Tutorial 5

1. In each case decide whether or not the set S is a vector space over the field F, relative to obvious operations of addition and scalar multiplication. If it is, decide whether it has finite dimension, and if so, find the dimension.
(i) $S=\mathbb{C}$ (complex numbers), $F=\mathbb{R}$.
(ii) $S=\mathbb{C}, F=\mathbb{C}$.
(iii) $S=\mathbb{R}, F=\mathbb{Q}$ (rational numbers).
(iv) $S=\mathbb{R}[X]$ (polynomials over \mathbb{R} in the variable X-that is, expressions of the form $\left.a_{0}+a_{1} X+\cdots+a_{n} X^{n}\left(a_{i} \in \mathbb{R}\right)\right), F=\mathbb{R}$.
(v) $\quad S=\operatorname{Mat}(n, \mathbb{C})(n \times n$ matrices over $\mathbb{C}), F=\mathbb{R}$.
2. Let \mathbb{Z}_{2} be the field which has just the two elements 0 and 1 . (See $\S 1 \mathrm{~d} \# 10$ of the book.) How many elements will there be in a four dimensional vector space over \mathbb{Z}_{2} ?
3. (i) Let V be a vector space over a field F and let S be any set. Convince yourself that that the set of all functions from S to V becomes a vector space over F if addition and scalar multiplication of functions are defined in the usual way.
(Hint: To do this in detail requires checking that all the vector space axioms are satisfied. However, the proof in $\S 3 \mathrm{~b} \# 6$ of the book is almost word for word the same as the proof required here.)
(ii) Use part (i) to show that if V and W are both vector spaces then the set of all linear transformations from V to W is a vector space (with the usual definitions of addition and scalar multiplication of functions).
4. Let U and V be vector spaces over a field F. A function $f: V \rightarrow W$ is called a vector space isomorphism if f is a bijective linear transformation. Prove that if $f: U \rightarrow V$ is a vector space isomorphism then the inverse function $f^{-1}: V \rightarrow U$ (defined by the rule that $f^{-1}(v)=u$ if and only if $f(u)=v$) is also a vector space isomorphism.
5. (i) Prove that if $v_{1}, v_{2}, \ldots, v_{n}$ are linearly independent elements of a vector space V and $v_{n+1} \in V$ is not contained in $\operatorname{Span}\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ then $v_{1}, v_{2}, \ldots, v_{n+1}$ are linearly independent.
(ii) If $v_{1}, v_{2}, \ldots, v_{n}$ are linearly independent elements of V and V is spanned by elements $w_{1}, w_{2}, \ldots, w_{m}$ then $n \leq m$. (This is Theorem 4.14 of the book, the proof of which was relatively hard.) Use this result and the first part to prove that if $v_{1}, v_{2}, \ldots, v_{n}$ are linearly independent then there exist $v_{n+1}, v_{n+2}, \ldots, v_{d} \in V$ such that $v_{1}, v_{2}, \ldots, v_{d}$ form a basis of V.
