THE UNIVERSITY OF SYDNEY MATH2902 Vector Spaces (http://www.maths.usyd.edu.au/u/UG/IM/MATH2902/)

Semester1, 2001

```
Lecturer: R. Howlett
```

Tutorial 6

- **1.** Let V be a real inner product space and $v, w \in V$.
 - (i) Use calculus to prove that the minimum value of $\langle v \lambda w, v \lambda w \rangle$ occurs at $\lambda = \langle v, w \rangle / \langle w, w \rangle$.
 - (*ii*) Put $\lambda = \langle v, w \rangle / \langle w, w \rangle$ and use $\langle v \lambda w, v \lambda w \rangle \ge 0$ to prove the Cauchy-Schwarz inequality (see p.105 of the book).
- **2.** (i) Prove that the following four vectors form an orthonormal subset of \mathbb{R}^4 :

$$\frac{1}{2} \begin{pmatrix} 1\\1\\1\\1 \end{pmatrix}, \qquad \frac{1}{2} \begin{pmatrix} 1\\1\\-1\\-1 \end{pmatrix}, \qquad \frac{1}{2} \begin{pmatrix} 1\\-1\\1\\-1 \end{pmatrix}, \qquad \frac{1}{2} \begin{pmatrix} 1\\-1\\-1\\-1 \\1 \end{pmatrix}.$$

(*ii*) Express $\begin{pmatrix} 5\\-2\\4\\-1 \end{pmatrix}$ as a linear combination of the vectors in part (*i*).

- **3.** Let A be a real $n \times n$ matrix which is symmetric $({}^{t}A = A)$. We say that A is *positive definite* if $({}^{t}v)Av > 0$ for all nonzero $v \in \mathbb{R}^{n}$.
 - (i) Prove that $\langle u, v \rangle = ({}^{t}u)Av$ defines an inner product on \mathbb{R}^{n} if and only if A is symmetric and positive definite.
 - (*ii*) Prove that a diagonal matrix $D \in Mat(n \times n, \mathbb{R})$ is positive definite if and only if all the diagonal entries of D are positive.
 - (*iii*) Prove that if $A = {}^{t}TDT$ where T is invertible and D is positive definite then A is positive definite.
- 4. Show that $T \in \operatorname{Mat}(n \times n, \mathbb{R})$ has the property that ${}^{t}TT = I$ if and only if the columns of T form an orthonormal basis of \mathbb{R}^{n} . Show that the matrix $T = \begin{pmatrix} 1/\sqrt{3} & 1/\sqrt{2} & 1/\sqrt{6} \\ 1/\sqrt{3} & 0 & -2/\sqrt{6} \\ 1/\sqrt{3} & -1/\sqrt{2} & 1/\sqrt{6} \end{pmatrix}$ has this property, and that all of its columns are eigenvectors for the matrix $A = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix}$. Use the previous exercise to show that A is positive definite.
- 5. Let $v_1 = \begin{pmatrix} 6\\2\\3 \end{pmatrix}$, $v_2 = \begin{pmatrix} 3\\8\\5 \end{pmatrix}$, $v_3 = \begin{pmatrix} 1\\1\\11 \end{pmatrix}$. Find u_1, u_2, u_3 which form an orthogonal basis of \mathbb{R}^3 and satisfy $u_1 = v_1$ and $\operatorname{Span}(u_1, u_2) = \operatorname{Span}(v_1, v_2)$.