The University of Sydney MATH2902 Vector Spaces

(http://www.maths.usyd.edu.au/u/UG/IM/MATH2902/)

Semester1, 2001

Lecturer: R. Howlett

Tutorial 2

1. Let A be a 4×4 matrix, and suppose that v_1, v_2, v_3 and v_4 are column vectors satisfying $Av_1 = 2v_1$, $Av_2 = 2v_2 + v_1$, $Av_3 = 3v_3$ and $Av_4 = 3v_4 + v_3$. Let T be the matrix whose columns are v_1, v_2, v_3 and v_4 (in that order). Prove that

$$AT = T \begin{pmatrix} 2 & 1 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 3 & 1 \\ 0 & 0 & 0 & 3 \end{pmatrix}.$$

2. For each of the following matrices A find a nonsingular matrix T such that $T^{-1}AT$ is diagonal.

(a)
$$A = \begin{pmatrix} 9 & -2 & 7 \\ 4 & -1 & 4 \\ -4 & 2 & -2 \end{pmatrix}$$
 (b) $A = \begin{pmatrix} 2 & -1 & 1 \\ -1 & 2 & 1 \\ 1 & 1 & 0 \end{pmatrix}$

Check that it is possible in part (b) to choose T in such a way that the sum of the squares of the entries in each column of T is 1, and that if this is done then $T^{-1} = {}^{\mathrm{t}}T$.

- **3.** Prove that if A and B are matrices such that AB is defined then ${}^{t}B{}^{t}A$ is defined, and ${}^{t}B{}^{t}A = {}^{t}(AB)$.
- 4. Let A be a matrix satisfying ${}^{t}A = A$ and let u and v be eigenvectors of A with corresponding eigenvalues λ and μ . (That is, u and v are nonzero and $Au = \lambda u$ and $Av = \mu v$.) Prove that if $\lambda \neq \mu$ then $({}^{t}u)v = 0$. (Hint: Show that $({}^{t}u)A = \lambda({}^{t}u)$, and then expand $({}^{t}u)Av$ in two ways.)

Investigate the connection between this exercise and 2 (b).

5. Show that if α and β are arbitrary complex numbers then $(\alpha + \beta) = \overline{\alpha} + \overline{\beta}$ and $\overline{\alpha\beta} = \overline{\alpha}\overline{\beta}$, where the overline denotes complex conjugation (defined by $\overline{(x+iy)} = x - iy$ for all $x, y \in \mathbb{R}$, where $i = \sqrt{-1}$). If A is a complex matrix let \overline{A} be the matrix whose entries are the complex conjugates of the entries of A. Use the previous part to show that $\overline{AB} = \overline{A}\overline{B}$ for all complex matrices A and B such that AB exists.