The University of Sydney

MATH2902 Vector Spaces
(http://www.maths.usyd.edu.au/u/UG/IM/MATH2902/)

Tutorial 7

1. Let $A \in \operatorname{Mat}(n \times n, \mathbb{R})$, and suppose that the columns of A form an orthonormal basis of \mathbb{R}^{n}. Show that ${ }^{\mathrm{t}} A=A^{-1}$, and deduce that the rows of A form an orthonormal basis of ${ }^{t} \mathbb{R}^{n}$.
2. Let V be an inner product space and U a subspace of V. Define

$$
U^{\perp}=\{v \in V \mid\langle u, v\rangle=0 \text { for all } u \in U\} .
$$

(i) Use Theorem 3.10 to prove that U^{\perp} is a subspace of V.
(ii) Prove that if $x, x^{\prime} \in U$ and $y, y^{\prime} \in U^{\perp}$ and $x+y=x^{\prime}+y^{\prime}$ then $x=x^{\prime}$ and $y=y^{\prime}$.

If U is a finitely generated subspace of the inner product space V then there exists a function $P: V \rightarrow U$ (the orthogonal projection) such that $v-P(v) \in U^{\perp}$ for all $v \in V$. Hence in this case each $v \in V$ can be expressed in the form $x+y$ with $x \in U$ and $y \in U^{\perp}$, by putting $x=P(v)$ and $y=v-P(v)$. By $2(i i)$ above this expression is unique. (Note that these results need not apply if U is not finitely generated.)
3. Let V be a finite dimensional inner product space and U a subspace of V. Suppose that $x_{1}, x_{2}, \ldots, x_{n}$ form an orthogonal basis of U and $y_{1}, y_{2}, \ldots, y_{m}$ form an orthogonal basis of U^{\perp}. Prove that $x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}$ form an orthogonal basis of V. Hence prove that the sum of the dimensions of U and U^{\perp} equals the dimension of V.
4. Let U be the subspace of ${ }^{\mathrm{t}} \mathbb{R}^{3}$ spanned by $(1,1,1)$ and $(1,1,-2)$. Find a basis for U^{\perp}.
5. Let $A \in \operatorname{Mat}(m \times n, \mathbb{R})$. Show that $x \in \mathbb{R}^{n}$ is a solution of the equations $A x=0$ if and only if ${ }^{\mathrm{t}} x$ is orthogonal to each of the rows of A. Deduce that the dimension of the solution space of $A x=0$ equals the dimension of the orthogonal complement of the row space of A.
6. Find an orthonormal basis for the 1-eigenspace of $\left(\begin{array}{llll}2 & 1 & 2 & 2 \\ 1 & 2 & 2 & 2 \\ 2 & 2 & 5 & 4 \\ 2 & 2 & 4 & 5\end{array}\right)$. Find also an orthonormal basis for the orthogonal complement of this space, and verify that this orthogonal complement equals the 11-eigenspace of the above matrix. Using the elements of these bases as the columns, construct a matrix T such that ${ }^{t} T=T^{-1}$ and $T^{-1} A T=\operatorname{diag}(1,1,1,11)$.

