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1. Use det(AB) = det A det B and det tA = detA to prove that the de-
terminant of a real orthogonal matrix must be ±1. (A 3 × 3 real
orthogonal matrix corresponds to a rotation of the coordinate axes if
its determinant is 1; orthogonal matrices of determinant −1 change
right-handed coordinate systems into left-handed ones.)

Solution.

1 = det I = det(tAA) = det tA detA = (det A)2, and so det A = ±1.

2. Find a rotation of the coordinate axes which changes the equation of
the given quadric surface to the form a(x′)2+b(y′)2+c(z′)2 = constant.

(i) 6x2 + 4y2 − 4z2 + 2xy − 6xz + 2yz = 140

(ii) 4x2 − 14y2 + 12z2 − 2xy − 2xz − 10yz = −780

(iii) 4x2 + 12y2 + 2z2 + 2xy + 2xz + 6yz = 104

Solution.

(i) The equation can be written as tx
˜
Ax

˜
= 140, where

x
˜

=

 x
y
z

 and A =

 6 1 −3
1 4 1
−3 1 −4

 .

A rotation of coordinate axes is a change of variable of the form
x
˜

= Px
˜
′, where P is an orthogonal matrix of determinant 1, and

we need to choose P so that tPAP is diagonal.

The first step is to find the eigenvalues and corresponding eigenspaces
of the matrix A. The characteristic polynomial of A (the determinant
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of A− xI) is

(6− x)((4− x)(−4− x)− 1)− ((−4− x) + 3)− 3(1 + 3(4− x))

= (6− x)(x2 − 17) + x + 1 + 9x− 39

= −(x3 − 6x2 − 27x + 140)
= −(x− 7)(x + 5)(x− 4)

so that the eigenvalues are 7, −5 and 4.
To find the eigenspace corresponding to the eigenvalue 7 we must solve
the equations (A − 7I)x

˜
= 0

˜
. Applying the pivoting algorithm (row

operations) to A− 7I gives−1 1 −3
1 −3 1
−3 1 −11

 R2:=R2+R1
R3:=R3−3R1
R1:=−R1−−−−−−−→

 1 −1 3
0 −2 −2
0 −2 −2


R3:=R3−R2
R2:=(−1/2)R2
R1:=R1+R2−−−−−−−−→

 1 0 4
0 1 1
0 0 0


and it follows that the column t(−4,−1, 1) spans the eigenspace. Sim-
ilarly, row operations applied to the matrices A + 5I and A− 4I give
the reduced echelon matrices 1 0 −2/7

0 1 1/7
0 0 0

 and

 1 0 1
0 1 −5
0 0 0


respectively, and we see that t(2,−1, 7) and t(−1, 5, 1) span the corre-
sponding eigenspaces. The theory tells us that the eigenspaces must
be orthogonal to each other relative to the dot product on R3 (since
A is symmetric), and it is advisable (and quick) to check this at this
point. For instance,−4
−1
1

 ·

 2
−1
7

 = (−4)× 2 + (−1)× (−1) + 1× 7 = −8 + 1 + 7 = 0.

Choose a unit vector in each of the eigenspaces and let P be the matrix
with these unit vectors as its columns. Then P will be orthogonal. Its
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determinant will be either 1 or −1; if it turns out to be −1 simply re-
placing one of the columns by its negative will change the determinant
to 1, thereby ensuring that P is a rotation matrix. There are exactly
24 suitable matrices P , one of which is

P =

−4/
√

18 2/
√

54 −1/
√

27
−1/

√
18 −1/

√
54 5/

√
27

1/
√

18 7/
√

54 1/
√

27

 .

(The other possibilities are obtainable by writing the columns down in
some other order and/or changing the signs of some of the columns.)
Our choice of P converts the equation to 7(x′)2−5(y′)2 +4(z′)2 = 140.
Such a surface is known as a “hyperboloid of one sheet”. The intersec-
tion of our surface with any of the planes y′ = constant (that is, planes
parallel to the x′z′-plane) is an ellipse 7(x′)2+4(z′)2 = constant whose
size increases rapidly as y′ goes to ±∞. The planes x′ = constant
and z′ = constant intersect the surface in hyperbolas. The effect is
somewhat like rotating the hyperbola 7(x′)2 − 5(y′)2 = 140 about
the y′-axis, although the “rotation” is elliptical rather than circular.
(More exactly, rotate X2 − Y 2 = 1 about the Y -axis, to obtain the
surface X2−Y 2 +Z2 = 1, then stretch the coordinate axes by putting
x′ =

√
20X, y′ =

√
28Y and z′ =

√
35Z.)

(ii) The calculations are totally analogous to those in the first part.
The characteristic polynomial is

(4− x)((−14− x)(12− x)− 25) + (−(12− x)− 5)− (5 + (−14− x))

= (4− x)(x2 + 2x− 193) + x− 17 + x + 9

= (4− x)(x2 + 2x− 195)
= −(x− 4)(x + 15)(x− 13)

giving eigenvalues of 4, −15 and 13. Applying row operations to A−4I,
A + 15I and A− 13I one easily obtains the reduced echelon matrices 1 0 −13

0 1 1
0 0 0

 ,

 1 0 −1/3
0 1 −16/3
0 0 0

 and

 1 0 1/11
0 1 2/11
0 0 0


respectively. The following matrix P has determinant 1 and unit vec-
tors from the three eigenspaces as its columns:

P =

 13/
√

171 1/
√

266 −1/
√

126
−1/

√
171 16/

√
266 −2/

√
126

1/
√

171 3/
√

266 11/
√

126

 .
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Putting x
˜

= Px
˜
′ gives the equation 4(x′)2− 15(y′)2 + 13(z′)2 = −780.

The surface is a hyperboloid of two sheets, obtained by rotating the
hyperbola X2 − Y 2 = −1 about the Y -axis and then stretching the
axes. (“Two sheets” because the surface has two parts which are not
connected to each other, on opposite sides of the plane Y = 0.)

(iii) This time the characteristic polynomial is

(4− x)((12− x)(2− x)− 9)− ((2− x)− 3) + (3− (12− x))

= (4− x)(x2 − 14x + 15) + x + 1 + x− 9

= (4− x)(x2 − 14x + 13)
= −(x− 4)(x− 1)(x− 13)

so that the eigenvalues are 4, 1 and 13. Row operations applied to
A− 4I, A− I and A− 13I yield the reduced echelon matrices 1 0 −5

0 1 1
0 0 0

 ,

 1 0 1/4
0 1 1/4
0 0 0

 and

 1 0 −1/2
0 1 −7/2
0 0 0

 ,

and consequently we find that a suitable rotation matrix is

P =

 5/
√

27 1/
√

18 1/
√

54
−1/

√
27 1/

√
18 7/

√
54

1/
√

27 −4/
√

18 2/
√

54


The equation of the surface becomes 4(x′)2 + (y′)2 + 13(z′)2 = 104,
and we see that it is an ellipsoid (like a severely maltreated sphere).

3. A square complex matrix A is said to be normal if it commutes with
A∗. (That is, AA∗ = A∗A. Here A∗ def= tA.) Prove that if A is normal
and U is unitary then U∗AU is normal.

Solution.

Since the transpose conjugate operation ∗ reverses products we see
that (U∗AU)∗ = U∗A∗(U∗)∗ = U∗A∗U . Since U is unitary we have
that UU∗ = I, and now

(U∗AU)∗(U∗AU) = U∗A∗UU∗AU = U∗A∗AU

= U∗AA∗U = U∗AUU∗A∗U = (U∗AU)(U∗AU)∗,

showing that U∗AU is normal.
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4. Let A be a complex n×n matrix and suppose that there exists a unitary
matrix U such that U∗AU is diagonal. Prove that A(A∗) = (A∗)A.

(Hint: Let D = U∗AU , and prove first that D(D∗) = (D∗)D.)

Solution.

It is trivial that D1D2 = D2D1 if D1 and D2 are both diagonal
matrices. If D is diagonal then so is D∗, whence we deduce that
DD∗ = D∗D. Now since U∗ = U−1 the equation D = U∗AU gives
A = UDU∗, and (as in Exercise 3)

A∗A = (UDU∗)∗(UDU∗) = UD∗U∗UDU∗ = UD∗DU∗

= UDD∗U∗ = UDU∗UD∗U∗ = (UDU∗)(UDU∗)∗ = AA∗.

5. (i) Suppose that A ∈ Mat(n× n, C) is normal and upper triangular.
Prove that A is diagonal.

(Hint: ‘Upper triangular’ means Aij = 0 for i > j. Prove that
the (1, 1)-entry of A(A∗) is

∑n
i=1 |A1j |2 whereas the (1, 1)-

entry of (A∗)A is |A11|2, and deduce that A1j = 0 for all
j > 1. Then consider the (2, 2)-entries of A(A∗) and (A∗)A,
then (3, 3), and so on.)

(ii) It can be shown that for any A ∈ Mat(n× n, C) there exists
a unitary matrix U such that U∗AU is upper triangular. (The
proof of this is very similar to the proof of Theorem 5.19.) Use
this fact together with Exercise 3 and Part (i) to prove that
for every normal matrix A there exists a unitary U with U∗AU
diagonal.

Solution.

(i) We use induction on i to prove
($) Aij = 0 for all j > i.
Let us use the notation Xrs for the (r, s)-entry of a matrix X. Then
(1, 1)-entry of AA∗ is given by

(AA∗)11 =
n∑

j=1

A1j(A∗)j1 =
n∑

j=1

A1jA1j =
n∑

j=1

|A1j |2

while the (1, 1) entry of A∗A is

(A∗A)11 =
n∑

i=1

(A∗)1iAi1 =
n∑

i=1

Ai1Ai1 =
n∑

i=1

|Ai1|2.
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Since Ai1 = 0 for i > 1 it follows that (A∗A)11 = |A11|2. But
(A∗A)11 = (AA∗)11 (since A is normal), and so

0 = (AA∗)11 − (A∗A)11 =
( n∑

j=1

|A1j |2
)
− |A11|2 =

∑
j>1

|A1j |2.

Since each |Aij |2 is real and nonnegative, the only way that this sum
can be zero is if each term is zero. So A1j = 0 for all j > 1, proving
that ($) is satisfied in the case i = 1.
Let k > 1 and assume that ($) is satisfied for all i < k. In particular,
putting j = k in ($) this gives Aik = 0 for all i < k. We also have that
Aik = 0 for all i > k since A is upper triangular. So Aik = 0 for i 6= k,
and

(A∗A)kk =
n∑

i=1

(A∗)kiAik =
n∑

i=1

AikAik = |Akk|2.

Furthermore, Akj = 0 for all j < k (since A is upper triangular), and
so

(AA∗)kk =
n∑

j=1

Akj(A∗)jk =
n∑

j=1

AkjAkj

=
n∑

j=1

|Akj |2 =
n∑

j=k

|Akj |2.

Normality of A gives (A∗A)kk = (AA∗)kk; therefore

0 = (AA∗)kk − (A∗A)kk =
( n∑

j=k

|Akj |2
)
− |Akk|2 =

∑
j>k

|Akj |2,

and this forces Akj = 0 for all j > k. So ($) holds for i = k, and our
induction is complete.
So ($) holds for all i, whence A is lower triangular as well as upper
triangular. So A is diagonal.

(ii) Let A be normal and choose a unitary U such that T = U∗AU
is upper triangular. Exercise 3 says that T is normal; so by Part (i) it
must be diagonal.


