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1. Prove that isomorphic vector spaces have the same dimension.
(Hint: Use Theorem 4.17. This was proved in Exercise 5 of Tutorial 4.)

Solution.

Let V and W be isomorphic vector spaces and let θ:V → W be an isomor-
phism. That is, θ is a bijective linear transformation. Let v1, v2, . . . , vn be a
basis for V . By 4.17 (ii) the elements θ(v1), θ(v2), . . . , θ(vn) span W (since
θ is surjective), and by 4.17 (i) they are linearly independent (since θ is in-
jective). So these elements form a basis for W , and we see that bases of W
have the same number of elements as do bases of V .

2. Is it possible to find subspaces U , V and W of R4 such that
R4 = U ⊕ V = V ⊕ W = W ⊕ U ?

Solution.

Yes; for instance, define U , V and W to be (respectively)

{ 
α
β
0
0

 ∣∣∣∣ α, β ∈ R
}

,

{ 
0
0
α
β

 ∣∣∣∣ α, β ∈ R
}

,

{ 
α
β
α
β

 ∣∣∣∣ α, β ∈ R
}

.

Each of these is a subspace of dimension two: it can be seen that

b =




1
0
0
0

 ,


0
1
0
0


 , c =




0
0
1
0

 ,


0
0
0
1


 , d =




1
0
1
0

 ,


0
1
0
1




are bases of U , V and W respectively. Now since U ∩V = {0} the sum U +V
is direct, and its dimension is therefore equal to dim U +dim V = 4. The only
4-dimensional subspace of R4 is R4 itself; so we conclude that U ⊕ V = R4.
(Indeed, combining the bases b of U and c of V gives the standard basis
of R4.) Since it is also true that U ∩ W = {0} and V ∩ W = {0} it follows
that U ⊕W = V ⊕W = R4 as well.
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3. (i) Let V and W be vector spaces over F . Show that the Cartesian product
of V and W (see §1b) becomes a vector space if addition and scalar
multiplication are defined in the natural way. (This space is called the
external direct sum of V and W , and is sometimes denoted by ‘V uW ’.)

(ii) Show that V ′ = { (v, 0) | v ∈ V } and W ′ = { (0, w) | w ∈ W } are sub-
spaces of V uW with V ′ ∼= V and W ′ ∼= W , and that V uW = V ′⊕W ′.

(iii) Prove that dim(V u W ) = dim V + dim W .

Solution.

(i) Elements of V u W are ordered pairs (v, w) with v ∈ V and w ∈ W .
Addition and scalar multiplication are defined by

(v1, w1) + (v2, w2) = (v1 + v2, w1 + w2), λ(v1, w1) = (λv1, λw1)

for all v1, v2 ∈ V and w1, w2 ∈ W and all λ ∈ F . To prove that this gives a
vector space is simply a matter of checking the axioms. The zero element of
V u W is the ordered pair (0, 0) (where the first 0 is the zero of V and the
second the zero of W ). The negative of (v, w) is (−v,−w).

For all λ, µ ∈ F and all v ∈ V and w ∈ W we have

(λ + µ)(v, w) = ((λ + µ)v, (λ + µ)w) (definition of scalar multiplication)
= (λv + µv, λw + µw) (vector space axioms in V , W )
= (λv, λw) + (µv, µw) (definition of addition)
= λ(v, w) + µ(v, w) (definition of scalar multiplication)

proving Axiom (vii) of Definition 2.3. The other axioms can be done similarly,
in each case making use of the fact that the axiom in question is satisfied in
V and in W (since it is given that V and W are vector spaces).

(ii) Define θ:V → V u W by θ(v) = (v, 0) for all v ∈ V . Then for all
u, v ∈ V and λ, µ ∈ F we have

θ(λu + µv) = (λu + µv, 0) = λ(u, 0) + µ(v, 0) = λθ(u) + µθ(v).

Hence θ is a linear transformation. The kernel of θ consists of all v ∈ V such
that (v, 0) is the zero element of V u W . Hence ker θ = {0}, and it follows
that θ is injective. The image of θ is the subset of V u W consisting of all
elements of the form θ(v) for v ∈ V ; thus im θ = V ′. By 3.14 we deduce that
V ′ is a subspace of V u W .

Define θ′:V → V ′ by θ′(v) = θ(v) for all v. That is, θ′ is just θ with its
codomain cut down to coincide with its image. This makes θ′ surjective, and
it is also injective (since θ is). Hence θ′ is an isomorphism, and V ′ ∼= V .
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Virtually identical arguments using the map w 7→ (0, w) show that W ′ is a
subspace and isomorphic to W . Since an arbitrary element of V u W has the
form (v, w) = (v, 0) + (0, w) ∈ V ′ + W ′ we see that V u W = V ′ + W ′, and
since (v, 0) = (0, w) implies v = w = 0 we see that V ′ ∩ W ′ = {0}. Hence
V u W = V ′ ⊕W ′.

(iii) Since V ′ ∼= V and W ′ ∼= W we deduce that dim V ′ = dim V and
dim W ′ = dim W (by Exercise 1). But since V u W = V ′ ⊕W ′ Theorem 6.9
gives dim(V u W ) = dim V ′ + dim W ′, whence the result.

4. Let S and T be subspaces of a vector space V and let U be a subspace of T
such that T = (S ∩ T )⊕U . Prove that S + T = S ⊕U (see Tutorial 3 for the
definition of S + T ), and hence deduce that

dim(S + T ) = dimS + dim T − dim(S ∩ T ).

Solution.

From an earlier tutorial we know that S +T is a subspace of V . If s ∈ S then
s = s + 0 ∈ S + T ; so S ⊆ S + T . Similarly T ⊆ S + T , and since U ⊆ T we
have U ⊆ S + T . So S and U are subspaces of S + T , and we must show that
S + U = S + T and S ∩ U = {0}.
Let x ∈ S + T . Then x = s + t for some s ∈ S, t ∈ T . Since T = (S ∩ T )⊕U
there exist r ∈ S ∩ T , u ∈ U with t = r + u. Since r ∈ S ∩ T ⊆ S and s ∈ S
we have s + r ∈ S, and therefore

x = s + (r + u) = (s + r) + u ∈ S + U.

Since x was arbitrary we have shown that all elements of S + T lie in the
subspace S + U of S + T ; thus S + U = S + T .

Let a ∈ S ∩ U . Then a ∈ S and a ∈ U ⊆ T ; so a ∈ S ∩ T . But a ∈ U ; so
a ∈ (S ∩ T ) ∩ U . Because the sum of S ∩ T and U is direct we have that
(S ∩ T ) ∩ U = {0}, and therefore a = 0. But a was an arbitrary element of
S ∩ U , and so we have shown that S ∩ U = {0}, as required.

Alternatively, making use of some easily proved facts about adding subspaces,
we have

S + T = S + ((S ∩ T ) + U) = (S + (S ∩ T )) + U = S + U

(where S + (S ∩ T ) = S holds since S ∩ T ⊆ S) and

S ∩ U = S ∩ (T ∩ U) = (S ∩ T ) ∩ U = {0}
(where U = T ∩ U holds since U ⊆ T .)

Since T = (S ∩ T )⊕ U we have

(1) dim T = dim(S ∩ T ) + dim U.
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Since S + T = S ⊕ U we have
(2) dim(S + T ) = dim S + dim U.

Eliminating dimU from equations (1) and (2) gives
dim(S + T ) = dim S + dim T − dim(S ∩ T ).

5. (i) Let S and T be subspaces of a vector space V . Prove that (s, t) 7→ s + t
defines a linear transformation from S u T to V which has image S + T
and kernel isomorphic to S ∩ T .

(ii) The Main Theorem on Linear Transformations (see p. 158 of the book)
asserts that if V is a finitely generated vector space and θ a linear trans-
formation from V to another space W , then the sum of the dimensions
of ker θ and im θ equals the dimension of V . Use this and Part (i) to
give another proof that dim(S + T ) + dim(S ∩ T ) = dimS + dim T .

Solution.

Since every element of S u T is uniquely expressible in the form (s, t) with
s ∈ S and t ∈ T , and since S and T are subspaces of the vector space V ,
the formula θ(s, t) = s + t defines a function from S u T to V . Now if
(s, t), (s′, t′) ∈ S u T and λ is a scalar then

θ((s, t) + (s′, t′)) = θ(s + s′, t + t′) = (s + s′) + (t + t′)
= (s + t) + (s′ + t′) = θ(s, t) + θ(s′, t′)

(by definition of θ, definition of addition in S u T and properties of addition
in the vector space V ), and

θ(λ(s, t)) = θ(λs, λt) = λs + λt = λ(s + t) = λθ(s, t)
similarly. Hence θ is linear.
The image of θ is the set of all elements of V of the form θ(s, t) = s + t with
s ∈ S and t ∈ T ; that is, im θ = S + T . The kernel of θ consists of all (s, t)
such that s ∈ S, t ∈ T and s + t = 0. For these conditions to be satisfied
we must have s = −t ∈ T , and hence s ∈ S ∩ T . Conversely, if x ∈ S ∩ T
then (x,−x) is in the kernel. So ker θ = { (x,−x) | x ∈ S ∩ T }. Hence the
mapping φ:S ∩ T → ker θ defined by φ(x) = (x,−x) is surjective. It is also
injective, since (x,−x) = (y,−y) implies x = y. Finally, φ is linear since

φ(λx + µy) = (λx + µy,−(λx + µy)) = (λx,−λx) + (µy,−µy)
= λ(x,−x) + µ(y,−y) = λφ(x) + µφ(y)

for all x, y ∈ S ∩ T and all scalars λ and µ. Hence ker θ ∼= S ∩ T .
By the Main Theorem, dim ker θ+dim im θ = dim(SuT ). Since ker θ ∼= S∩T
we know (by Exercise 1) that dim ker θ = dim(S ∩ T ), and by Exercise 3 we
know that dim S u T = dim S + dim T . Combining all this with im θ = S + T
gives dim(S ∩ T ) + dim(S + T ) = dim S + dim T , as required.


