Tutorial 2

1. Let A be a 4×4 matrix, and suppose that v_{1}, v_{2}, v_{3} and v_{4} are column vectors satisfying $A v_{1}=2 v_{1}, A v_{2}=2 v_{2}+v_{1}, A v_{3}=3 v_{3}$ and $A v_{4}=3 v_{4}+v_{3}$. Let T be the matrix whose columns are v_{1}, v_{2}, v_{3} and v_{4} (in that order). Prove that

$$
A T=T\left(\begin{array}{cccc}
2 & 1 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & 3 & 1 \\
0 & 0 & 0 & 3
\end{array}\right)
$$

2. For each of the following matrices A find a nonsingular matrix T such that $T^{-1} A T$ is diagonal.
(a) $\quad A=\left(\begin{array}{ccc}9 & -2 & 7 \\ 4 & -1 & 4 \\ -4 & 2 & -2\end{array}\right)$
(b) $A=\left(\begin{array}{ccc}2 & -1 & 1 \\ -1 & 2 & 1 \\ 1 & 1 & 0\end{array}\right)$

Check that it is possible in part (b) to choose T in such a way that the sum of the squares of the entries in each column of T is 1 , and that if this is done then $T^{-1}={ }^{\mathrm{t}} T$.
3. Prove that if A and B are matrices such that $A B$ is defined then ${ }^{\mathrm{t}} B^{\mathrm{t}} A$ is defined, and ${ }^{\mathrm{t}} B^{\mathrm{t}} A={ }^{\mathrm{t}}(A B)$.
4. Let A be a matrix satisfying ${ }^{\mathrm{t}} A=A$ and let u and v be eigenvectors of A with corresponding eigenvalues λ and μ. (That is, u and v are nonzero and $A u=\lambda u$ and $A v=\mu v$.) Prove that if $\lambda \neq \mu$ then $\left({ }^{t} u\right) v=0$. (Hint: Show that $\left({ }^{\mathrm{t}} u\right) A=\lambda\left({ }^{\mathrm{t}} u\right)$, and then expand ($\left.{ }^{\mathrm{t}} u\right) A v$ in two ways.)
Investigate the connection between this exercise and 2 (b).
5. Show that if α and β are arbitrary complex numbers then $\overline{(\alpha+\beta)}=\bar{\alpha}+\bar{\beta}$ and $\overline{\alpha \beta}=\bar{\alpha} \bar{\beta}$, where the overline denotes complex conjugation (defined by $\overline{(x+i y)}=x-i y$ for all $x, y \in \mathbb{R}$, where $i=\sqrt{-1})$.
If A is a complex matrix let \bar{A} be the matrix whose entries are the complex conjugates of the entries of A. Use the previous part to show that $\overline{A B}=\bar{A} \bar{B}$ for all complex matrices A and B such that $A B$ exists.

