The University of Sydney
MATH2902 Vector Spaces
(http://www.maths.usyd.edu.au/u/UG/IM/MATH2902/)

Tutorial 12

1. Let A be an $n \times n$ matrix whose rank is less than n. Prove that 0 is an eigenvalue of A.

Solution.
Since the rank of A plus the nullity of A is n, the assumption that the rank is less than n gives that the nullity is nonzero. Hence the (right) null space of A contains a nonzero vector. If $\underset{\sim}{v}$ is any such, then $A \underset{\sim}{v}=\underset{\sim}{0}=0 \underset{\sim}{v}$, which shows that v is an eigenvector of $A \tilde{\text { with }} 0$ the corresponding eigenvalue.
2. Let V be a vector space and S and T subspaces of V such that $V=S \oplus T$. Prove or disprove the following assertion:

$$
\text { If } U \text { is any subspace of } V \text { then } U=(U \cap S) \oplus(U \cap T) \text {. }
$$

Solution.
Let $V=\mathbb{R}^{2}$, let S be the set of all scalar multiples of $\binom{1}{0}$ and let T be the set of all scalar multiples of $\binom{0}{1}$. Then $V=S \oplus T$. (We have chopped the standard basis of \mathbb{R}^{2} into two pieces and defined S and T to be the spaces spanned by these pieces.) Now if we define U to be the set of all scalar multiples of $\binom{1}{1}$ we see that $U \cap S$ and $U \cap T$ both consist of the zero vector alone, and so it is certainly not true that $U=(U \cap S) \oplus(U \cap T)$.
3. (i) Let A, B and C be $n \times n$ matrices, and suppose that the column space of B equals the column space of C. Prove that the column space of $A B$ equals that of $A C$.
(Hint: Use Proposition 7.16 of the text.)
(ii) Let A be an $n \times n$ matrix and suppose that the rank of A^{4} is the same as the rank of A^{3}. Prove that A^{5} and all higher powers of A also have this same rank. (Hint: Apply Part (i) with $B=A^{3}$ and $C=A^{4}$.)

Solution

(i) Proposition 7.16 says that $u \mapsto A u$ defines a surjective map from $\operatorname{CS}(B)$ to $\operatorname{CS}(A B)$. Hence

$$
\begin{equation*}
\operatorname{CS}(A B)=\{A u \mid u \in \operatorname{CS}(B)\} . \tag{1}
\end{equation*}
$$

Applying the same proposition with C in place of B gives

$$
\begin{equation*}
\operatorname{CS}(A C)=\{A u \mid u \in \operatorname{CS}(C)\} \tag{2}
\end{equation*}
$$

Since $\operatorname{CS}(B)=\operatorname{CS}(C)$ the right hand side of (1) equals the right hand side of (2), and so the left hand sides are equal too, as required.
(ii) Recall that the rank of a matrix is the dimension of its column space. Thus we are given that the column spaces of A^{3} and A^{4} have the same dimension. But Proposition 3.21 tell us that the column space of A^{4} is contained in the column space of A^{3}. (You can see it as follows. The equation $A^{4}=A^{3} A$ shows that the $j^{\text {th }}$ column of A^{4} is $A^{3} a_{j}$, where a_{j} is the $j^{\text {th }}$ column of A. Hence the columns of A^{4} are linear combinations of the columns of A^{3}.) A subspace whose dimension equals that of the whole space must equal the whole space (see Proposition 4.11), and so we can conclude that $\operatorname{CS}\left(A^{4}\right)=\operatorname{CS}\left(A^{3}\right)$. Now Part (i) gives $\operatorname{CS}\left(A^{5}\right)=\operatorname{CS}\left(A^{4}\right)$, and applying it again gives $\operatorname{CS}\left(A^{6}\right)=\operatorname{CS}\left(A^{5}\right)$, and so on. Taking dimensions gives the result.
4. Let V and W be vector spaces over the field F and let $\boldsymbol{b}=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ and $\boldsymbol{c}=\left(w_{1}, w_{2}, \ldots, w_{m}\right)$ be bases of V and W respectively. Let $\mathrm{L}(V, W)$ be the set of all linear transformations from V to W, and let $\operatorname{Mat}(m \times n, F)$ be the set of all $m \times n$ matrices over F. We know that $\operatorname{Mat}(m \times n, F)$ is a vector space over F, and we have seen in Question 3 of Tutorial 5 that $\mathrm{L}(V, W)$ is too. Let $\Omega: \mathrm{L}(V, W) \rightarrow \operatorname{Mat}(m \times n, F)$ be the function defined by $\Omega(\theta)=\mathrm{M}_{\boldsymbol{c} \boldsymbol{b}}(\theta)$ for all $\theta \in \mathrm{L}(V, W)$.
(i) Prove that Ω is a linear transformation. (Hint: The task is to prove that $\mathrm{M}_{\boldsymbol{c} \boldsymbol{b}}(\phi+\theta)=\mathrm{M}_{\boldsymbol{c} \boldsymbol{b}}(\phi)+\mathrm{M}_{\boldsymbol{c} \boldsymbol{b}}(\theta)$ and $\mathrm{M}_{\boldsymbol{c} \boldsymbol{b}}(\lambda \phi)=\lambda \mathrm{M}_{\boldsymbol{c} \boldsymbol{b}}(\phi)$. Now the $j^{\text {th }}$ column of $\mathrm{M}_{\boldsymbol{c} \boldsymbol{b}}(\phi+\theta)$ is $\mathrm{cv}_{\boldsymbol{c}}\left((\phi+\theta)\left(v_{j}\right)\right)$ while the $j^{\text {th }}$ columns of $\mathrm{M}_{\boldsymbol{c} \boldsymbol{b}}(\phi)$ and $\mathrm{M}_{\boldsymbol{c} \boldsymbol{b}}(\theta)$ are $\mathrm{cv}_{\boldsymbol{c}}\left(\phi\left(v_{j}\right)\right)$ and $\mathrm{cv}_{\boldsymbol{c}}\left(\theta\left(v_{j}\right)\right)$. Use the definition of $\phi+\theta$ and fact that $x \mapsto \mathrm{cv}_{\boldsymbol{c}}(x)$ is linear to prove that the $j^{\text {th }}$ column of $\mathrm{M}_{\boldsymbol{c} \boldsymbol{b}}(\phi+\theta)$ is the sum of the $j^{\text {th }}$ columns of $\mathrm{M}_{\boldsymbol{c} \boldsymbol{b}}(\phi)$ and $\left.\mathrm{M}_{\boldsymbol{c} \boldsymbol{b}}(\theta).\right)$
(ii) Prove that the kernel of Ω is $\{z\}$, where $z: V \rightarrow W$ is the zero function.
(iii) Prove that Ω is a vector space isomorphism. (Hint: By the first two parts we know that Ω is linear and injective; so surjectivity is all that remains. That is, given a $m \times n$ matrix M we must show that there is a linear transformation θ from V to W having M as its matrix. Now the coefficients of M determine what $\theta\left(v_{i}\right)$ has to be for each i, and Theorem 4.18 guarantees that such a linear transformation exists.)
(iv) Find a basis for $\mathrm{L}(V, W)$. (Hint: (Find a basis of $\operatorname{Mat}(m \times n, F)$ first. The corresponding linear transformations will give the desired basis of $\mathrm{L}(V, W)$.

Solution.

Let $\phi, \theta \in \mathrm{L}(V, W)$ and let $\lambda \in F$. For each j (from 1 to n) we have

$$
\begin{aligned}
\mathrm{cv}_{\boldsymbol{c}}\left((\phi+\theta)\left(v_{j}\right)\right) & \left.=\mathrm{cv}_{\boldsymbol{c}}\left(\phi\left(v_{j}\right)+\theta\left(v_{j}\right)\right) \quad \text { (by definition of } \phi+\theta\right) \\
& =\operatorname{cv}_{\boldsymbol{c}}\left(\phi\left(v_{j}\right)\right)+\mathrm{cv}_{\boldsymbol{c}}\left(\theta\left(v_{j}\right)\right)
\end{aligned}
$$

since the mapping $\mathrm{cv}_{\boldsymbol{c}}: W \rightarrow F^{m}$ given by $x \mapsto \mathrm{cv}_{\boldsymbol{c}}(x)$ an isomorphism. Hence the $j^{\text {th }}$ column of $\mathrm{M}_{\boldsymbol{c} \boldsymbol{b}}(\phi+\theta)$ is the sum of the $j^{\text {th }}$ columns of $\mathrm{M}_{\boldsymbol{c} \boldsymbol{b}}(\phi)$ and $\mathrm{M}_{\boldsymbol{c b}}(\theta)$; hence $\mathrm{M}_{\boldsymbol{c} \boldsymbol{b}}(\phi+\theta)=\mathrm{M}_{\boldsymbol{c} \boldsymbol{b}}(\phi)+\mathrm{M}_{\boldsymbol{c} \boldsymbol{b}}(\theta)$. That is, $\Omega(\phi+\theta)=\Omega(\phi)+\Omega(\theta)$. Similarly, for each j the $j^{\text {th }}$ column of $\mathrm{M}_{\boldsymbol{c} \boldsymbol{b}}(\lambda \phi)$ is $\mathrm{cv}_{\boldsymbol{c}}\left((\lambda \phi)\left(v_{j}\right)\right)$, which equals $\mathrm{cv}_{\boldsymbol{c}}\left(\lambda\left(\phi\left(v_{j}\right)\right)\right)=\lambda \mathrm{cv}_{\boldsymbol{c}}\left(\phi\left(v_{j}\right)\right)$ (by definition of $\lambda \phi$ and linearity of the mapping $\left.\mathrm{cv}_{\boldsymbol{c}}\right)$. Hence $\mathrm{M}_{\boldsymbol{c} \boldsymbol{b}}(\lambda \phi)=\lambda \mathrm{M}_{\boldsymbol{c} \boldsymbol{b}}(\phi)$; that is, $\Omega(\lambda \phi)=\lambda \Omega(\phi)$. This proves (i).
The kernel of Ω is the set of all ϕ in $\mathrm{L}(V, W)$ such that $\mathrm{M}_{c b}(\phi)$ is the zero matrix. The fact that Ω is linear guarantees that z, the zero of $\mathrm{L}(V, W)$, is in the kernel. If ϕ is an arbitrary element of the kernel then $\operatorname{cv}_{\boldsymbol{c}}\left(\phi\left(v_{j}\right)\right)=0$ for each j, since $\mathrm{cv}_{\boldsymbol{c}}\left(\phi\left(v_{j}\right)\right)$ is the $j^{\text {th }}$ column of $\mathrm{M}_{\boldsymbol{c} \boldsymbol{b}}\left(v_{j}\right)$. Since $\mathrm{cv}_{\boldsymbol{c}}$ is an isomorphism we deduce that $\phi\left(v_{j}\right)=0$ for all j, and it follows by linearity of ϕ that $\phi(v)=0$ for all $v \in V$. That is, $\phi=z$. So z is the only element of the kernel.
Let $A \in \operatorname{Mat}(m \times n, F)$ be arbitrary and for each j let $\alpha_{j} \in F^{m}$ be the $j^{\text {th }}$ column of A. Since $\mathrm{cv}_{\boldsymbol{c}}$ is an isomorphism there exist $w_{j} \in W$ such that $\mathrm{cv}_{\boldsymbol{c}}\left(w_{j}\right)=\alpha_{j}$, and since linear transformations can be defined arbitrarily on a basis (Theorem 4.18) there is a $\phi \in \mathrm{L}(V, W)$ such that $\phi\left(v_{j}\right)=w_{j}$ for each j. Clearly now $\mathrm{M}_{\boldsymbol{c} \boldsymbol{b}}(\phi)=A$; that is, $\Omega(\phi)=A$. So Ω is surjective.
If $E_{k l}$ is the matrix in $\operatorname{Mat}(m \times n, F)$ which has 1 as the $(k, l)^{\text {th }}$ entry and zeros elsewhere then the matrices $\left(E_{k l} \mid 1 \leq k \leq m, 1 \leq l \leq n\right)$ form a basis for $\mathrm{L}(V, W)$. In fact if $A \in \operatorname{Mat}(m \times n, F)$ has $(i, j)^{\text {th }}$ entry $\alpha_{i j}$ then $A=\sum \alpha_{i j} E_{i j}$, and this is the unique way of expressing A as a linear combination of the $E_{k l}$. It is a general fact that an isomorphism of vector spaces will map a basis of one space to a basis of the other. (See Theorem 4.19 and Exercise 3 of Tutorial 4.) So to find a basis of $\mathrm{L}(V, W)$ it suffices to find linear transformations $\phi_{k l}: V \rightarrow W$ such that $\Omega\left(\phi_{k l}\right)=E_{k l}$ (for $1 \leq k \leq m$, $1 \leq l \leq n$). By Theorem 4.18 we know that (for each k and l) there is a linear transformation $\phi_{k l}$ satisfying

$$
\phi_{k l}\left(v_{j}\right)= \begin{cases}0 & \text { if } j \neq l \\ w_{k} & \text { if } j=l\end{cases}
$$

and, by the definition of the matrix of a linear transformation, we see that the matrix of $\phi_{k l}$ relative to \boldsymbol{b} and \boldsymbol{c} has its $j^{\text {th }}$ column equal to zero unless $j=l$, while the $l^{\text {th }}$ column is $\operatorname{cv}_{\boldsymbol{c}}\left(v_{k}\right)$, which has 1 as its $k^{\text {th }}$ entry and all other entries zero. Thus $\mathrm{M}_{\boldsymbol{c b}}\left(\phi_{k l}\right)=E_{k l}$, and, by the remarks above, $\left(\phi_{k l} \mid 1 \leq k \leq m, 1 \leq l \leq n\right)$ is a basis for $\mathrm{L}(V, W)$.

