The University of Sydney
MATH2902 Vector Spaces
(http://www.maths.usyd.edu.au/u/UG/IM/MATH2902/)

Tutorial 10

1. Prove that isomorphic vector spaces have the same dimension.
(Hint: Use Theorem 4.17. This was proved in Exercise 5 of Tutorial 4.)

Solution.

Let V and W be isomorphic vector spaces and let $\theta: V \rightarrow W$ be an isomorphism. That is, θ is a bijective linear transformation. Let $v_{1}, v_{2}, \ldots, v_{n}$ be a basis for V. By 4.17 (ii) the elements $\theta\left(v_{1}\right), \theta\left(v_{2}\right), \ldots, \theta\left(v_{n}\right)$ span W (since θ is surjective), and by 4.17 (i) they are linearly independent (since θ is injective). So these elements form a basis for W, and we see that bases of W have the same number of elements as do bases of V.
2. Is it possible to find subspaces U, V and W of \mathbb{R}^{4} such that

$$
\mathbb{R}^{4}=U \oplus V=V \oplus W=W \oplus U ?
$$

Solution.

Yes; for instance, define U, V and W to be (respectively)

$$
\left\{\left.\left(\begin{array}{c}
\alpha \\
\beta \\
0 \\
0
\end{array}\right) \right\rvert\, \alpha, \beta \in \mathbb{R}\right\}, \quad\left\{\left.\left(\begin{array}{c}
0 \\
0 \\
\alpha \\
\beta
\end{array}\right) \right\rvert\, \alpha, \beta \in \mathbb{R}\right\}, \quad\left\{\left.\left(\begin{array}{c}
\alpha \\
\beta \\
\alpha \\
\beta
\end{array}\right) \right\rvert\, \alpha, \beta \in \mathbb{R}\right\} .
$$

Each of these is a subspace of dimension two: it can be seen that

$$
\boldsymbol{b}=\left(\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right)\right), \quad \boldsymbol{c}=\left(\left(\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right)\right), \quad \boldsymbol{d}=\left(\left(\begin{array}{l}
1 \\
0 \\
1 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
0 \\
1
\end{array}\right)\right)
$$

are bases of U, V and W respectively. Now since $U \cap V=\{0\}$ the sum $U+V$ is direct, and its dimension is therefore equal to $\operatorname{dim} U+\operatorname{dim} V=4$. The only 4 -dimensional subspace of \mathbb{R}^{4} is \mathbb{R}^{4} itself; so we conclude that $U \oplus V=\mathbb{R}^{4}$. (Indeed, combining the bases \boldsymbol{b} of U and \boldsymbol{c} of V gives the standard basis of \mathbb{R}^{4}.) Since it is also true that $U \cap W=\{0\}$ and $V \cap W=\{0\}$ it follows that $U \oplus W=V \oplus W=\mathbb{R}^{4}$ as well.
3. $\quad(i) \quad$ Let V and W be vector spaces over F. Show that the Cartesian product of V and W (see §1b) becomes a vector space if addition and scalar multiplication are defined in the natural way. (This space is called the external direct sum of V and W, and is sometimes denoted by ' $V \dot{+} W^{\prime}$ ')
(ii) Show that $V^{\prime}=\{(v, 0) \mid v \in V\}$ and $W^{\prime}=\{(0, w) \mid w \in W\}$ are subspaces of $V \dot{+} W$ with $V^{\prime} \cong V$ and $W^{\prime} \cong W$, and that $V \dot{+} W=V^{\prime} \oplus W^{\prime}$.
(iii) Prove that $\operatorname{dim}(V+W)=\operatorname{dim} V+\operatorname{dim} W$.

Solution.

(i) Elements of $V \dot{+} W$ are ordered pairs (v, w) with $v \in V$ and $w \in W$. Addition and scalar multiplication are defined by

$$
\left(v_{1}, w_{1}\right)+\left(v_{2}, w_{2}\right)=\left(v_{1}+v_{2}, w_{1}+w_{2}\right), \quad \lambda\left(v_{1}, w_{1}\right)=\left(\lambda v_{1}, \lambda w_{1}\right)
$$

for all $v_{1}, v_{2} \in V$ and $w_{1}, w_{2} \in W$ and all $\lambda \in F$. To prove that this gives a vector space is simply a matter of checking the axioms. The zero element of $V \dot{+} W$ is the ordered pair $(0,0)$ (where the first 0 is the zero of V and the second the zero of W). The negative of (v, w) is $(-v,-w)$.
For all $\lambda, \mu \in F$ and all $v \in V$ and $w \in W$ we have

$$
\begin{array}{rlrl}
(\lambda+\mu)(v, w) & =((\lambda+\mu) v,(\lambda+\mu) w) & & \\
& \text { (definition of scalar multiplication) } \\
& =(\lambda v+\mu v, \lambda w+\mu w) & & \text { (vector space axioms in } V, W) \\
& =(\lambda v, \lambda w)+(\mu v, \mu w) & & \text { (definition of addition) } \\
& =\lambda(v, w)+\mu(v, w) & & \text { (definition of scalar multiplication) }
\end{array}
$$

proving Axiom (vii) of Definition 2.3. The other axioms can be done similarly, in each case making use of the fact that the axiom in question is satisfied in V and in W (since it is given that V and W are vector spaces).
(ii) Define $\theta: V \rightarrow V+W$ by $\theta(v)=(v, 0)$ for all $v \in V$. Then for all $u, v \in V$ and $\lambda, \mu \in F$ we have

$$
\theta(\lambda u+\mu v)=(\lambda u+\mu v, 0)=\lambda(u, 0)+\mu(v, 0)=\lambda \theta(u)+\mu \theta(v) .
$$

Hence θ is a linear transformation. The kernel of θ consists of all $v \in V$ such that $(v, 0)$ is the zero element of $V \dot{+} W$. Hence $\operatorname{ker} \theta=\{0\}$, and it follows that θ is injective. The image of θ is the subset of $V \dot{+} W$ consisting of all elements of the form $\theta(v)$ for $v \in V$; thus $\operatorname{im} \theta=V^{\prime}$. By 3.14 we deduce that V^{\prime} is a subspace of $V \dot{+} W$.
Define $\theta^{\prime}: V \rightarrow V^{\prime}$ by $\theta^{\prime}(v)=\theta(v)$ for all v. That is, θ^{\prime} is just θ with its codomain cut down to coincide with its image. This makes θ^{\prime} surjective, and it is also injective (since θ is). Hence θ^{\prime} is an isomorphism, and $V^{\prime} \cong V$.

Virtually identical arguments using the map $w \mapsto(0, w)$ show that W^{\prime} is a subspace and isomorphic to W. Since an arbitrary element of $V \dot{+} W$ has the form $(v, w)=(v, 0)+(0, w) \in V^{\prime}+W^{\prime}$ we see that $V \dot{+} W=V^{\prime}+W^{\prime}$, and since $(v, 0)=(0, w)$ implies $v=w=0$ we see that $V^{\prime} \cap W^{\prime}=\{0\}$. Hence $V \dot{+} W=V^{\prime} \oplus W^{\prime}$.
(iii) Since $V^{\prime} \cong V$ and $W^{\prime} \cong W$ we deduce that $\operatorname{dim} V^{\prime}=\operatorname{dim} V$ and $\operatorname{dim} W^{\prime}=\operatorname{dim} W$ (by Exercise 1). But since $V \dot{+} W=V^{\prime} \oplus W^{\prime}$ Theorem 6.9 gives $\operatorname{dim}(V \dot{+} W)=\operatorname{dim} V^{\prime}+\operatorname{dim} W^{\prime}$, whence the result.
4. Let S and T be subspaces of a vector space V and let U be a subspace of T such that $T=(S \cap T) \oplus U$. Prove that $S+T=S \oplus U$ (see Tutorial 3 for the definition of $S+T$), and hence deduce that

$$
\operatorname{dim}(S+T)=\operatorname{dim} S+\operatorname{dim} T-\operatorname{dim}(S \cap T)
$$

Solution.

From an earlier tutorial we know that $S+T$ is a subspace of V. If $s \in S$ then $s=s+0 \in S+T$; so $S \subseteq S+T$. Similarly $T \subseteq S+T$, and since $U \subseteq T$ we have $U \subseteq S+T$. So S and U are subspaces of $S+T$, and we must show that $S+U=S+T$ and $S \cap U=\{0\}$.
Let $x \in S+T$. Then $x=s+t$ for some $s \in S, t \in T$. Since $T=(S \cap T) \oplus U$ there exist $r \in S \cap T, u \in U$ with $t=r+u$. Since $r \in S \cap T \subseteq S$ and $s \in S$ we have $s+r \in S$, and therefore

$$
x=s+(r+u)=(s+r)+u \in S+U .
$$

Since x was arbitrary we have shown that all elements of $S+T$ lie in the subspace $S+U$ of $S+T$; thus $S+U=S+T$.
Let $a \in S \cap U$. Then $a \in S$ and $a \in U \subseteq T$; so $a \in S \cap T$. But $a \in U$; so $a \in(S \cap T) \cap U$. Because the sum of $S \cap T$ and U is direct we have that $(S \cap T) \cap U=\{0\}$, and therefore $a=0$. But a was an arbitrary element of $S \cap U$, and so we have shown that $S \cap U=\{0\}$, as required.
Alternatively, making use of some easily proved facts about adding subspaces, we have

$$
S+T=S+((S \cap T)+U)=(S+(S \cap T))+U=S+U
$$

(where $S+(S \cap T)=S$ holds since $S \cap T \subseteq S$) and

$$
S \cap U=S \cap(T \cap U)=(S \cap T) \cap U=\{0\}
$$

(where $U=T \cap U$ holds since $U \subseteq T$.)
Since $T=(S \cap T) \oplus U$ we have
(1)

$$
\operatorname{dim} T=\operatorname{dim}(S \cap T)+\operatorname{dim} U
$$

Since $S+T=S \oplus U$ we have
$\operatorname{dim}(S+T)=\operatorname{dim} S+\operatorname{dim} U$
Eliminating $\operatorname{dim} U$ from equations (1) and (2) gives

$$
\begin{equation*}
\operatorname{dim}(S+T)=\operatorname{dim} S+\operatorname{dim} T-\operatorname{dim}(S \cap T) \tag{2}
\end{equation*}
$$

5. $\quad(i) \quad$ Let S and T be subspaces of a vector space V. Prove that $(s, t) \mapsto s+t$ defines a linear transformation from $S \dot{+} T$ to V which has image $S+T$ and kernel isomorphic to $S \cap T$.
(ii) The Main Theorem on Linear Transformations (see p. 158 of the book) asserts that if V is a finitely generated vector space and θ a linear transformation from V to another space W, then the sum of the dimensions of $\operatorname{ker} \theta$ and $\operatorname{im} \theta$ equals the dimension of V. Use this and Part (i) to give another proof that $\operatorname{dim}(S+T)+\operatorname{dim}(S \cap T)=\operatorname{dim} S+\operatorname{dim} T$.

Solution.

Since every element of $S \dot{+} T$ is uniquely expressible in the form (s, t) with $s \in S$ and $t \in T$, and since S and T are subspaces of the vector space V, the formula $\theta(s, t)=s+t$ defines a function from $S \dot{+} T$ to V. Now if $(s, t),\left(s^{\prime}, t^{\prime}\right) \in S+T$ and λ is a scalar then

$$
\begin{aligned}
& \theta\left((s, t)+\left(s^{\prime}, t^{\prime}\right)\right)=\theta\left(s+s^{\prime}, t+t^{\prime}\right)=\left(s+s^{\prime}\right)+\left(t+t^{\prime}\right) \\
&=(s+t)+\left(s^{\prime}+t^{\prime}\right)=\theta(s, t)+\theta\left(s^{\prime}, t^{\prime}\right)
\end{aligned}
$$

(by definition of θ, definition of addition in $S+T$ and properties of addition in the vector space V), and

$$
\theta(\lambda(s, t))=\theta(\lambda s, \lambda t)=\lambda s+\lambda t=\lambda(s+t)=\lambda \theta(s, t)
$$

similarly. Hence θ is linear.
The image of θ is the set of all elements of V of the form $\theta(s, t)=s+t$ with $s \in S$ and $t \in T$; that is, $\operatorname{im} \theta=S+T$. The kernel of θ consists of all (s, t) such that $s \in S, t \in T$ and $s+t=0$. For these conditions to be satisfied we must have $s=-t \in T$, and hence $s \in S \cap T$. Conversely, if $x \in S \cap T$ then $(x,-x)$ is in the kernel. So $\operatorname{ker} \theta=\{(x,-x) \mid x \in S \cap T\}$. Hence the mapping $\phi: S \cap T \rightarrow \operatorname{ker} \theta$ defined by $\phi(x)=(x,-x)$ is surjective. It is also injective, since $(x,-x)=(y,-y)$ implies $x=y$. Finally, ϕ is linear since

$$
\begin{aligned}
\phi(\lambda x+\mu y) & =(\lambda x+\mu y,-(\lambda x+\mu y))=(\lambda x,-\lambda x)+(\mu y,-\mu y) \\
& =\lambda(x,-x)+\mu(y,-y)=\lambda \phi(x)+\mu \phi(y)
\end{aligned}
$$

for all $x, y \in S \cap T$ and all scalars λ and μ. Hence $\operatorname{ker} \theta \cong S \cap T$.
By the Main Theorem, $\operatorname{dim} \operatorname{ker} \theta+\operatorname{dim} \operatorname{im} \theta=\operatorname{dim}(S \dot{+} T)$. Since $\operatorname{ker} \theta \cong S \cap T$ we know (by Exercise 1) that $\operatorname{dim} \operatorname{ker} \theta=\operatorname{dim}(S \cap T)$, and by Exercise 3 we know that $\operatorname{dim} S \dot{+} T=\operatorname{dim} S+\operatorname{dim} T$. Combining all this with $\operatorname{im} \theta=S+T$ gives $\operatorname{dim}(S \cap T)+\operatorname{dim}(S+T)=\operatorname{dim} S+\operatorname{dim} T$, as required.

