The University of Sydney

MATH2902 Vector Spaces
(http://www.maths.usyd.edu.au/u/UG/IM/MATH2902/)
Semester1, 2001
Lecturer: R. Howlett

Tutorial 1

Let X and Y be arbitrary nonempty sets, and $f: X \rightarrow Y$ a function. A function $g: Y \rightarrow X$ is a right inverse of f if the composite function $f g$ is the identity on Y. Similarly g is a left inverse of f if $g f$ is the identity on X.

1. Let A be a set with 5 elements and B a set with 4 elements. Let the elements of A be called $a_{1}, a_{2}, a_{3}, a_{4}$ and a_{5}, so that $A=\left\{a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right\}$. Similarly let $B=\left\{b_{1}, b_{2}, b_{3}, b_{4}\right\}$.
(i) Describe three different surjective functions with domain A and codomain B, and three different injective functions with domain B and codomain A.
(ii) Find right inverses for each of the three surjective functions you found in (i), and left inverses for each of the injective functions.
2. Let A and B be arbitrary nonempty sets.
(i) Let $f: A \rightarrow B$ be an arbitrary function. Prove that if f has a right inverse then f must necessarily be surjective, and prove that if f has a left inverse then f is necessarily injective.
(ii) Prove that if f is surjective then it has a right inverse. Prove also that if f is injective then it has a left inverse.
(iii) Prove that if f has both a right inverse and a left inverse then they are equal.
3. If f and g are functions with domain X and codomain Y then the correct way to prove that $f=g$ is to prove that $f(x)=g(x)$ for all $x \in X$. Similarly, if A and B are $m \times n$ matrices then proving that $A=B$ is done by proving that $A_{i j}=B_{i j}$ for all $i \in\{1,2, \ldots, m\}$ and $j \in\{1,2, \ldots, n\}$.
Prove that if A is an $m \times n$ matrix and I is the $n \times n$ identity matrix then $A I=A$. Prove also that if J is the $m \times m$ identity then $J A=A$.
4. Let A be an $n \times n$ matrix. A matrix B is an inverse of A if $A B=B A=I$. Use the previous exercise and associativity of matrix multiplication to prove that if B and C are both inverses of A then $B=C$.
5. Let F be any field. Prove that if $x, y \in F$ are such that $x y=0$ then either $x=0$ or $y=0$.
