Tutorial 10

1. Prove that isomorphic vector spaces have the same dimension.
(Hint: Use Theorem 4.17. This was proved in Exercise 5 of Tutorial 4.)
2. Is it possible to find subspaces U, V and W of \mathbb{R}^{4} such that

$$
\mathbb{R}^{4}=U \oplus V=V \oplus W=W \oplus U ?
$$

3. (i) Let V and W be vector spaces over F. Show that the Cartesian product of V and W (see $\S 1 \mathrm{~b}$) becomes a vector space if addition and scalar multiplication are defined in the natural way. (This space is called the external direct sum of V and W, and is sometimes denoted by ' $V+W^{\prime}$ '.)
(ii) Show that $V^{\prime}=\{(v, 0) \mid v \in V\}$ and $W^{\prime}=\{(0, w) \mid w \in W\}$ are subspaces of $V \dot{+} W$ with $V^{\prime} \cong V$ and $W^{\prime} \cong W$, and that $V \dot{+} W=V^{\prime} \oplus W^{\prime}$.
(iii) Prove that $\operatorname{dim}(V \dot{+} W)=\operatorname{dim} V+\operatorname{dim} W$.
4. Let S and T be subspaces of a vector space V and let U be a subspace of T such that $T=(S \cap T) \oplus U$. Prove that $S+T=S \oplus U$ (see Tutorial 3 for the definition of $S+T$), and hence deduce that

$$
\operatorname{dim}(S+T)=\operatorname{dim} S+\operatorname{dim} T-\operatorname{dim}(S \cap T)
$$

5. (i) Let S and T be subspaces of a vector space V. Prove that $(s, t) \mapsto s+t$ defines a linear transformation from $S+T$ to V which has image $S+T$ and kernel isomorphic to $S \cap T$.
(ii) The Main Theorem on Linear Transformations (see p. 158 of the book) asserts that if V is a finitely generated vector space and θ a linear transformation from V to another space W, then the sum of the dimensions of $\operatorname{ker} \theta$ and $\operatorname{im} \theta$ equals the dimension of V. Use this and Part (i) to give another proof that $\operatorname{dim}(S+T)+\operatorname{dim}(S \cap T)=\operatorname{dim} S+\operatorname{dim} T$.
