The University of Sydney

MATH2902 Vector Spaces
(http://www.maths.usyd.edu.au/u/UG/IM/MATH2902/)

Tutorial 3

1. Which of the following functions are linear transformations?
(i) $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by $T\binom{x}{y}=\left(\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right)\binom{x}{y}$
(ii) $S: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by $S\binom{x}{y}=\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)\binom{x}{y}$
(iii) $g: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ defined by $g\binom{x}{y}=\left(\begin{array}{c}2 x+y \\ y \\ x-y\end{array}\right)$
(iv) $f: \mathbb{R} \rightarrow \mathbb{R}^{2}$ defined by $f(x)=\binom{x}{x+1}$
2. Let \mathcal{A} be the set of all 2-component column vectors whose entries are differentiable functions from \mathbb{R} to \mathbb{R}. Thus, for example, if h and k are the functions defined by $h(t)=\cos t$ and $k(t)=t^{2}+1$ for all $x \in \mathbb{R}$ then $\binom{h}{k}$ is an element of \mathcal{A}.
(i) How should addition and scalar multiplication be defined so that \mathcal{A} becomes a vector space over \mathbb{R} ?
(ii) If f and g are real-valued functions on \mathbb{R} then their pointwise product is the function $f \cdot g$ defined by $(f \cdot g)(t)=f(t) g(t)$ for all $t \in \mathbb{R}$. Prove that

$$
\binom{f}{g} \mapsto h \cdot f+g^{\prime}
$$

(where h is as above and g^{\prime} is the derivative of g) defines a linear transformation from \mathcal{A} to the space of all real-valued functions on \mathbb{R}.
3. Let V be a vector space and let S and T be subspaces of V.
(i) Prove that $S \cap T$ is a subspace of V.
(ii) Let $S+T=\{x+y \mid x \in S$ and $y \in T\}$. Prove that $S+T$ is a subspace of V.
4. Let V be a vector space over the field F and let $v_{1}, v_{2}, \ldots, v_{n}$ be arbitrary elements of V. Prove that the span of $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$
$\operatorname{Span}\left(v_{1}, v_{2}, \ldots, v_{n}\right)=\left\{\lambda_{1} v_{1}+\lambda_{2} v_{2}+\cdots+\lambda_{n} v_{n} \mid \lambda_{1}, \lambda_{2}, \ldots, \lambda_{n} \in F\right\}$
is a subspace of V.
5. Let A and B be $n \times n$ matrices over the field F. We say that B is similar to A if there exists a nonsingular matrix T such that $B=T^{-1} A T$. Prove
(i) every $n \times n$ matrix is similar to itself,
(ii) if B is similar to A then A is similar to B,
(iii) if C is similar to B and B is similar to A then C is similar to A.

