2

THE UNIVERSITY OF SYDNEY

MATH2902 Vector Spaces

(http://www.maths.usyd.edu.au/u/UG/IM/MATH2902/)

Semester1, 2001 Lecturer: R. Howlett

Tutorial 12

1. Let A be an $n \times n$ matrix whose rank is less than n. Prove that 0 is an eigenvalue of A.

Solution.

Since the rank of A plus the nullity of A is n, the assumption that the rank is less than n gives that the nullity is nonzero. Hence the (right) null space of A contains a nonzero vector. If v is any such, then Av = v = v which shows that v is an eigenvector of A with v the corresponding eigenvalue.

2. Let V be a vector space and S and T subspaces of V such that $V = S \oplus T$. Prove or disprove the following assertion:

If U is any subspace of V then $U = (U \cap S) \oplus (U \cap T)$.

Solution.

Let $V=\mathbb{R}^2$, let S be the set of all scalar multiples of $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and let T be the set of all scalar multiples of $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$. Then $V=S\oplus T$. (We have chopped the standard basis of \mathbb{R}^2 into two pieces and defined S and T to be the spaces spanned by these pieces.) Now if we define U to be the set of all scalar multiples of $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ we see that $U\cap S$ and $U\cap T$ both consist of the zero vector alone, and so it is certainly not true that $U=(U\cap S)\oplus (U\cap T)$.

- **3.** (i) Let A, B and C be $n \times n$ matrices, and suppose that the column space of B equals the column space of C. Prove that the column space of AB equals that of AC. (Hint: Use Proposition 7.16 of the text.)
 - (ii) Let A be an $n \times n$ matrix and suppose that the rank of A^4 is the same as the rank of A^3 . Prove that A^5 and all higher powers of A also have this same rank. (Hint: Apply Part (i) with $B = A^3$ and $C = A^4$.)

Solution.

(i) Proposition 7.16 says that $u \mapsto Au$ defines a surjective map from CS(B) to CS(AB). Hence

(1)
$$CS(AB) = \{ Au \mid u \in CS(B) \}.$$

Applying the same proposition with C in place of B gives

(2)
$$CS(AC) = \{ Au \mid u \in CS(C) \}.$$

Since CS(B) = CS(C) the right hand side of (1) equals the right hand side of (2), and so the left hand sides are equal too, as required.

- (ii) Recall that the rank of a matrix is the dimension of its column space. Thus we are given that the column spaces of A^3 and A^4 have the same dimension. But Proposition 3.21 tell us that the column space of A^4 is contained in the column space of A^3 . (You can see it as follows. The equation $A^4 = A^3A$ shows that the j^{th} column of A^4 is A^3a_j , where a_j is the j^{th} column of A. Hence the columns of A^4 are linear combinations of the columns of A^3 .) A subspace whose dimension equals that of the whole space must equal the whole space (see Proposition 4.11), and so we can conclude that $CS(A^4) = CS(A^3)$. Now Part (i) gives $CS(A^5) = CS(A^4)$, and applying it again gives $CS(A^6) = CS(A^5)$, and so on. Taking dimensions gives the result.
- **4.** Let V and W be vector spaces over the field F and let $\mathbf{b} = (v_1, v_2, \dots, v_n)$ and $\mathbf{c} = (w_1, w_2, \dots, w_m)$ be bases of V and W respectively. Let L(V, W) be the set of all linear transformations from V to W, and let $\mathrm{Mat}(m \times n, F)$ be the set of all $m \times n$ matrices over F. We know that $\mathrm{Mat}(m \times n, F)$ is a vector space over F, and we have seen in Question 3 of Tutorial 5 that L(V, W) is too. Let $\Omega: L(V, W) \to \mathrm{Mat}(m \times n, F)$ be the function defined by $\Omega(\theta) = \mathrm{M}_{\mathbf{c}\mathbf{b}}(\theta)$ for all $\theta \in L(V, W)$.
 - (i) Prove that Ω is a linear transformation. (Hint: The task is to prove that $M_{cb}(\phi + \theta) = M_{cb}(\phi) + M_{cb}(\theta)$ and $M_{cb}(\lambda \phi) = \lambda M_{cb}(\phi)$. Now the j^{th} column of $M_{cb}(\phi + \theta)$ is $\text{cv}_{c}((\phi + \theta)(v_{j}))$ while the j^{th} columns of $M_{cb}(\phi)$ and $M_{cb}(\theta)$ are $\text{cv}_{c}(\phi(v_{j}))$ and $\text{cv}_{c}(\theta(v_{j}))$. Use the definition of $\phi + \theta$ and fact that $x \mapsto \text{cv}_{c}(x)$ is linear to prove that the j^{th} column of $M_{cb}(\phi + \theta)$ is the sum of the j^{th} columns of $M_{cb}(\phi)$ and $M_{cb}(\theta)$.)
 - (ii) Prove that the kernel of Ω is $\{z\}$, where $z: V \to W$ is the zero function.
 - (iii) Prove that Ω is a vector space isomorphism. (Hint: By the first two parts we know that Ω is linear and injective; so surjectivity is all that remains. That is, given a $m \times n$ matrix M we must show that there is a linear transformation θ from V to W having M as its matrix. Now the coefficients of M determine what $\theta(v_i)$ has to be for each i, and Theorem 4.18 guarantees that such a linear transformation exists.)
 - (iv) Find a basis for L(V, W). (Hint: (Find a basis of $Mat(m \times n, F)$ first. The corresponding linear transformations will give the desired basis of L(V, W).)

Solution.

Let ϕ , $\theta \in L(V, W)$ and let $\lambda \in F$. For each j (from 1 to n) we have

$$cv_{\mathbf{c}}((\phi + \theta)(v_j)) = cv_{\mathbf{c}}(\phi(v_j) + \theta(v_j))$$
 (by definition of $\phi + \theta$)
= $cv_{\mathbf{c}}(\phi(v_j)) + cv_{\mathbf{c}}(\theta(v_j))$

since the mapping $\operatorname{cv}_{\boldsymbol{c}}: W \to F^m$ given by $x \mapsto \operatorname{cv}_{\boldsymbol{c}}(x)$ an isomorphism. Hence the j^{th} column of $\operatorname{M}_{\boldsymbol{cb}}(\phi + \theta)$ is the sum of the j^{th} columns of $\operatorname{M}_{\boldsymbol{cb}}(\phi)$ and $\operatorname{M}_{\boldsymbol{cb}}(\theta)$; hence $\operatorname{M}_{\boldsymbol{cb}}(\phi + \theta) = \operatorname{M}_{\boldsymbol{cb}}(\phi) + \operatorname{M}_{\boldsymbol{cb}}(\theta)$. That is, $\Omega(\phi + \theta) = \Omega(\phi) + \Omega(\theta)$. Similarly, for each j the j^{th} column of $\operatorname{M}_{\boldsymbol{cb}}(\lambda\phi)$ is $\operatorname{cv}_{\boldsymbol{c}}((\lambda\phi)(v_j))$, which equals $\operatorname{cv}_{\boldsymbol{c}}(\lambda(\phi(v_j))) = \lambda \operatorname{cv}_{\boldsymbol{c}}(\phi(v_j))$ (by definition of $\lambda\phi$ and linearity of the mapping $\operatorname{cv}_{\boldsymbol{c}}$). Hence $\operatorname{M}_{\boldsymbol{cb}}(\lambda\phi) = \lambda \operatorname{M}_{\boldsymbol{cb}}(\phi)$; that is, $\Omega(\lambda\phi) = \lambda\Omega(\phi)$. This proves (i).

The kernel of Ω is the set of all ϕ in L(V,W) such that $M_{cb}(\phi)$ is the zero matrix. The fact that Ω is linear guarantees that z, the zero of L(V,W), is in the kernel. If ϕ is an arbitrary element of the kernel then $\mathrm{cv}_{\boldsymbol{c}}(\phi(v_j))=0$ for each j, since $\mathrm{cv}_{\boldsymbol{c}}(\phi(v_j))$ is the j^{th} column of $M_{cb}(v_j)$. Since $\mathrm{cv}_{\boldsymbol{c}}$ is an isomorphism we deduce that $\phi(v_j)=0$ for all j, and it follows by linearity of ϕ that $\phi(v)=0$ for all $v\in V$. That is, $\phi=z$. So z is the only element of the kernel.

Let $A \in \operatorname{Mat}(m \times n, F)$ be arbitrary and for each j let $\alpha_j \in F^m$ be the j^{th} column of A. Since $\operatorname{cv}_{\boldsymbol{c}}$ is an isomorphism there exist $w_j \in W$ such that $\operatorname{cv}_{\boldsymbol{c}}(w_j) = \alpha_j$, and since linear transformations can be defined arbitrarily on a basis (Theorem 4.18) there is a $\phi \in \operatorname{L}(V, W)$ such that $\phi(v_j) = w_j$ for each j. Clearly now $\operatorname{M}_{\boldsymbol{c}\boldsymbol{b}}(\phi) = A$; that is, $\Omega(\phi) = A$. So Ω is surjective.

If E_{kl} is the matrix in $\operatorname{Mat}(m \times n, F)$ which has 1 as the $(k, l)^{\operatorname{th}}$ entry and zeros elsewhere then the matrices $(E_{kl} \mid 1 \leq k \leq m, 1 \leq l \leq n)$ form a basis for $\operatorname{L}(V, W)$. In fact if $A \in \operatorname{Mat}(m \times n, F)$ has $(i, j)^{\operatorname{th}}$ entry α_{ij} then $A = \sum \alpha_{ij} E_{ij}$, and this is the unique way of expressing A as a linear combination of the E_{kl} . It is a general fact that an isomorphism of vector spaces will map a basis of one space to a basis of the other. (See Theorem 4.19 and Exercise 3 of Tutorial 4.) So to find a basis of $\operatorname{L}(V, W)$ it suffices to find linear transformations $\phi_{kl}: V \to W$ such that $\Omega(\phi_{kl}) = E_{kl}$ (for $1 \leq k \leq m$, $1 \leq l \leq n$). By Theorem 4.18 we know that (for each k and l) there is a linear transformation ϕ_{kl} satisfying

$$\phi_{kl}(v_j) = \begin{cases} 0 & \text{if } j \neq l \\ w_k & \text{if } j = l \end{cases}$$

and, by the definition of the matrix of a linear transformation, we see that the matrix of ϕ_{kl} relative to \boldsymbol{b} and \boldsymbol{c} has its j^{th} column equal to zero unless j=l, while the l^{th} column is $\operatorname{cv}_{\boldsymbol{c}}(v_k)$, which has 1 as its k^{th} entry and all other entries zero. Thus $\operatorname{M}_{\boldsymbol{c}\boldsymbol{b}}(\phi_{kl})=E_{kl}$, and, by the remarks above, $(\phi_{kl}\mid 1\leq k\leq m, 1\leq l\leq n)$ is a basis for $\operatorname{L}(V,W)$.