The University of Sydney

MATH2902 Vector Spaces

(http://www.maths.usyd.edu.au/u/UG/IM/MATH2902/)

Semester1, 2001

Lecturer: R. Howlett

Tutorial 10

1. Prove that isomorphic vector spaces have the same dimension. (Hint: Use Theorem 4.17. This was proved in Exercise 5 of Tutorial 4.)

Solution.

Let V and W be isomorphic vector spaces and let $\theta: V \to W$ be an isomorphism. That is, θ is a bijective linear transformation. Let v_1, v_2, \ldots, v_n be a basis for V. By 4.17 (ii) the elements $\theta(v_1), \theta(v_2), \ldots, \theta(v_n)$ span W (since θ is surjective), and by 4.17 (i) they are linearly independent (since θ is injective). So these elements form a basis for W, and we see that bases of W have the same number of elements as do bases of V.

2. Is it possible to find subspaces U, V and W of \mathbb{R}^4 such that

$$\mathbb{R}^4 = U \oplus V = V \oplus W = W \oplus U$$

Solution.

Yes; for instance, define U, V and W to be (respectively)

$$\left\{ \begin{pmatrix} \alpha \\ \beta \\ 0 \\ 0 \end{pmatrix} \middle| \alpha, \beta \in \mathbb{R} \right\}, \quad \left\{ \begin{pmatrix} 0 \\ 0 \\ \alpha \\ \beta \end{pmatrix} \middle| \alpha, \beta \in \mathbb{R} \right\}, \quad \left\{ \begin{pmatrix} \alpha \\ \beta \\ \alpha \\ \beta \end{pmatrix} \middle| \alpha, \beta \in \mathbb{R} \right\}$$

Each of these is a subspace of dimension two: it can be seen that

$$\boldsymbol{b} = \left(\begin{pmatrix} 1\\0\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\0\\0 \end{pmatrix} \right), \quad \boldsymbol{c} = \left(\begin{pmatrix} 0\\0\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\0\\1 \end{pmatrix} \right), \quad \boldsymbol{d} = \left(\begin{pmatrix} 1\\0\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\0\\1 \end{pmatrix} \right)$$

are bases of U, V and W respectively. Now since $U \cap V = \{0\}$ the sum U + Vis direct, and its dimension is therefore equal to dim $U + \dim V = 4$. The only 4-dimensional subspace of \mathbb{R}^4 is \mathbb{R}^4 itself; so we conclude that $U \oplus V = \mathbb{R}^4$. (Indeed, combining the bases **b** of U and **c** of V gives the standard basis of \mathbb{R}^4 .) Since it is also true that $U \cap W = \{0\}$ and $V \cap W = \{0\}$ it follows that $U \oplus W = V \oplus W = \mathbb{R}^4$ as well.

- **3.** (i) Let V and W be vector spaces over F. Show that the Cartesian product of V and W (see §1b) becomes a vector space if addition and scalar multiplication are defined in the natural way. (This space is called the *external direct sum* of V and W, and is sometimes denoted by V + W'.)
 - (*ii*) Show that $V' = \{ (v, 0) \mid v \in V \}$ and $W' = \{ (0, w) \mid w \in W \}$ are subspaces of V + W with $V' \cong V$ and $W' \cong W$, and that $V + W = V' \oplus W'$.
 - (*iii*) Prove that $\dim(V + W) = \dim V + \dim W$.

Solution.

(i) Elements of V + W are ordered pairs (v, w) with $v \in V$ and $w \in W$. Addition and scalar multiplication are defined by

 $(v_1, w_1) + (v_2, w_2) = (v_1 + v_2, w_1 + w_2), \qquad \lambda(v_1, w_1) = (\lambda v_1, \lambda w_1)$

for all $v_1, v_2 \in V$ and $w_1, w_2 \in W$ and all $\lambda \in F$. To prove that this gives a vector space is simply a matter of checking the axioms. The zero element of V + W is the ordered pair (0,0) (where the first 0 is the zero of V and the second the zero of W). The negative of (v, w) is (-v, -w).

For all $\lambda, \mu \in F$ and all $v \in V$ and $w \in W$ we have

$$\begin{aligned} (\lambda + \mu)(v, w) &= ((\lambda + \mu)v, (\lambda + \mu)w) & (\text{definition of scalar multiplication}) \\ &= (\lambda v + \mu v, \lambda w + \mu w) & (\text{vector space axioms in } V, W) \\ &= (\lambda v, \lambda w) + (\mu v, \mu w) & (\text{definition of addition}) \\ &= \lambda(v, w) + \mu(v, w) & (\text{definition of scalar multiplication}) \end{aligned}$$

proving Axiom (vii) of Definition 2.3. The other axioms can be done similarly, in each case making use of the fact that the axiom in question is satisfied in V and in W (since it is given that V and W are vector spaces).

(*ii*) Define $\theta: V \to V \dotplus W$ by $\theta(v) = (v, 0)$ for all $v \in V$. Then for all $u, v \in V$ and $\lambda, \mu \in F$ we have

$$\theta(\lambda u + \mu v) = (\lambda u + \mu v, 0) = \lambda(u, 0) + \mu(v, 0) = \lambda\theta(u) + \mu\theta(v).$$

Hence θ is a linear transformation. The kernel of θ consists of all $v \in V$ such that (v, 0) is the zero element of V + W. Hence ker $\theta = \{0\}$, and it follows that θ is injective. The image of θ is the subset of V + W consisting of all elements of the form $\theta(v)$ for $v \in V$; thus im $\theta = V'$. By 3.14 we deduce that V' is a subspace of V + W.

Define $\theta': V \to V'$ by $\theta'(v) = \theta(v)$ for all v. That is, θ' is just θ with its codomain cut down to coincide with its image. This makes θ' surjective, and it is also injective (since θ is). Hence θ' is an isomorphism, and $V' \cong V$.

Virtually identical arguments using the map $w \mapsto (0, w)$ show that W' is a subspace and isomorphic to W. Since an arbitrary element of V + W has the form $(v, w) = (v, 0) + (0, w) \in V' + W'$ we see that V + W = V' + W', and since (v, 0) = (0, w) implies v = w = 0 we see that $V' \cap W' = \{0\}$. Hence $V + W = V' \oplus W'$.

(*iii*) Since $V' \cong V$ and $W' \cong W$ we deduce that $\dim V' = \dim V$ and $\dim W' = \dim W$ (by Exercise 1). But since $V \dotplus W = V' \oplus W'$ Theorem 6.9 gives $\dim(V \dotplus W) = \dim V' + \dim W'$, whence the result.

4. Let S and T be subspaces of a vector space V and let U be a subspace of T such that $T = (S \cap T) \oplus U$. Prove that $S + T = S \oplus U$ (see Tutorial 3 for the definition of S + T), and hence deduce that

$$\dim(S+T) = \dim S + \dim T - \dim(S \cap T).$$

Solution.

From an earlier tutorial we know that S + T is a subspace of V. If $s \in S$ then $s = s + 0 \in S + T$; so $S \subseteq S + T$. Similarly $T \subseteq S + T$, and since $U \subseteq T$ we have $U \subseteq S + T$. So S and U are subspaces of S + T, and we must show that S + U = S + T and $S \cap U = \{0\}$.

Let $x \in S + T$. Then x = s + t for some $s \in S$, $t \in T$. Since $T = (S \cap T) \oplus U$ there exist $r \in S \cap T$, $u \in U$ with t = r + u. Since $r \in S \cap T \subseteq S$ and $s \in S$ we have $s + r \in S$, and therefore

$$x = s + (r + u) = (s + r) + u \in S + U.$$

Since x was arbitrary we have shown that all elements of S + T lie in the subspace S + U of S + T; thus S + U = S + T.

Let $a \in S \cap U$. Then $a \in S$ and $a \in U \subseteq T$; so $a \in S \cap T$. But $a \in U$; so $a \in (S \cap T) \cap U$. Because the sum of $S \cap T$ and U is direct we have that $(S \cap T) \cap U = \{0\}$, and therefore a = 0. But a was an arbitrary element of $S \cap U$, and so we have shown that $S \cap U = \{0\}$, as required.

Alternatively, making use of some easily proved facts about adding subspaces, we have

$$S+T=S+((S\cap T)+U)=(S+(S\cap T))+U=S+U$$
 where $S+(S\cap T)=S$ holds since $S\cap T\subseteq S)$ and

$$S \cap U = S \cap (T \cap U) = (S \cap T) \cap U = \{0\}$$

(where $U = T \cap U$ holds since $U \subseteq T$.)
Since $T = (S \cap T) \oplus U$ we have

(1) $\dim T = \dim(S \cap T) + \dim U.$

Since $S + T = S \oplus U$ we have

(2) $\dim(S+T) = \dim S + \dim U.$

Eliminating dim U from equations (1) and (2) gives

$$\dim(S+T) = \dim S + \dim T - \dim(S \cap T).$$

- 5. (i) Let S and T be subspaces of a vector space V. Prove that $(s,t) \mapsto s+t$ defines a linear transformation from S + T to V which has image S + T and kernel isomorphic to $S \cap T$.
 - (*ii*) The Main Theorem on Linear Transformations (see p. 158 of the book) asserts that if V is a finitely generated vector space and θ a linear transformation from V to another space W, then the sum of the dimensions of ker θ and im θ equals the dimension of V. Use this and Part (*i*) to give another proof that $\dim(S+T) + \dim(S \cap T) = \dim S + \dim T$.

Solution.

Since every element of $S \dotplus T$ is uniquely expressible in the form (s,t) with $s \in S$ and $t \in T$, and since S and T are subspaces of the vector space V, the formula $\theta(s,t) = s + t$ defines a function from $S \dotplus T$ to V. Now if $(s,t), (s',t') \in S \dotplus T$ and λ is a scalar then

$$\begin{split} \theta((s,t) + (s',t')) &= \theta(s+s',t+t') = (s+s') + (t+t') \\ &= (s+t) + (s'+t') = \theta(s,t) + \theta(s',t') \end{split}$$

(by definition of θ , definition of addition in S + T and properties of addition in the vector space V), and

$$\theta(\lambda(s,t)) = \theta(\lambda s, \lambda t) = \lambda s + \lambda t = \lambda(s+t) = \lambda \theta(s,t)$$

similarly. Hence θ is linear.

The image of θ is the set of all elements of V of the form $\theta(s,t) = s + t$ with $s \in S$ and $t \in T$; that is, $\operatorname{im} \theta = S + T$. The kernel of θ consists of all (s,t) such that $s \in S$, $t \in T$ and s + t = 0. For these conditions to be satisfied we must have $s = -t \in T$, and hence $s \in S \cap T$. Conversely, if $x \in S \cap T$ then (x, -x) is in the kernel. So $\ker \theta = \{(x, -x) \mid x \in S \cap T\}$. Hence the mapping $\phi: S \cap T \to \ker \theta$ defined by $\phi(x) = (x, -x)$ is surjective. It is also injective, since (x, -x) = (y, -y) implies x = y. Finally, ϕ is linear since

$$\phi(\lambda x + \mu y) = (\lambda x + \mu y, -(\lambda x + \mu y)) = (\lambda x, -\lambda x) + (\mu y, -\mu y)$$
$$= \lambda(x, -x) + \mu(y, -y) = \lambda\phi(x) + \mu\phi(y)$$

for all $x, y \in S \cap T$ and all scalars λ and μ . Hence ker $\theta \cong S \cap T$.

By the Main Theorem, $\dim \ker \theta + \dim \operatorname{im} \theta = \dim(S + T)$. Since $\ker \theta \cong S \cap T$ we know (by Exercise 1) that $\dim \ker \theta = \dim(S \cap T)$, and by Exercise 3 we know that $\dim S + T = \dim S + \dim T$. Combining all this with $\operatorname{im} \theta = S + T$ gives $\dim(S \cap T) + \dim(S + T) = \dim S + \dim T$, as required.