The University of Sydney

MATH2902 Vector Spaces

(http://www.maths.usyd.edu.au/u/UG/IM/MATH2902/)

Semester1, 2001	Lecturer: R. Howlett
-----------------	----------------------

Tutorial 12

- 1. Let A be an $n \times n$ matrix whose rank is less than n. Prove that 0 is an eigenvalue of A.
- **2.** Let V be a vector space and S and T subspaces of V such that $V = S \oplus T$. Prove or disprove the following assertion:

If U is any subspace of V then $U = (U \cap S) \oplus (U \cap T)$.

- **3.** (i) Let A, B and C be $n \times n$ matrices, and suppose that the column space of B equals the column space of C. Prove that the column space of AB equals that of AC. (Hint: Use Proposition 7.16 of the text.)
 - (*ii*) Let A be an $n \times n$ matrix and suppose that the rank of A^4 is the same as the rank of A^3 . Prove that A^5 and all higher powers of A also have this same rank. (Hint: Apply Part (i) with $B = A^3$ and $C = A^4$.)
- 4. Let V and W be vector spaces over the field F and let $\boldsymbol{b} = (v_1, v_2, \dots, v_n)$ and $\boldsymbol{c} = (w_1, w_2, \dots, w_m)$ be bases of V and W respectively. Let L(V, W) be the set of all linear transformations from V to W, and let $Mat(m \times n, F)$ be the set of all $m \times n$ matrices over F. We know that $Mat(m \times n, F)$ is a vector space over F, and we have seen in Question 3 of Tutorial 5 that L(V, W) is too. Let $\Omega: L(V, W) \to Mat(m \times n, F)$ be the function defined by $\Omega(\theta) = M_{\boldsymbol{cb}}(\theta)$ for all $\theta \in L(V, W)$.
 - (i) Prove that Ω is a linear transformation. (Hint: The task is to prove that $M_{cb}(\phi + \theta) = M_{cb}(\phi) + M_{cb}(\theta)$ and $M_{cb}(\lambda\phi) = \lambda M_{cb}(\phi)$. Now the j^{th} column of $M_{cb}(\phi + \theta)$ is $cv_c((\phi + \theta)(v_j))$ while the j^{th} columns of $M_{cb}(\phi)$ and $M_{cb}(\theta)$ are $cv_c(\phi(v_j))$ and $cv_c(\theta(v_j))$. Use the definition of $\phi + \theta$ and fact that $x \mapsto cv_c(x)$ is linear to prove that the j^{th} column of $M_{cb}(\phi + \theta)$ is the sum of the j^{th} columns of $M_{cb}(\phi)$ and $M_{cb}(\theta)$.)
 - (*ii*) Prove that the kernel of Ω is $\{z\}$, where $z: V \to W$ is the zero function.
 - (*iii*) Prove that Ω is a vector space isomorphism. (Hint: By the first two parts we know that Ω is linear and injective; so surjectivity is all that remains. That is, given a $m \times n$ matrix M we must show that there is a linear transformation θ from V to W having M as its matrix. Now the coefficients of M determine what $\theta(v_i)$ has to be for each i, and Theorem 4.18 guarantees that such a linear transformation exists.)
 - (*iv*) Find a basis for L(V, W). (Hint: (Find a basis of $Mat(m \times n, F)$ first. The corresponding linear transformations will give the desired basis of L(V, W).)