The University of Sydney

MATH2902 Vector Spaces
(http://www.maths.usyd.edu.au/u/UG/IM/MATH2902/)
Semester1, 2001
Lecturer: R. Howlett

Tutorial 12

1. Let A be an $n \times n$ matrix whose rank is less than n. Prove that 0 is an eigenvalue of A.
2. Let V be a vector space and S and T subspaces of V such that $V=S \oplus T$. Prove or disprove the following assertion:

If U is any subspace of V then $U=(U \cap S) \oplus(U \cap T)$.
3. (i) Let A, B and C be $n \times n$ matrices, and suppose that the column space of B equals the column space of C. Prove that the column space of $A B$ equals that of $A C$.
(Hint: Use Proposition 7.16 of the text.)
(ii) Let A be an $n \times n$ matrix and suppose that the rank of A^{4} is the same as the rank of A^{3}. Prove that A^{5} and all higher powers of A also have this same rank.
(Hint: Apply Part (i) with $B=A^{3}$ and $C=A^{4}$.)
4. Let V and W be vector spaces over the field F and let $\boldsymbol{b}=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ and $\boldsymbol{c}=\left(w_{1}, w_{2}, \ldots, w_{m}\right)$ be bases of V and W respectively. Let $\mathrm{L}(V, W)$ be the set of all linear transformations from V to W, and let $\operatorname{Mat}(m \times n, F)$ be the set of all $m \times n$ matrices over F. We know that $\operatorname{Mat}(m \times n, F)$ is a vector space over F, and we have seen in Question 3 of Tutorial 5 that $\mathrm{L}(V, W)$ is too. Let $\Omega: \mathrm{L}(V, W) \rightarrow \operatorname{Mat}(m \times n, F)$ be the function defined by $\Omega(\theta)=\mathrm{M}_{\boldsymbol{c} \boldsymbol{b}}(\theta)$ for all $\theta \in \mathrm{L}(V, W)$.
(i) Prove that Ω is a linear transformation. (Hint: The task is to prove that $\mathrm{M}_{c b}(\phi+\theta)=\mathrm{M}_{\boldsymbol{c} \boldsymbol{b}}(\phi)+\mathrm{M}_{\boldsymbol{c} b}(\theta)$ and $\mathrm{M}_{\boldsymbol{c b}}(\lambda \phi)=\lambda \mathrm{M}_{\boldsymbol{c} \boldsymbol{b}}(\phi)$. Now the $j^{\text {th }}$ column of $\mathrm{M}_{\boldsymbol{c} \boldsymbol{b}}(\phi+\theta)$ is $\mathrm{cv}_{\boldsymbol{c}}\left((\phi+\theta)\left(v_{j}\right)\right)$ while the $j^{\text {th }}$ columns of $\mathrm{M}_{\boldsymbol{c} \boldsymbol{b}}(\phi)$ and $\mathrm{M}_{\boldsymbol{c} \boldsymbol{b}}(\theta)$ are $\mathrm{cv}_{\boldsymbol{c}}\left(\phi\left(v_{j}\right)\right)$ and $\mathrm{cv}_{\boldsymbol{c}}\left(\theta\left(v_{j}\right)\right)$. Use the definition of $\phi+\theta$ and fact that $x \mapsto \mathrm{cv}_{\boldsymbol{c}}(x)$ is linear to prove that the $j^{\text {th }}$ column of $\mathrm{M}_{\boldsymbol{c} \boldsymbol{b}}(\phi+\theta)$ is the sum of the $j^{\text {th }}$ columns of $\mathrm{M}_{\boldsymbol{c b}}(\phi)$ and $\mathrm{M}_{\boldsymbol{c} \boldsymbol{b}}(\theta)$.)
(ii) Prove that the kernel of Ω is $\{z\}$, where $z: V \rightarrow W$ is the zero function.
(iii) Prove that Ω is a vector space isomorphism. (Hint: By the first two parts we know that Ω is linear and injective; so surjectivity is all that remains. That is, given a $m \times n$ matrix M we must show that there is a linear transformation θ from V to W having M as its matrix. Now the coefficients of M determine what $\theta\left(v_{i}\right)$ has to be for each i, and Theorem 4.18 guarantees that such a linear transformation exists.)
(iv) Find a basis for $\mathrm{L}(V, W)$. (Hint: (Find a basis of $\operatorname{Mat}(m \times n, F)$ first. The corresponding linear transformations will give the desired basis of $\mathrm{L}(V, W)$.)

