The University of Sydney

MATH2902 Vector Spaces

(http://www.maths.usyd.edu.au/u/UG/IM/MATH2902/)

Semester1, 2001

Lecturer: R. Howlett

Tutorial 5

- 1. In each case decide whether or not the set S is a vector space over the field F, relative to obvious operations of addition and scalar multiplication. If it is, decide whether it has finite dimension, and if so, find the dimension.
 - (i) $S = \mathbb{C}$ (complex numbers), $F = \mathbb{R}$.
 - (*ii*) $S = \mathbb{C}, F = \mathbb{C}.$
 - (*iii*) $S = \mathbb{R}, F = \mathbb{Q}$ (rational numbers).
 - (*iv*) $S = \mathbb{R}[X]$ (polynomials over \mathbb{R} in the variable X—that is, expressions of the form $a_0 + a_1 X + \cdots + a_n X^n$ $(a_i \in \mathbb{R})$), $F = \mathbb{R}$.
 - (v) $S = Mat(n, \mathbb{C}) \ (n \times n \text{ matrices over } \mathbb{C}), \ F = \mathbb{R}.$
- 2. Let \mathbb{Z}_2 be the field which has just the two elements 0 and 1. (See $\frac{1}{410}$ of the book.) How many elements will there be in a four dimensional vector space over \mathbb{Z}_2 ?
- **3.** (i) Let V be a vector space over a field F and let S be any set. Convince yourself that that the set of all functions from S to V becomes a vector space over F if addition and scalar multiplication of functions are defined in the usual way.

(Hint: To do this in detail requires checking that all the vector space axioms are satisfied. However, the proof in $\S3b\#6$ of the book is almost word for word the same as the proof required here.)

- (*ii*) Use part (*i*) to show that if V and W are both vector spaces then the set of all linear transformations from V to W is a vector space (with the usual definitions of addition and scalar multiplication of functions).
- 4. Let U and V be vector spaces over a field F. A function $f: V \to W$ is called a *vector space isomorphism* if f is a bijective linear transformation. Prove that if $f: U \to V$ is a vector space isomorphism then the inverse function $f^{-1}: V \to U$ (defined by the rule that $f^{-1}(v) = u$ if and only if f(u) = v) is also a vector space isomorphism.

- 5. (i) Prove that if v_1, v_2, \ldots, v_n are linearly independent elements of a vector space V and $v_{n+1} \in V$ is not contained in $\text{Span}(v_1, v_2, \ldots, v_n)$ then $v_1, v_2, \ldots, v_{n+1}$ are linearly independent.
 - (*ii*) If v_1, v_2, \ldots, v_n are linearly independent elements of V and V is spanned by elements w_1, w_2, \ldots, w_m then $n \leq m$. (This is Theorem 4.14 of the book, the proof of which was relatively hard.) Use this result and the first part to prove that if v_1, v_2, \ldots, v_n are linearly independent then there exist $v_{n+1}, v_{n+2}, \ldots, v_d \in V$ such that v_1, v_2, \ldots, v_d form a basis of V.