The University of Sydney MATH2902 Vector Spaces (http://www.maths.usyd.edu.au/u/UG/IM/MATH2902/)

Semester1, 2001

Lecturer: R. Howlett

Tutorial 3

1. Which of the following functions are linear transformations?

(i)
$$T: \mathbb{R}^2 \to \mathbb{R}^2$$
 defined by $T\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$
(ii) $S: \mathbb{R}^2 \to \mathbb{R}^2$ defined by $S\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$
(iii) $g: \mathbb{R}^2 \to \mathbb{R}^3$ defined by $g\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 2x+y \\ y \\ x-y \end{pmatrix}$
(iv) $f: \mathbb{R} \to \mathbb{R}^2$ defined by $f(x) = \begin{pmatrix} x \\ x+1 \end{pmatrix}$

- 2. Let \mathcal{A} be the set of all 2-component column vectors whose entries are differentiable functions from \mathbb{R} to \mathbb{R} . Thus, for example, if h and k are the functions defined by $h(t) = \cos t$ and $k(t) = t^2 + 1$ for all $x \in \mathbb{R}$ then $\binom{h}{k}$ is an element of \mathcal{A} .
 - (i)How should addition and scalar multiplication be defined so that \mathcal{A} becomes a vector space over \mathbb{R} ?
 - (ii)If f and g are real-valued functions on \mathbb{R} then their *pointwise product* is the function $f \cdot g$ defined by $(f \cdot g)(t) = f(t)g(t)$ for all $t \in \mathbb{R}$. Prove that $\begin{pmatrix} f \\ g \end{pmatrix} \mapsto h \cdot f + g'$ (where h is as above and g' is the derivative of g) defines a linear trans-

formation from \mathcal{A} to the space of all real-valued functions on \mathbb{R} .

- 3. Let V be a vector space and let S and T be subspaces of V.
 - Prove that $S \cap T$ is a subspace of V. (i)
 - (*ii*) Let $S + T = \{x + y \mid x \in S \text{ and } y \in T\}$. Prove that S + T is a subspace of V.
- Let V be a vector space over the field F and let v_1, v_2, \ldots, v_n be arbitrary **4**. elements of V. Prove that the span of $\{v_1, v_2, \ldots, v_n\}$ $\operatorname{Span}(v_1, v_2, \ldots, v_n) = \{\lambda_1 v_1 + \lambda_2 v_2 + \cdots + \lambda_n v_n \mid \lambda_1, \lambda_2, \ldots, \lambda_n \in F\}$ is a subspace of V.
- Let A and B be $n \times n$ matrices over the field F. We say that B is similar to 5. A if there exists a nonsingular matrix T such that $B = T^{-1}AT$. Prove
 - (i)every $n \times n$ matrix is similar to itself,
 - (*ii*) if B is similar to A then A is similar to B,
 - (*iii*) if C is similar to B and B is similar to A then C is similar to A.