THE UNIVERSITY OF SYDNEY

MATH2902 Vector Spaces

(http://www.maths.usyd.edu.au/u/UG/IM/MATH2902/)

Lecturer: R. Howlett

Semester1, 2001

Tutorial 4

1. Use Theorem 3.13 to prove that the solution set of the system of equations

$$\begin{pmatrix} 1 & 1 & 2 \\ 3 & 5 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

is a subspace of \mathbb{R}^3 .

- 2. (i) Let A be an $n \times n$ matrix over a field F and let λ be an arbitrary element of F. The λ -eigenspace of A is defined to be the set of all $v \in F^n$ such that $Av = \lambda v$. Prove that the λ -eigenspace is a subspace of F^n , and is nonzero if and only if λ is an eigenvalue of A.
 - (ii) Calculate the 1-eigenspace of $\begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix}$.
- **3.** (i) Is $\begin{pmatrix} 1 \\ 3 \\ -2 \end{pmatrix}$ in the column space of $\begin{pmatrix} 1 & -3 & -4 \\ 5 & -14 & -13 \\ 2 & -2 & 20 \end{pmatrix}$?
 - (ii) Is (1,1,1,1) in Span((5,-7,2,-13),(-3,5,-1,9))?
- **4.** Suppose that (v_1, v_2, v_3) is a basis for a vector space V, and define elements $w_1, w_2, w_3 \in V$ by $w_1 = v_1 2v_2 + 3v_3, w_2 = -v_1 + v_3, w_3 = v_2 v_3$.
 - (i) Express v_1 , v_2 , v_3 in terms of w_1 , w_2 , w_3 .
 - (ii) Prove that w_1, w_2, w_3 are linearly independent.
 - (iii) Prove that w_1, w_2, w_3 span V.
- **5.** Let V and W be vector spaces and let $T: V \to W$ be a linear transformation.
 - (i) Prove that if T is injective and $v_1, v_2, \ldots, v_n \in V$ are linearly independent then $T(v_1), T(v_2), \ldots, T(v_n)$ are linearly independent.
 - (ii) Prove that if T is surjective and v_1, v_2, \ldots, v_n span V then $T(v_1), T(v_2), \ldots, T(v_n)$ span W.
- **6.** Determine whether or not the following two subspaces of \mathbb{R}^3 are the same:

$$\operatorname{Span}\left(\begin{pmatrix}1\\2\\-1\end{pmatrix},\begin{pmatrix}2\\4\\1\end{pmatrix}\right) \quad \text{and} \quad \operatorname{Span}\left(\begin{pmatrix}1\\2\\4\end{pmatrix},\begin{pmatrix}2\\4\\-5\end{pmatrix}\right).$$