Tutorial 4

1. Use Theorem 3.13 to prove that the solution set of the system of equations

$$
\left(\begin{array}{lll}
1 & 1 & 2 \\
3 & 5 & 1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\binom{0}{0}
$$

is a subspace of \mathbb{R}^{3}.
2. (i) Let A be an $n \times n$ matrix over a field F and let λ be an arbitrary element of F. The λ-eigenspace of A is defined to be the set of all $v \in F^{n}$ such that $A v=\lambda v$. Prove that the λ-eigenspace is a subspace of F^{n}, and is nonzero if and only if λ is an eigenvalue of A.
(ii) Calculate the 1-eigenspace of $\left(\begin{array}{lll}2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2\end{array}\right)$.
3. (i) Is $\left(\begin{array}{c}1 \\ 3 \\ -2\end{array}\right)$ in the column space of $\left(\begin{array}{ccc}1 & -3 & -4 \\ 5 & -14 & -13 \\ 2 & -2 & 20\end{array}\right)$?
(ii) Is $(1,1,1,1)$ in $\operatorname{Span}((5,-7,2,-13),(-3,5,-1,9))$?
4. Suppose that $\left(v_{1}, v_{2}, v_{3}\right)$ is a basis for a vector space V, and define elements $w_{1}, w_{2}, w_{3} \in V$ by $w_{1}=v_{1}-2 v_{2}+3 v_{3}, w_{2}=-v_{1}+v_{3}, w_{3}=v_{2}-v_{3}$.
(i) Express v_{1}, v_{2}, v_{3} in terms of w_{1}, w_{2}, w_{3}.
(ii) Prove that w_{1}, w_{2}, w_{3} are linearly independent.
(iii) Prove that w_{1}, w_{2}, w_{3} span V.
5. Let V and W be vector spaces and let $T: V \rightarrow W$ be a linear transformation.
(i) Prove that if T is injective and $v_{1}, v_{2}, \ldots, v_{n} \in V$ are linearly independent then $T\left(v_{1}\right), T\left(v_{2}\right), \ldots, T\left(v_{n}\right)$ are linearly independent.
(ii) Prove that if T is surjective and $v_{1}, v_{2}, \ldots, v_{n}$ span V then $T\left(v_{1}\right), T\left(v_{2}\right)$, $\ldots, T\left(v_{n}\right)$ span W.
6. Determine whether or not the following two subspaces of \mathbb{R}^{3} are the same:
$\operatorname{Span}\left(\left(\begin{array}{c}1 \\ 2 \\ -1\end{array}\right),\left(\begin{array}{l}2 \\ 4 \\ 1\end{array}\right)\right) \quad$ and $\quad \operatorname{Span}\left(\left(\begin{array}{l}1 \\ 2 \\ 4\end{array}\right),\left(\begin{array}{c}2 \\ 4 \\ -5\end{array}\right)\right)$.

