
WEEK 10

Sylow’s Theorem

The term “modern algebra” principally refers to abstract theories in which the objects
of study are assumed to satisfy certain basic rules, or axioms, but are otherwise undefined.
Its prominence stems from the discovery of many examples of mathematical objects of
different kinds that obey the same abstract rules, leading to the development of axiomatic
theories with many different applications. This style of algebra has been pre-eminent since
the 1920’s; so, roughly speaking, “modern algebra” means 20th century algebra.

While group theory is the primary example of an abstract algebraic theory, it arose
somewhat earlier than other parts of abstract algebra, being an invention of 19th century
mathematics. In this week’s lectures we shall look at one of the most famous theorems of
finite group theory, discovered in 1872 by the Norwegian mathematician Ludwig Sylow.

Theorem. Let G be a finite group and p a prime number. Let #G = pkm where m is
not divisible by p (so that pk is the highest power of p that is a factor of #G). Then G
has a subgroup of order pk. Moreover, if we define d to be the number of subgroups of G
of order pk then d is a divisor of m and d ≡ 1 (mod p).

Recall that d ≡ 1 (mod p) means that d is 1 more than a multiple of p; that is,
d = 1 + Np for some integer N .

To illustrate what Sylow’s Theorem says, let us suppose that G is a finite group of
order 56, and let p = 7 (a prime number). We have 56 = 7 × 8, and 8 is not divisible
by 7. So G has at least one subgroup with 7 elements. Furthermore, if d is the number of
such subgroups then d must be a divisor of 8 and must also be congruent to 1 modulo 7.
The divisors of 8 are 1, 2, 4 and 8, and of these numbers only 1 and 8 are congruent
to 1 modulo 7. So a group of order 56 must have a unique subgroup of order 7 or eight
subgroups of order 7.

Since 2 is also a prime number we can equally well apply Sylow’s Theorem with
#G = 56 and p = 2. This time we write 56 = 23 × 7, observing that 7 is not divisible
by 2, and conclude that G has at least one subgroup of order 8. Moreover, the number
of subgroups of order 8 must be a divisor of 7 and must be congruent to 1 modulo 2.
The divisors of 7 are 1 and 7, both of which are congruent to 1 modulo 2. So a group of
order 56 must either have exactly one subgroup of order 8 or exactly seven subgroups of
order 8.

For another example, suppose that #G = 24 = 3 × 8. Applying Sylow’s Theorem
with p = 3 we see that G must have at least one subgroup of order 3; moreover, if d is the
number of subgroups of order 3 then d is a divisor of 8 and d ≡ 1 (mod 3). The divisors
of 8 are 1, 2, 4 and 8; of these, only 1 and 4 are congruent to 1 modulo 3. So G either
has 1 subgroup of order 3 or four subgroups of order 3. Similarly, if we apply Sylow’s
Theorem with p = 2 then, since 24 = 23 × 3, the conclusion is that G has d subgroups of
order 8, where d = 1 or d = 3.

We remark that when Sylow’s Theorem is applied with p = 2 the condition that
d ≡ 1 (mod p) never gives us any new information. We have #G = 2km, where m is an
odd number, and we know that d has to be a divisor of m. Since all divisors of an odd
number are odd, all the divisors of m will necessarily satisfy the requirement of being
congruent to 1 modulo 2. However, when p > 2, and particularly when p is large, the fact
that d ≡ 1 (mod p) is often very useful.
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For a final example, suppose that #G = 720. Observe that 720 = 32 · 80, and 80
is not divisible by 3. By Sylow’s Theorem, applied with p = 3, it follows that G has a
subgroup of order 9. The divisors of 80 that are congruent to 1 modulo 3 are 1, 4, 10, 16
and 40. So the number of subgroups of order 9 must be one of these numbers. Similarly,
since 720 = 24 · 45, Sylow’s Theorem applied with p = 2 says that G has a subgroup
of order 16, the number of such subgroups being a divisor of 45. And an application of
Sylow’s Theorem with p = 5 guarantees that G has 1, 6, 16 or 36 subgroups of order 5.

One can also apply Sylow’s Theorem with p a prime number that is not a divisor
of #G, but doing so nevers tells us anything that was not already obvious. If p does not
divide #G then p0 is the highest power of p that is a divisor of #G; so Sylow’s Theorem
tells us that G has a subgroup of order p0. But p0 = 1, and we know that every group G
has exactly one subgroup of order 1. Indeed, since a subgroup of G must always contain e,
the identity element of G, a subgroup of order 1 must consist of e and nothing else. It
is easily checked that the subset {e} satisfies SG1, SG2 and SG3, and is therefore, in
all cases, the unique subgroup of G of order 1. (The condition that d ≡ 1 (mod p) is
satisfied, of course, since d = 1.)

Let us now consider the specific group G = Sym(4), the group of all permutations
of 1, 2, 3, 4. Since we have already done some investigations of subgroups of this group,
we should be able to verify that Sylow’s theorem is consistent with what we know, and
perhaps also gain some more information.

The group Sym(4) has 24 elements. We have seen that the set

{id, (1 2 3 4), (1 4 3 2), (1 3)(2 4), (1 3), (2 4), (1 2)(3 4), (1 4)(2 3)}

a subgroup of Sym(4) of order 8; this confirms one of the conclusions of Sylow’s Theorem.
Recall that we obtained the subgroup above by considering the symmetries of a square
with vertices numbered 1, 2, 3 and 4. But we can choose the numbering of the vertices
in more than one way, and different choices may in fact give us different groups. Indeed,
consider the following three alternative numberings.
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For the first of these choices, the group of symmetries is that given above. The second
numbering gives

{id, (1 3 2 4), (1 4 2 3), (1 2)(3 4), (1 2), (3 4), (1 3)(2 4), (1 4)(3 2)}

as the group of symmetries, while the third numbering gives

{id, (1 3 4 2), (1 2 4 3), (1 4)(3 2), (1 4), (3 2), (1 3)(2 4), (1 2)(3 4)}.

So Sym(4) has at least three distinct subgroups of order 8. But we saw above that, by
Sylow’s Theorem, a group of order 24 either has exactly one subgroup of order 8 or exactly
three subgroups of order 8. So for Sym(4) we must have the latter alternative: Sylow’s
Theorem tells us that the above three subgroups of order 8 are the only subgroups of
Sym(4) of order 8.
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Now consider p = 3. In Sym(4) there are several 3-cycles, such as (1 2 3); these are
elements of order 3. Now if g is any element of any group then the set of all powers of g
is a subgroup, usually denoted by 〈g〉. (Recall that this subgroup is known as the cyclic
subgroup generated by g.) It is easily checked that

〈(1 2 3)〉 = {id, (1 2 3), (1 3 2)},

a subgroup of order 3. Other 3-cycles will similarly generate subgroups of order 3. Now
there are eight 3-cycles altogether: there are 4 ways to choose the numbers to go in the
cycle (since one of 1, 2, 3 or 4 is to be left out) and then two possible cyclic orderings for
the numbers that are chosen. The eight 3-cycles are, in fact, (1 2 3), (1 3 2), (1 2 4), (1 4 2),
(1 3 4), (1 4 3), (2 3 4) and (2 4 3), and we see that

〈(1 2 3)〉 = 〈(1 3 2)〉 = {id, (1 2 3), (1 3 2)},
〈(1 2 4)〉 = 〈(1 4 2)〉 = {id, (1 2 4), (1 4 2)},
〈(2 3 4)〉 = 〈(2 4 3)〉 = {id, (2 3 4), (2 4 3)},

Thus Sym(4) has at least four subgroups of order 3. But we saw above that, by Sylow’s
Theorem, the number of subgroups of order 3 in a group of order 24 must be either 1 or 4.
Thus Sym(4) must have exactly four subgroups of order 3: they are the ones listed above.

Rather than prove Sylow’s Theorem in its full generality, we shall only prove it in
some special cases. Specifically, we shall prove that any group of order 36 must have a
subgroup of order 9. However, we shall use a method of proof that applies in general;
essentially, the general proof just has variables where we shall have specific numbers.

The proof makes use of the following result, whose proof appears in the notes for
Week 8.

Proposition. Suppose that S is a nonempty subset of a group G, and suppose that no two
distinct right translates of S have any elements in common. Then there exists a subgroup
H of G and an element g ∈ G such that S = Hg.

Recall that a right translate of S is by definition a set of the form Sg = {xg | x ∈ S },
where g is in G. In the case that S is a subgroup the right translates of S are also called
the right cosets of S. We have seen that the right cosets of a subgroup of G partition G,
in the sense that distinct right cosets have no elements in common, and every element
of G lies in some right coset. The above proposition is a converse to this.

Assume now that G is a group with #G = 36. We need to prove that at least one of
the

(
36
9

)
subsets of G with nine elements is a subgroup of G. In fact, the number of these

subsets that are subgroups is congruent to 1 modulo 3. The first thing to observe is that
the number

(
36
9

)
is not divisible by 3. Indeed,(

36
9

)
=

36 · 35 · 34 · 33 · 32 · 31 · 30 · 29 · 28
9 · 8 · 7 · 6 · 5 · 4 · 3 · 2 · 1

and the powers of 3 occurring as factors of numbers in the numerator of this expression
are matched exactly by those occurring as factors of numbers in the denominator. For
each i from 0 to 8, the highest power of 3 that is a factor of 36 − i is the same as the
highest power of 3 that is a factor of 9− i. Cancelling all these 3’s leaves(

36
9

)
=

4 · 35 · 34 · 11 · 32 · 31 · 10 · 29 · 28
1 · 8 · 7 · 2 · 5 · 4 · 1 · 2 · 1
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and given that this is an integer it is undoubtedly not divisible by 3, since the top line
is not divisible by 3. The actual value is 94143280 = 3 × 31381093 + 1; so it is in fact
congruent to 1 modulo 3.

Let S be the set of all 9-element subsets of G. We have just shown that #S not
divisible by 3. Now let us define a relation ∼ on S as follows: if X, Y ∈ S then X ∼ Y
if and only if X = Y g for some g ∈ G. That is, X ∼ Y if and only if X is a right translate
of Y .

Lemma. The relation ∼ is an equivalence relation on S .

Proof. Let e be the identity element of G. For all X ∈ S we have X = Xe, showing
that X is a right translate of itself. So X ∼ X holds for all X ∈ S ; that is, ∼ is reflexive.

Let X, Y ∈ S with X ∼ Y . Then X = Y g for some g ∈ G, and it follows that
Xg−1 = Y gg−1 = Y e = Y . Thus Y is a right translate of X whenever X is a right
translate of Y ; that is, ∼ is symmetric.

Let X, Y, Z ∈ S with X ∼ Y and Y ∼ Z. Then X = Y g and Y = Zg′ for some
g, g′ ∈ G, and it follows that X = (Zg′)g = Z(gg′), whence X ∼ Z. So ∼ is also
transitive. �

So the 94143280 elements of S are divided into equivalence classes, two elements
being in the same class if and only if they are right translates of each other. For each
X ∈ S , the equivalence class containing X consists of all subsets of G that are right
translates of X.

Lemma. Let X be a 9-element subset of G.
(1) Every element of G lies in some right translate of X.
(2) The number of right translates of X is at least four.
(3) If the number of right translates of X is exactly four then these translates are disjoint

from each other.

Proof. Let g be an arbitrary element of G, and choose an element x0 ∈ X. Then
g = x0x

−1
0 g ∈ Xx−1

0 g (since x0 ∈ X). So g is in the right translate Xx−1
0 g of X, and

since g was arbitrary this shows that every element of G lies in some right translate of X.
Suppose that X has k right translates. Since they all have nine elements, the total

number of elements in their union is at most 9k, and it is exactly 9k if and only if the k
right translates are disjoint from one another. But from the first part we know that the
union of the translates is G, which has 36 elements. So 36 ≤ 9k, and 36 = 9k if and only
if the translates are disjoint. That is, k ≥ 4, and k = 4 if and only if the translates of X
are disjoint, as claimed. �

Lemma. If X is a 9-element subset of G then the number of right translates of X is 36,
18, 12, 9, 6 or 4, and if the number is 4 then X is a right coset of some subgroup.

Proof. We showed in an earlier lecture that the number of right translates of any sub-
set W of G is #G/#Stab(W ), where Stab(W ) = { g ∈ G | Wg = W }. So the number of
right translates of X is 36/#Stab(X). The answer must be a whole number; so #Stab(X)
must be a divisor of 36, whence 36/#Stab(X) is also a divisor of 36. But we saw in the
previous lemma that the number of right translates of X is at least 4, and since the
divisors of 36 that are greater than or equal to 4 are precisely 36, 18, 12, 9, 6, and 4,
we conclude that these are the only possibilities for the number of right translates of X.
Furthermore, if the number of right translates is 4 then, as we proved in the previous
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lemma, the translates are pairwise disjoint. And by the proposition we stated above, any
nonempty subset whose translate are pairwise disjoint must be a coset of a subgroup of G;
so the result is proved. �

Each equivalence class for the relation ∼ on S consists of the right translates of an
9-element subset, and so the number of elements in the equivalence class must be 36, 18,
12, 9, 6, or 4. The total number of elements in S is the sum of the numbers of elements
in the various equivalence classes; so

#S = 36n1 + 18n2 + 12n3 + 9n4 + 6n5 + 4n6

for some nonnegative integers n1, n2, n3, n4, n5 and n6. But the right hand side above
can be written as

3(12n1 + 6n2 + 4n3 + 3n4 + 2n5 + n6) + n6,

which differs from n6 by a multiple of 3. So #S ≡ n6 (mod 3). But we have seen that
#S = 94143280 ≡ 1 (mod 3); so we conclude that n6 ≡ 1 (mod 3). In particular, n6 6= 0;
that is, there is at least one equivalence class with four elements. But as we have observed,
the sets in such an equivalence class must be cosets of a subgroup. Each equivalence class
with four elements consists of the four right cosets of a subgroup of order nine. So we
conclude that there is at least one subgroup of order nine.

In fact, by applying the above steps a little more carefully we can show that the
number of subgroups of order nine is congruent to 1 modulo 3. It is certainly true
that the right cosets of any subgroup of order nine constitute an equivalence class with
four elements, and every equivalence class with four elements consists of the cosets of a
subgroup of order 9. So the number of subgroups of order 9 is precisely the number of
equivalence classes with four elements. This is the number that was called n6 above, and
we showed that n6 ≡ 1 (mod 3).

Let us now repeat the argument in greater generality, and show that if m is not a
multiple of 3 then any group of order 9m must have a subgroup of order 9. It will be
convenient to first prove an important but elementary fact about congruence modulo n.
Recall first the definition:

a ≡ b (mod n)
if and only if

a− b = qn for some integer q.

Here is the fact we wish to prove.

Lemma. Let a, b, c and d be integers such that a ≡ b (mod n) and c ≡ d (mod n). Then
a + c ≡ b + d (mod n) and ac ≡ bd (mod n).

Proof. Since a − b is a multiple of n there exists an integer q such that a = b + qn.
Similarly, since c − d is a multiple of n there exists an integer q′ such that c = d + q′n.
Now

a + c = (b + qn) + (d + q′n) = (b + d) + (q + q′)n,

whence (a + c)− (b + d) is a multiple of n, and similarly

ac = (b + qn)(d + q′n) = bd + qnd + bq′n + qnq′n = bd + (qd + bq′ + qq′n)n,
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whence ac− bd is also a multiple of n. So a + c ≡ b + d (mod n) and ac ≡ bd (mod n), as
required. �

The so-called Fundamental Theorem of Arithmetic states that every positive integer
can be uniquely factorized as a product of prime numbers. We shall not prove this, as it
would take us too far afield. Closely allied to the Fundamental Theorem of Arithmetic is
the following result: if a and b are integers and p is a prime number that is a factor of the
product ab then p is a factor of a or b (or both).

Lemma. Suppose that p is a prime and a, b, c, d integers such that ac ≡ bd (mod p) and
a ≡ b 6≡ 0 (mod p). Then c ≡ d (mod p).

Proof. Since a ≡ b (mod p) it follows that ac ≡ bc (mod p). Since also ac ≡ bd, we have
bc ≡ bd (mod p). Thus b(c− d) = bc− bd is a multiple of p. But p is prime, and b is not
a factor of b (by the hypothesis that b 6≡ 0 (mod p)); so b must be a factor of c− d. Thus
c ≡ d (mod p), as claimed. �

The next result is the first ingredient we require for the proof of Sylow’s Theorem in
the case we are concerned with.

Lemma. Suppose that m is not a multiple of 3. Then
(
9m
9

)
≡ m (mod 3).

Proof. The formula for the binomial coefficients (which should be familiar from secondary
school and junior level mathematics) gives

(
9m
9

)
= (9m)!

9!(9m−9)! . Cancelling (9m− 9)! gives(
9m

9

)
=

9m(9m− 1)(9m− 2)(9m− 3)(9m− 4)(9m− 5)(9m− 6)(9m− 7)(9m− 8)
9 · 8 · 7 · 6 · 5 · 4 · 3 · 2 · 1

,

and then cancelling factors of 3 gives(
9m

9

)
=

m(9m− 1)(9m− 2)(3m− 1)(9m− 4)(9m− 5)(3m− 2)(9m− 7)(9m− 8)
1 · 8 · 7 · 2 · 5 · 4 · 1 · 2 · 1

.

Write A = (9m − 1)(9m − 2)(3m − 1)(9m − 4)(9m − 5)(3m − 2)(9m − 7)(9m − 8) and
B = 8 ·7 ·2 ·5 ·4 ·1 ·2 ·1, and observe that corresponding factors in these two products are
congruent modulo 3. Thus 9m−1 ≡ 8 (mod 3), 9m−2 ≡ 7 (mod 3), 3m−1 ≡ 2 (mod 3),
and so on. So A ≡ B (mod 3). None of factors of B are multiples of 3; so B 6≡ 0 (mod 3).
Now since

B

(
9m

9

)
= mA (mod 3)

it follows from the last lemma above that we can cancel A and B from this expression,
leaving

(
9m
9

)
≡ m, as claimed. �

Now suppose that G is a finite group with #G = 9m, where m 6≡ 0 (mod 3). Let
S be the set of all 9-element subsets of G, and for X, Y ∈ S define X ∼ Y if and only
if X is a right translate of Y . Then ∼ is an equivalence relation on S , and so S is the
disjoint of ∼-equivalence classes:

S = T1 ∪T2 ∪ · · · ∪Tl (1)

for some l, where each Ti consists of elements of S that are all right translates of one
another.
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If X is any element of S then all the right translates of X have 9 elements, and their
union is the whole of G. Since #G = 9m it follows that the number of right translates
of X must be at least m, and it is exactly m if and only if the translates are pairwise
disjoint. We know that if the translates are pairwise disjoint then they are the cosets of a
subgroup. Furthermore, the number of right translates of X is #G/#Stab(X), a divisor
of #G. So for each ∼-equivalence class Ti in Eq. (1) above, #Ti is a divisor of 9m that
is at least m, and equals m only if Ti consists of the right cosets of a subgroup of G of
order 9.

We have assumed that m is not divisible by 3; so any divisor of 9m that is not
divisible by 3 must be a divisor of m, and hence no bigger than m. So every divisor of
9m that exceeds m must be congruent to 0 modulo 3. By Eq. (1),

#S = #T1 + #T2 + · · ·+ #Tl,

and each number #Ti on the right hand side of this equation either equals m or is divisible
by 3. So

#S ≡ Km (mod 3), (2).

where K is the number of equivalence classes Ti that consist of right cosets of subgroups
of G. That is, K is the number of subgroups of G of order 9. Now #S is the number of
9-element subsets of a set with 9m elements, and this equals

(
9m
9

)
. So by Eq. (2) and the

lemma,

Km ≡
(

9m

m

)
≡ m (mod 3),

and since m 6≡ 0 (mod 3) we can cancel the m and conclude that K ≡ 1 (mod 3). In
particular, K 6= 0: a group of order 9m must have a nonzero number of subgroups of
order 9.
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