)( 1√

3
) + ( 1√

2
)0 + ( 1√

6
)(−2√

6
) = 0

( 1√
3
)( 1√

3
) + ( 1√

2
)(−1√

2
) + ( 1√

6
)( 1√

6
) = 0

so that the first column has length 1 and is orthogonal to the other two. It
is equally easy to calculate the dot products of the second and third columns
with themselves and each other, giving the answers 1, 1 and 0 respectively, as
required.

Observe that
(

2 1 1

1 2 1

1 1 2

)( 1√
3

1√
3

1√
3

)
=

( 4√
3

4√
3

4√
3

)
, while

(
2 1 1

1 2 1

1 1 2

)( 1√
2

0
−1√

2

)
=

(
1√
2

0
−1√

2

)
and

(
2 1 1

1 2 1

1 1 2

)( 1√
6

−2√
6

1√
6

)
=

( 1√
6

−2√
6

1√
6

)
, so that the columns of T are indeed eigenvectors

of A, corresponding to the eigenvalues 4, 1 and 1 respectively. Thus

AT =
(

4/
√

3 1/
√

2 1/
√

6

4/
√

3 0 −2/
√

6

4/
√

3 −1/
√

2 1/
√

6

)
=
(

1/
√

3 1/
√

2 1/
√

6

1/
√

3 0 −2/
√

6

1/
√

3 −1/
√

2 1/
√

6

)(
4 0 0

0 1 0

0 0 1

)
= TD,

where the diagonal matrix D has positive diagonal entries and is therefore
positive definite. Since tT = T−1 we deduce that A = AT (tT ) = TD(tT ),
and, by the last part of the previous question, A is positive definite.

5. Let v1 =
(

6

2

3

)
, v2 =

(
3

8

5

)
, v3 =

(
1

1

11

)
. Find u1, u2, u3 which form an

orthogonal basis of R3 and satisfy u1 = v1 and Span(u1, u2) = Span(v1, v2).

Solution.

Apply the Gram-Schmidt process. Put u1 = v1, and then put u2 = v2 + λu1,
where the coefficient λ will be determined by the requirement that u1 ·u2 = 0.
We find that

0 = u1 · (v2 + λu1) = u1 · v2 + λ u1 · u1 = 49 + 49λ,

so that λ = −1. This gives u2 = t(−3, 6, 2). Now we put u3 = v3 + µu1 + νu2

and use the orthogonality requirements to determine the coefficients µ and ν.
We have

0 = u1 · u3 = u1 · v3 + µu1 · u1 = 41 + 49µ

0 = u2 · u3 = u2 · v3 + νu2 · u2 = 25 + 49ν.

Therefore
u3 =

(
1

1

11

)
− 41

49

(
6

2

3

)
− 25

49

(
−3

6

2

)
= 61

49

(
−2

−3

6

)
.


