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1. Let A ∈ Mat(n× n, R), and suppose that the columns of A form an orthonor-
mal basis of Rn. Show that tA = A−1, and deduce that the rows of A form
an orthonormal basis of tRn.

Solution.

The (i, j)-entry of (tA)A is obtained by multiplying the ith row of tA by the
jth column of A. But the ith row of tA is just the transpose of the ith column
of A; so this is just the dot product of the ith and jth columns of A. Since
the columns of A form an orthonormal set this shows that the (i, j)-entry of
(tA)A is 0 if i 6= j and 1 if i = j. So (tA)A = I. By Theorem 2.9 of the text
it follows that tA = A−1.
From the above we know that A(tA) = I. But the (i, j)-entry of A(tA) is
the dot product of the ith and jth rows of A, and A(tA) = I says that this
(i, j)-entry is δij . That is, the dot product of the ith and jth rows of A is 0 if
i 6= j and 1 if i = j, as required.

2. Let V be an inner product space and U a subspace of V . Define

U⊥ = { v ∈ V | 〈u, v〉 = 0 for all u ∈ U }.

(i) Use Theorem 3.10 to prove that U⊥ is a subspace of V .
(ii) Prove that if x, x′ ∈ U and y, y′ ∈ U⊥ and x + y = x′ + y′ then x = x′

and y = y′.

Solution.

(i) The zero element 0
˜

of the space V is certainly an element of U⊥, since
〈u, 0〉 = 0 for all u ∈ U . (See 5.1.1, p. 100.) So U⊥ is nonempty.
Let v, w ∈ U⊥ and let λ be a scalar. For all u ∈ U we have that
〈u, v〉 = 〈u, w〉 = 0, and now linearity of 〈 , 〉 in the second variable
yields

〈u, v + w〉 = 〈u, v〉+ 〈u, w〉 = 0 + 0 = 0
and
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〈u, λv〉 = λ〈u, v〉 = λ0 = 0

for all u ∈ U , showing that v+w and λv are both in U⊥. Since v, w and
λ were arbitrary this shows that U⊥ is closed under addition and scalar
multiplication. By Theorem 3.10 it follows that U⊥ is a subspace.

(ii) Suppose that x, x′ ∈ U and y, y′ ∈ U⊥ and x + y = x′ + y′. Then
x− x′ = y′ − y, and

〈x− x′, x− x′〉 = 〈x− x′, y − y′〉
= 〈x, y〉 − 〈x, y′〉 − 〈x′, y〉+ 〈x′, y′〉
= 0

since y and y′, being in U⊥, must be orthogonal to x and x′ (which are
in U). By positive definiteness of the inner product we conclude that
x−x′ = 0

˜
, and therefore x = x′. Since y−y′ = x−x′ = 0 it also follows

that y = y′.

If U is a finitely generated subspace of the inner product space V then there exists
a function P :V → U (the orthogonal projection) such that v − P (v) ∈ U⊥ for all
v ∈ V . Hence in this case each v ∈ V can be expressed in the form x + y with
x ∈ U and y ∈ U⊥, by putting x = P (v) and y = v − P (v). By 2 (ii) above this
expression is unique. (Note that these results need not apply if U is not finitely
generated.)

3. Let V be a finite dimensional inner product space and U a subspace of V .
Suppose that x1, x2, . . . , xn form an orthogonal basis of U and y1, y2, . . . , ym

form an orthogonal basis of U⊥. Prove that x1, . . . , xn, y1, . . . , ym form an
orthogonal basis of V . Hence prove that the sum of the dimensions of U and
U⊥ equals the dimension of V .

Solution.

Let v ∈ V . By the comments above there exist x ∈ U and y ∈ U⊥ with
v = x + y. Since the xi span U and the yj span U⊥ there exist scalars λi and
µj with x =

∑n
i=1 λixi and y =

∑m
j=1 µjyj . Hence

v = x + y = λ1x1 + λ2x2 + · · ·+ λnxn + µ1y1 + µ2y2 + · · ·+ µmym,

and since v was arbitrary this shows that the xi and yj together span V . To
prove that they form an orthogonal basis it remains to prove that they are
all nonzero and that the inner product of any one of them with any other is
zero. (Linear independence follows from this by Proposition 5.4.)
We are give that the xi form an orthogonal basis of U ; so each xi is nonzero
and 〈xi, xk〉 = 0 if i 6= k. Similarly, since the yj form an orthogonal basis of
U⊥, each yj is nonzero and 〈yj , yl〉 = 0 if j 6= l. Finally, 〈xi, yj〉 = 0 for all
i and j, since xi ∈ U and yj ∈ U⊥, and (by definition) 〈x, y〉 = 0 for all x ∈ U
and y ∈ U⊥.
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4. Let U be the subspace of tR3 spanned by (1, 1, 1) and (1, 1,−2). Find a basis
for U⊥.

Solution.

The two given vectors are orthogonal to each other, and therefore form an
orthogonal basis of U . Since tR3 has dimension 3 we deduce from Exercise 3
that the dimension of U⊥ is 1. So any nonzero vector which is orthogonal to
both the given vectors will be a (one-element) basis of U⊥. It is fairly obvious
that (1,−1, 0) is such a vector. (This was found by solving the simultaneous
equations (1, 1, 1) · (x, y, z) = (1, 1,−2) · (x, y, z) = 0. Alternatively, one could
choose any v ∈ tR3 which is not in U and apply the Gram-Schmidt to the
basis ((1, 1, 1), (1, 1,−2), v) to obtain an orthogonal basis of tR3. For instance,
choosing v = (1, 0, 0) gives

(1, 0, 0)− (1, 1, 1) · (1, 0, 0)
(1, 1, 1) · (1, 1, 1)

(1, 1, 1)− (1, 1,−2) · (1, 0, 0)
(1, 1,−2) · (1, 1,−2)

(1, 1,−2) = ( 1
2 ,− 1

2 , 0)

as the basis element of U⊥.)

5. Let A ∈ Mat(m× n, R). Show that x ∈ Rn is a solution of the equations
Ax = 0 if and only if tx is orthogonal to each of the rows of A. Deduce that
the dimension of the solution space of Ax = 0 equals the dimension of the
orthogonal complement of the row space of A.

Solution.

The ith entry of Ax is aix = ai · (tx), where ai is the ith row of A. So Ax = 0
if and only if ai · (tx) = 0 for all i.

If ai ·(tx) = 0 for all i then (
∑m

i=1 λiai)·(tx) = 0 for any choice of the scalars λi,
and so tx is orthogonal to all elements of the row space of A. Conversely, if tx
is orthogonal to everything in the rowspace of A then it is certainly orthogonal
to each of the rows. So the solution space of Ax = 0 is exactly the orthogonal
complement of the row space of A, except that the vectors are written as
columns instead of rows. This notational change obviously does not change
the dimension. Note also (by Exercise 3) that if r is the dimension of the row
space of A then the dimension of the solution space will be m− r.

6. Find an orthonormal basis for the 1-eigenspace of

( 2 1 2 2

1 2 2 2

2 2 5 4

2 2 4 5

)
. Find also an

orthonormal basis for the orthogonal complement of this space, and verify
that this orthogonal complement equals the 11-eigenspace of the above matrix.
Using the elements of these bases as the columns, construct a matrix T such
that tT = T−1 and T−1AT = diag(1, 1, 1, 11).
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Solution.

The 1-eigenspace of A is the solution space of Av = v, or (equivalently)
(A − I)v = 0. Applying row operations to A − I yields the reduced echelon
matrix with (1, 1, 2, 2) as first row and all other rows zero. The last three
variables of v are all free, and the general solution is( x

y

z

w

)
=

(−α−2β−2γ

α

β

γ

)
= α

(−1

1

0

0

)
+ β

(−2

0

1

0

)
+ γ

(−2

0

0

1

)
.

The three columns appearing in the right hand side of the above expression
form a basis of the 1-eigenspace of A, but not an orthogonal basis. Applying
the Gram-Schmidt process replaces the second basis vector by(−2

0

1

0

)
− (−1)(−2)

(−1)2+12

(−1

1

0

0

)
=

(−1

−1

1

0

)
and the third by (−2

0

0

1

)
−

(−1

1

0

0

)
− 2

3

(−1

−1

1

0

)
=

(−1/3

−1/3

−2/3

1

)
.

Dividing each of these by its length (to normalize) give the orthonormal basis

1√
2

(−1

1

0

0

)
, 1√

3

(−1

−1

1

0

)
, 1√

15

(−1

−1

2

3

)
.

By Exercise 5 we know that this 1-eigenspace is, in effect, the orthogonal
complement of the row space of A − I, which we have shown to be spanned
by (1, 1, 2, 2). Hence t(1, 1, 2, 2) spans the orthogonal complement of the 1-
eigenspace of A. The fact that this column is also an eigenvector for A is
surprising at first, but ceases to be surprising in light of the fact, shown
in Exercise 4 of Tutorial 2, that all eigenvectors belonging to eigenvectors
other than 1 must be orthogonal to all the 1-eigenvectors. (This is the im-
portant property of real symmetric matrices: eigenspaces corresponding to
distinct eigenvalues are orthogonal to each other.) It is trivial to verify that
if v = t(1, 1, 2, 2) then Av = 11v. We are asked for an orthonormal basis of
the 11-eigenspace; so we must replace v by 1√

10
v (since ||v|| =

√
10).

Define

T =

−1/
√

2 −1/
√

3 −1/
√

15 1/
√

10

1/
√

2 −1/
√

3 −1/
√

15 1/
√

10

0 1/
√

3 −2/
√

15 2/
√

10

0 0/
√

3 3/
√

15 2/
√

10

 .

Exercise 1 shows that tT = T−1, and since the columns of T are eigenvectors
of A for the eigenvalues 1, 1, 1 and 11 (respectively) we know that

T−1AT =

( 1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 11

)
.

(See §2f#6, and see also Proposition 9.4.)


