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1. Compute the given products of permutations.

(i)
[

1 2 3 4
2 1 4 3

] [
1 2 3 4
2 3 4 1

]
(ii)

[
1 2 3 4 5
4 1 5 2 3

] [
1 2 3 4 5
5 4 3 2 1

]
(iii)

([
1 2 3 4
2 1 4 3

] [
1 2 3 4
2 3 4 1

]) [
1 2 3 4
4 3 1 2

]
(iv)

[
1 2 3 4
2 1 4 3

]([
1 2 3 4
2 3 4 1

] [
1 2 3 4
4 3 1 2

])
Solution.

Remember that permutations are functions, and multiplication of permutations
is composition of functions. If we let the first factor in part (i) be σ and the
second τ then we have τ(1) = 2 and σ(2) = 1; so (στ)(1) = σ(τ(1)) = σ(2) = 1.
Similarly,

(στ)(2) = σ(τ(2)) = σ(3) = 4,

(στ)(3) = σ(τ(3)) = σ(4) = 3,

(στ)(4) = σ(τ(4)) = σ(1) = 2.

See also the examples on page 173 of [VST].
The answers are as follows:

(i)
[

1 2 3 4
1 4 3 2

]
(ii)

[
1 2 3 4 5
3 2 5 1 4

]
(iii)

[
1 2 3 4
2 3 1 4

]
(iv)

[
1 2 3 4
2 3 1 4

]
.

2. Calculate the parity of each permutation appearing in Exercise 1.

Solution.

Recall that the “length” of a permutation is obtained by counting the total num-
ber of instances of a number in the second row being larger than a number to
its right. In part (i) the first factor is even (its length is 2) and the other is odd
(length 3). Their product is odd (length 3). In part (ii) the first factor has length
5 and is therefore odd, the second has length 10 (the maximum possible for a
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permutation of {1, 2, 3, 4, 5}) and is therefore even. The product must be odd.
In part (iii) the factors are even, odd and odd.

3. Use row and column operations to calculate the determinant of
1 5 11 2
2 11 −6 8
−3 0 −452 6
−3 −16 −4 13


Solution. 

1 5 11 2
2 11 −6 8
−3 0 −452 6
−3 −16 −4 13

 R2:=R2−2R1
R3:=R3+3R1
R4:=R4+3R1−−−−−−−→


1 5 11 2
0 1 −28 4
0 15 −419 12
0 −1 29 19


R3:=R3−15R2
R4:=R4+R2−−−−−−−−→


1 5 11 2
0 1 −28 4
0 0 1 −48
0 0 1 23


R4:=R4−R3−−−−−−−→


1 5 11 2
0 1 −28 4
0 0 1 −48
0 0 0 71

 .

We have only used row operations of the kind Ri := Ri + αRj , and these do
not change the determinant. Now performing lots of obvious column operations,
where we just add multiples of columns to other columns, produces the diagonal
matrix with entries 1, 1, 1, 71. So the determinant is 71.

4. For each permutation σ ∈ Sn define Pσ to be the n × n matrix with (i, j)-entry
equal to 1 if i = σ(j) and 0 if i 6= σ(j). Prove that PσPτ = Pστ for all σ, τ ∈ Sn.

Solution.

It is convenient to use the Kronecker delta, defined by

δij =
{

1 if i = j
0 if i 6= j.

If we let the (i, j)th entries of Pσ and Pτ be (respectively) sij and tij then
we have sij = δi σ(j) and tij = δi τ(j). Hence the (i, j)th entry of PσPτ is∑n

k=1 siktkj =
∑n

k=1 δi σ(k)δk τ(j). For k = τ(j) we have δk τ(j) = 1, and hence
δi σ(k)δk τ(j) = δi σ(k) = δi σ(τ(j)). Since δk τ(j) = 0 when k 6= τ(j) the terms in the
sum corresponding to the other values of k are zero. Hence the (i, j)th entry of
ST is 1 if i equals σ(τ(j)) = (στ)(j), and 0 otherwise.
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5. What is the determinant of the matrix Pσ defined in Exercise 4?

Solution.

This is one of the rare cases when it is quite easy to work directly from the
definition of the determinant as given in 8.12 of [VST]. Let sij be the (i, j)-entry
of Pσ, so that sij = δiσ(j). For any τ ∈ Sn the product s1τ(1)s2τ(2) . . . snτ(n)

will be zero unless si τ(i) 6= 0 for all i; that is, unless δi σ(τ(i)) 6= 0 for all i. So
only for τ = σ−1 is the product nonzero. When τ = σ−1 the product is just
δ11δ22 . . . δnn = 1. Hence by Definition 8.12 we have

det Pσ =
∑

τ∈Sn

ε(τ)s1τ(1)s2τ(2) . . . snτ(n) = ε(σ−1)

which is equal to ε(σ).

6. Consider the determinant

det


1 x1 x2

1 . . . xn−1
1

1 x2 x2
2 . . . xn−1

2
...

...
...

...
1 xn x2

n . . . xn−1
n

 .

Use row and column operations to evaluate this in the case n = 3. Then do the
case n = 4. Then do the general case. (The answer is

∏
i>j(xi − xj).)

Solution.

First subtract the first row from all the others. This does not alter the determi-
nant. Then subtract x1 times the first column from the second, x2

1 times the first
column from the third, . . . , xn−1

1 times the first column from the nth. This also
leaves the determinant unchanged, and so the original determinant is equal to

det


x2 − x1 x2

2 − x2
1 . . . xn−1

2 − xn−1
1

x3 − x1 x2
3 − x2

1 . . . xn−1
3 − xn−1

1
...

...
...

xn − x1 x2
n − x2

1 . . . xn−1
n − xn−1

1

 .

We can take out factors of x2 − x1 from the first row, x3 − x1 from the second,
. . . , xn − x1 from the last, so that our determinant is equal to

(x2 − x1)(x3 − x1) . . . (xn − x1)D,

where

D = det


1 x2 + x1 x2

2 + x2x1 + x2
1 . . .

∑n−2
j=0 xn−2−j

2 xj
1

1 x3 + x1 x2
3 + x3x1 + x2

1 . . .
∑n−2

j=0 xn−2−j
3 xj

1

...
...

...
...

1 xn + x1 x2
n + xnx1 + x2

1 . . .
∑n−2

j=0 xn−2−j
n xj

1

 .
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Next subtract xi
1 times the first column of D from the i + 1th column, for

i = 1, 2, . . . , n − 2, then subtract xi
1 times the second column from the i + 2th

column, for i = 1, 2, . . . , n − 3, and then xi
1 times the third column from the

i + 3th, and so on. This eliminates x1 altogether, and the given determinant
equals

(x2 − x1)(x3 − x1) . . . (xn − x1) det


1 x2 . . . xn−2

2

1 x3 . . . xn−2
3

...
...

...
1 xn . . . xn−2

n

 .

Repeating the steps to eliminate successively x2, x3, . . . , yields the formula∏
i>j(xi − xj).

7. Let p(x) = a0 +a1x+a2x
2, q(x) = b0 + b1x+ b2x

2, r(x) = c0 + c1x+ c2x
2. Prove

that

det

 p(x1) q(x1) r(x1)
p(x2) q(x2) r(x2)
p(x3) q(x3) r(x3)

 = (x2 − x1)(x3 − x1)(x3 − x2) det

 a0 b0 c0

a1 b1 c1

a2 b2 c2

 .

Solution.

This can be done by using row and column operations in a similar fashion to
Exercise 6. Alternatively, observe that p(x1) q(x1) r(x1)

p(x2) q(x2) r(x2)
p(x3) q(x3) r(x3)

 =

 1 x1 x2
1

1 x2 x2
2

1 x3 x2
3

  a0 b0 c0

a1 b1 c1

a2 b2 c2


so that the result follows form Exercise 3 and the fact that det A det B = det AB
for all n× n matrices A and B.


