The University of Sydney MATH2902 Vector Spaces

(http://www.maths.usyd.edu.au/u/UG/IM/MATH2902/)

Semester1, 2001

Lecturer: R. Howlett

Tutorial 7

- 1. Let $A \in Mat(n \times n, \mathbb{R})$, and suppose that the columns of A form an orthonormal basis of \mathbb{R}^n . Show that ${}^{t}A = A^{-1}$, and deduce that the rows of A form an orthonormal basis of ${}^{t}\mathbb{R}^n$.
- **2.** Let V be an inner product space and U a subspace of V. Define

$$U^{\perp} = \{ v \in V \mid \langle u, v \rangle = 0 \text{ for all } u \in U \}.$$

- (i) Use Theorem 3.10 to prove that U^{\perp} is a subspace of V.
- (ii) Prove that if $x, x' \in U$ and $y, y' \in U^{\perp}$ and x + y = x' + y' then x = x' and y = y'.

If U is a finitely generated subspace of the inner product space V then there exists a function $P: V \to U$ (the orthogonal projection) such that $v - P(v) \in U^{\perp}$ for all $v \in V$. Hence in this case each $v \in V$ can be expressed in the form x + y with $x \in U$ and $y \in U^{\perp}$, by putting x = P(v) and y = v - P(v). By 2 (*ii*) above this expression is unique. (Note that these results need not apply if U is not finitely generated.)

- **3.** Let V be a finite dimensional inner product space and U a subspace of V. Suppose that x_1, x_2, \ldots, x_n form an orthogonal basis of U and y_1, y_2, \ldots, y_m form an orthogonal basis of U^{\perp} . Prove that $x_1, \ldots, x_n, y_1, \ldots, y_m$ form an orthogonal basis of V. Hence prove that the sum of the dimensions of U and U^{\perp} equals the dimension of V.
- 4. Let U be the subspace of ${}^{t}\mathbb{R}^{3}$ spanned by (1,1,1) and (1,1,-2). Find a basis for U^{\perp} .
- 5. Let $A \in \operatorname{Mat}(m \times n, \mathbb{R})$. Show that $x \in \mathbb{R}^n$ is a solution of the equations Ax = 0 if and only if ${}^{\mathrm{t}}x$ is orthogonal to each of the rows of A. Deduce that the dimension of the solution space of Ax = 0 equals the dimension of the orthogonal complement of the row space of A.
- 6. Find an orthonormal basis for the 1-eigenspace of $\begin{pmatrix} 2 & 1 & 2 & 2 \\ 1 & 2 & 2 & 2 \\ 2 & 2 & 5 & 4 \\ 2 & 2 & 4 & 5 \end{pmatrix}$. Find also an orthonormal basis for the orthogonal complement of this space, and verify that this orthogonal complement equals the 11-eigenspace of the above matrix. Using the elements of these bases as the columns, construct a matrix T such that ${}^{t}T = T^{-1}$ and $T^{-1}AT = \text{diag}(1, 1, 1, 11)$.