THE UNIVERSITY OF SYDNEY

MATH2902 Vector Spaces

(http://www.maths.usyd.edu.au/u/UG/IM/MATH2902/)

Lecturer: R. Howlett

Semester1, 2001

Tutorial 9

1. Compute the given products of permutations.

$$(i) \quad \begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{bmatrix} \quad (ii) \quad \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 1 & 5 & 2 & 3 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 4 & 3 & 2 & 1 \end{bmatrix}$$

$$(iii) \quad \left(\begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{bmatrix} \right) \begin{bmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 1 & 2 \end{bmatrix}$$

$$(iii) \quad \left(\begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{bmatrix} \right) \begin{bmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 1 & 2 \end{bmatrix}$$
$$(iv) \quad \begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{bmatrix} \left(\begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 1 & 2 \end{bmatrix} \right)$$

- 2. Calculate the parity of each permutation appearing in Exercise 1.
- 3. Use row and column operations to calculate the determinant of

$$\begin{pmatrix}
1 & 5 & 11 & 2 \\
2 & 11 & -6 & 8 \\
-3 & 0 & -452 & 6 \\
-3 & -16 & -4 & 13
\end{pmatrix}$$

- For each permutation $\sigma \in S_n$ define P_{σ} to be the $n \times n$ matrix with (i, j)-entry equal to 1 if $i = \sigma(j)$ and 0 if $i \neq \sigma(j)$. Prove that $P_{\sigma}P_{\tau} = P_{\sigma\tau}$ for all $\sigma, \tau \in S_n$.
- What is the determinant of the matrix P_{σ} defined in Exercise 4? **5.**
- 6. Consider the determinant

$$\det \begin{pmatrix} 1 & x_1 & x_1^2 & \dots & x_1^{n-1} \\ 1 & x_2 & x_2^2 & \dots & x_2^{n-1} \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & x_n & x_n^2 & \dots & x_n^{n-1} \end{pmatrix}.$$

Use row and column operations to evaluate this in the case n=3. Then do the case n = 4. Then do the general case. (The answer is $\prod_{i>j} (x_i - x_j)$.)

Let $p(x) = a_0 + a_1x + a_2x^2$, $q(x) = b_0 + b_1x + b_2x^2$, $r(x) = c_0 + c_1x + c_2x^2$. Prove that

$$\det \begin{pmatrix} p(x_1) & q(x_1) & r(x_1) \\ p(x_2) & q(x_2) & r(x_2) \\ p(x_3) & q(x_3) & r(x_3) \end{pmatrix} = (x_2 - x_1)(x_3 - x_1)(x_3 - x_2) \det \begin{pmatrix} a_0 & b_0 & c_0 \\ a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{pmatrix}.$$