The University of Sydney

MATH2902 Vector Spaces

(http://www.maths.usyd.edu.au/u/UG/IM/MATH2902/)

Semester1, 2001	Lecturer: R. Howlett
-----------------	----------------------

Tutorial 1

Let X and Y be arbitrary nonempty sets, and $f: X \to Y$ a function. A function $g: Y \to X$ is a *right inverse* of f if the composite function fg is the identity on Y. Similarly g is a *left inverse* of f if gf is the identity on X.

- 1. Let A be a set with 5 elements and B a set with 4 elements. Let the elements of A be called a_1, a_2, a_3, a_4 and a_5 , so that $A = \{a_1, a_2, a_3, a_4, a_5\}$. Similarly let $B = \{b_1, b_2, b_3, b_4\}$.
 - (i) Describe three different surjective functions with domain A and codomain B, and three different injective functions with domain B and codomain A.
 - (*ii*) Find right inverses for each of the three surjective functions you found in (i), and left inverses for each of the injective functions.
- **2.** Let *A* and *B* be arbitrary nonempty sets.
 - (i) Let $f: A \to B$ be an arbitrary function. Prove that if f has a right inverse then f must necessarily be surjective, and prove that if f has a left inverse then f is necessarily injective.
 - (*ii*) Prove that if f is surjective then it has a right inverse. Prove also that if f is injective then it has a left inverse.
 - (*iii*) Prove that if f has both a right inverse and a left inverse then they are equal.
- **3.** If f and g are functions with domain X and codomain Y then the correct way to prove that f = g is to prove that f(x) = g(x) for all $x \in X$. Similarly, if A and B are $m \times n$ matrices then proving that A = B is done by proving that $A_{ij} = B_{ij}$ for all $i \in \{1, 2, ..., m\}$ and $j \in \{1, 2, ..., n\}$. Prove that if A is an $m \times n$ matrix and I is the $n \times n$ identity matrix then AI = A. Prove also that if J is the $m \times m$ identity then JA = A.
- 4. Let A be an $n \times n$ matrix. A matrix B is an *inverse* of A if AB = BA = I. Use the previous exercise and associativity of matrix multiplication to prove that if B and C are both inverses of A then B = C.
- 5. Let F be any field. Prove that if $x, y \in F$ are such that xy = 0 then either x = 0 or y = 0.