# The University of Sydney 

MATH2902 Vector Spaces
(http://www.maths.usyd.edu.au/u/UG/IM/MATH2902/)
Semester1, 2001
Lecturer: R. Howlett

## Tutorial 6

1. Let $V$ be a real inner product space and $v, w \in V$.
(i) Use calculus to prove that the minimum value of $\langle v-\lambda w, v-\lambda w\rangle$ occurs at $\lambda=\langle v, w\rangle /\langle w, w\rangle$.
(ii) Put $\lambda=\langle v, w\rangle /\langle w, w\rangle$ and use $\langle v-\lambda w, v-\lambda w\rangle \geq 0$ to prove the CauchySchwarz inequality (see p. 105 of the book).
2. (i) Prove that the following four vectors form an orthonormal subset of $R^{4}$ :

$$
\frac{1}{2}\left(\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right), \quad \frac{1}{2}\left(\begin{array}{c}
1 \\
1 \\
-1 \\
-1
\end{array}\right), \quad \frac{1}{2}\left(\begin{array}{c}
1 \\
-1 \\
1 \\
-1
\end{array}\right), \quad \frac{1}{2}\left(\begin{array}{c}
1 \\
-1 \\
-1 \\
1
\end{array}\right)
$$

(ii) Express $\left(\begin{array}{c}5 \\ -2 \\ 4 \\ -1\end{array}\right)$ as a linear combination of the vectors in part $(i)$.
3. Let $A$ be a real $n \times n$ matrix which is symmetric $\left({ }^{t} A=A\right)$. We say that $A$ is positive definite if $\left({ }^{t} v\right) A v>0$ for all nonzero $v \in \mathbb{R}^{n}$.
(i) Prove that $\langle u, v\rangle=\left({ }^{t} u\right) A v$ defines an inner product on $\mathbb{R}^{n}$ if and only if $A$ is symmetric and positive definite.
(ii) Prove that a diagonal matrix $D \in \operatorname{Mat}(n \times n, \mathbb{R})$ is positive definite if and only if all the diagonal entries of $D$ are positive.
(iii) Prove that if $A={ }^{t} T D T$ where $T$ is invertible and $D$ is positive definite then $A$ is positive definite.
4. Show that $T \in \operatorname{Mat}(n \times n, \mathbb{R})$ has the property that ${ }^{t} T T=I$ if and only if the columns of $T$ form an orthonormal basis of $\mathbb{R}^{n}$. Show that the matrix $T=\left(\begin{array}{ccc}1 / \sqrt{3} & 1 / \sqrt{2} & 1 / \sqrt{6} \\ 1 / \sqrt{3} & 0 & -2 / \sqrt{6} \\ 1 / \sqrt{3} & -1 / \sqrt{2} & 1 / \sqrt{6}\end{array}\right)$ has this property, and that all of its columns are eigenvectors for the matrix $A=\left(\begin{array}{lll}2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2\end{array}\right)$. Use the previous exercise to show that $A$ is positive definite.
5. Let $v_{1}=\left(\begin{array}{l}6 \\ 2 \\ 3\end{array}\right), \quad v_{2}=\left(\begin{array}{l}3 \\ 8 \\ 5\end{array}\right), \quad v_{3}=\left(\begin{array}{c}1 \\ 1 \\ 11\end{array}\right)$. Find $u_{1}, u_{2}, u_{3}$ which form an orthogonal basis of $\mathbb{R}^{3}$ and satisfy $u_{1}=v_{1}$ and $\operatorname{Span}\left(u_{1}, u_{2}\right)=\operatorname{Span}\left(v_{1}, v_{2}\right)$.

