
WEEK 11

Summary of week 11 (Lectures 31, 32 and 33)

The contents of this week’s lectures coincided almost exactly with Chapter 7
of [VST]. This involved repeating some of the material from Week 5.

Recall that if V is an n-dimensional vector space over F and b is a basis of V
consisting of the vectors v1, v2, . . . , vn then there is an isomorphism φ:Fn → V
given by

φ


λ1

λ2
...
λn

 =
∑
i=1

λivi.

Let cvb:V → Fn be the isomorphism that is the inverse of φ. In other words, for
all v ∈ V ,

cvb(v) =


λ1

λ2
...
λn

 ∈ Fn

where the λi are the unique scalars such that v =
∑n

i=1 λivi. The n-tuple cvb(v)
is called the coordinate vector of v relative to the basis b.

Suppose we also have an m-dimensional space W with basis c consisting of
w1, w2, . . . , wm, and a linear map T :V → W . Just as for V we have mutually
inverse isomorphisms ψ:Fm →W and cvcW :Fm such that for all w ∈W ,

cvc(w) =


µ1

µ2
...
µm

 if and only if w =
m∑

i=1

µiwi.

We define the matrix of T relative to the bases c and b to be the m × n matrix
Mcb(T ) whose j-th column is cvc(T (vj)). That is, if aij is the (i, j)-entry of
Mcb(T ), then T (vj) =

∑m
i=1 aijwi.

Now for arbitrary v ∈ V , if we let

cvb(v) =


λ1

λ2
...
λn

 ,

then we find that

T (v) = T
( n∑

j=1

λjvj

)
=

n∑
j=1

λjT (vj) =
n∑

j=1

λj

m∑
i=1

aijwi

=
n∑

j=1

m∑
i=1

λjaijwi =
m∑

i=1

n∑
j=1

λjaijwi =
m∑

i=1

( n∑
j=1

aijλj

)
wi,

–1–

Vector spaces
Lecture summaries for the course Math2902 at the University of Sydney in the first semester, 2001. Copyright 2001, Robert Brian Howlett.



and consequently the coordinate vector of T (v) relative to c is given by

cvc(T (v)) =



n∑
j=1

a1jλj

n∑
j=1

a2jλj

...
n∑

j=1

amjλj


=


a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
...

am1 am2 . . . amn



λ1

λ2
...
λn

 = Mcb(T ) cvb(v).

This result is Theorem 7.1 of [VST].
We can also prove Theorem 7.1 by the following argument. We proved last

week that composites of linear maps are linear. Hence, forming the compos-
ite of the three linear maps φ:Fn → V , followed by T :V → W , followed by
cvc:W → Fm, we obtain a linear map Fn → Fm. As the diagram below indi-
cates, this map takes cvb(v) to cvc(T (v)) (for all v ∈ V ). But Proposition 7.2 of

V

v = φ(cvb(v)) T (v)

W

Fn

cvb(v) cvc(T (v))

Fm

T

cvcφ

[VST], which we proved by a direct argument in Week 5, tell us that every linear
map Fn → Fm is given by multiplication by an m × n matrix; so there exists
A ∈ Mat(m× n, F ) such that A cvb(v) = cvc(T (v)) for all v ∈ V . The matrix A
is Mcb(T ), the matrix of T relative to the given bases.

Choosing a basis for a vector space can be thought of as choosing a coordinate
system, and we can think of Mcb(T ) as the coordinate form of T , relative to the
chosen coordinate systems, in the same way that cvb(v) and cvc(T (v)) are the
coordinates of v and T (v).

Here is the rule you should remember.

To calculate the matrix of a linear map
Given a linear map T :V → W and bases for V and W , apply T to the first
vector in the basis of V and express the result as a linear combination of the
basis elements of W . The coefficients obtained form the first column of the
required matrix. Repeat for the second basis vector of V to get the second
column, and so on for all the elements in the basis of V .
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For example, let V be the vector space over R consisting of all polynomials
in the variable x of degree at most three, and let W consist of all polynomials
of degree at most 2. Differentiation defines a map D from V to W , and it is
immediate from basic rules of calculus that D is linear. (Specifically, the rules in
question say that d

dx (p(x) + q(x)) = d
dxp(x) + d

dxq(x), and d
dx (λp(x)) = λ d

dxp(x).)
Let b be the basis of V consisting of the polynomials x3, x2, x and 1, and let c
be the basis of W consisting of x2, x and 1. Now

D(x3) = 3x2 = 3x2 + 0x+ 0,

D(x2) = 2x = 0x2 + 2x+ 0,

D(x) = 1 = 0x2 + 0x+ 1,

D(1) = 0 = 0x2 + 0x+ 0,

and so by the rule stated above it follows that

Mcb(D) =

 3 0 0 0
0 2 0 0
0 0 1 0

 .

It is trivial to confirm that Theorem 7.1 holds in this case. If p(x) is an arbitrary
element of V then p(x) = ax3 + bx2 + cx+ d for some scalars a, b, c, d ∈ R, and
we have

cvb(p(x)) =


a
b
c
d

 .

So according to Theorem 7.1 we should have that

cvc(D(p(x))) =

 3 0 0 0
0 2 0 0
0 0 1 0



a
b
c
d

 =

 3a
2b
c

 .

This tells us how to express D(p(x)) as a linear combination of the elements of
the basis c; specifically, it says that

D(p(x)) = 3ax2 + 2bx+ c,

which is, of course, precisely what one gets by differentiating p(x) in the usual
way.

Here is another example. Let b be the basis of R3 consisting of 1
0
0

 ,

 1
1
0

 ,

 1
1
1

 ,
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and let T : R3 → R3 be given by

T

x
y
z

 =

x+ 2y + z
3x+ z
x− y − z

 .

It is easy to check that T is a linear transformation. We proceed to calculate
Mbb(T ), the matrix of T relative to the basis b of the domain of T and the basis
b of the codomain of T . Of course in this example the domain of T and the
codomain of T are equal; so we have the possibility of using the same basis for
them both, and in this case we have chosen to do so. On other occasions we may
use different bases even when the domain and codomain are the same.

Calculation gives

T (v1) = T

 1
0
0

 =

 1
3
1

 = −2

 1
0
0

 + 2

 1
1
0

 + 1

 1
1
1

 ,

T (v2) = T

 1
1
0

 =

 3
3
0

 = 0

 1
0
0

 + 3

 1
1
0

 + 0

 1
1
1

 ,

T (v3) = T

 1
1
0

 =

 4
4
−1

 = 0

 1
0
0

 + 5

 1
1
0

− 1

 1
1
1

 ,

and we deduce that

Mbb(T ) =

−2 0 0
2 3 5
1 0 −1

 .

In confirmation of Theorem 7.1, observe that since−2 0 0
2 3 5
1 0 −1

  1
2
3

 =

−2
23
−2


it should be the case that T takes the vector

1

 1
0
0

 + 2

 1
1
0

 + 3

 1
1
1

 =

 6
5
3


to the vector

−2

 1
0
0

 + 23

 1
1
0

− 2

 1
1
1

 =

 19
21
−2

 .

This is left for the reader to check.
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Theorem 4.16 of [VST] tells us that if v1, v2, . . . , vn is a basis of V and
w1, w2, . . . , wm a basis of W then there is a linear map V → W taking the
vi to any arbitrarily chosen linear combinations of the wj ; so any m×n matrix is
the matrix relative to these two bases of some linear map V → W . For example,
if n = 3 and m = 4 then there is a linear map φ such that

φ(v1) = 2w1 − w2 + 4w3 − w4

φ(v2) = w1 + w2 − w3 + 2w4

φ(v3) = −w1 + w2 + 0w3 − 2w4,

and its matrix is 
2 1 −1
−1 1 1
4 −1 0
−1 2 −2

 .

Let V and U be arbitrary finite-dimensional vector spaces and φ:V → U
an arbitrary linear map. As in our discussion of the Main Theorem on Linear
Transformations, let K = kerφ (a subspace of V ) and I = imφ (a subspace
of W ), and choose a subspace W of V that is complementary to K. The proof
of the Main Theorem consisted of showing that W is isomorphic to I. More
specifically, there is an isomorphism W → I such that w 7→ φ(w) for all w ∈W .

Now let x1, x2, . . . , xr be a basis of W , and let xr+1, xr+2, . . . , xn be a basis
of K. Since V = W ⊕K, combining these bases gives a basis x1, x2, . . . , xn of V
(by Theorem 6.9 of [VST]). Call this basis b.

For each i ∈ {1, 2, . . . , r} let yi = θ(xi) ∈ I. Since the isomorphism W → I
described above takes xi 7→ yi, it follows from Theorem 4.17 that y1, y2, . . . , yr is
a basis of I. By Proposition 4.10 we can extend this basis to a basis y1, y2, . . . , ym

of U . Call this basis c. Now we find that

φ(x1) = 1y1 + 0y2 + · · ·+ 0yr + 0yr+1 + · · ·+ 0ym

φ(x2) = 0y1 + 1y2 + · · ·+ 0yr + 0yr+1 + · · ·+ 0ym

...

φ(xr) = 0y1 + 0y2 + · · ·+ 1yr + 0yr+1 + · · ·+ 0ym

φ(xr+1) = 0y1 + 0y2 + · · ·+ 0yr + 0yr+1 + · · ·+ 0ym

...

φ(xr) = 0y1 + 0y2 + · · ·+ 0yr + 0yr+1 + · · ·+ 0ym

where the first r of these equations come from the definition of the elements yi

while the remaining n− r equations (which say that φ(xj) = 0 for r+ 1 ≤ j ≤ n)
come from the fact the xr+1, xr+2, . . . , xm ∈ K = kerφ. The coefficients on the
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right hand side of the first of these equations gives the entries in the first column
of Mcb(φ), the second column is similarly obtained from the second equation, and
so on. So

Mcb(φ) =



1 0 . . . 0 0 . . . . . . . . . 0
0 1 . . . 0 0 . . . . . . . . . 0
...

...
...

...
...

0 0 . . . 1 0 . . . . . . . . . 0
0 0 . . . 0 0 . . . . . . . . . 0
...

...
...

...
...

0 0 . . . 0 0 . . . . . . . . . 0


.

We have shown that if we choose bases to suit a given linear map then we can
arrange for the matrix of the map to have the simple form that appears above.
Note that the number of 1’s in the matrix is the dimension of the image of φ. We
call this number the rank of φ.

The result proved above is Theorem 7.12 of [VST].
Since it is possible to so dramatically simplify the matrix of a linear map by

changing bases, it is important for us to understand precisely how a change of
basis alters the matrix. Here is the key definition.

Definition. Let V be a finite-dimensional vector space and let b and c be bases
of V . Let i:V → V be the identity map. The transition matrix from b-coordinates
to c-coordinates is the matrix Mcb defined by

Mcb = Mcb(i).

Observe that, in the situation of the above definition, if v ∈ V is arbitrary
then

Mcb cvb(v) = Mcb(i) cvb(v) = cvc(i(v)) = cvc(v).

That is, multiplication by the transition matrix takes the coordinate vector of v
relative to b to the coordinate vector of v relative to c.

As an example, consider the following two bases of R2:

b =
((

1
2

)
,

(
1
1

))
,

c =
((

2
5

)
,

(
1
3

))
.

To find Mcb we express the elements of b as linear combinations of the elements
of c. It is readily found that(

1
2

)
=

(
2
5

)
−

(
1
3

)
(

1
1

)
= 2

(
2
5

)
− 3

(
1
3

)
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and therefore Mcb =
(

1 2
−1 −3

)
. Now, for example,

8
(

1
2

)
− 10

(
1
1

)
=

(
−2
6

)

and so cvb

(
−2
6

)
=

(
8
−10

)
. It now follows that

cvc

(
−2
6

)
= Mcb

(
8
−10

)
=

(
1 2
−1 −3

) (
8
−10

)
=

(
−12
22

)
.

Direct computation confirms it to be true that
(
−2
6

)
= −12

(
2
5

)
+ 22

(
1
3

)
.

The next ingredient that we need is Theorem 7.5 of [VST]; it say that compo-
sition of linear maps agrees with multiplication of their matrices. To be precise,
suppose that φ:U → V and ψ:V →W are linear maps, and let

X = Mcb(φ)
Y = Mdc(ψ)

where b, c, d are bases of U, V, W respectively. Then

Y X = Mdb(ψφ).

See pages 154 and 155 of [VST] for the proof.
It is a triviality that for any basis b of any space V , if i is the identity map

V → V then Mbb(i) is the identity matrix I. We readily deduce Corollary 7.6
of [VST]: if φ is a vector space isomorphism then the matrix of the inverse of φ
is the inverse of the matrix of φ. That is, Mbc(φ−1) = Mcb(φ)−1. In the special
case that φ is the identity map on a space V this says that the transition matrix
from c-coordinates to b-coordinates is the inverse of the transition matrix from
c-coordinates to b-coordinates.

Another important corollary of Theorem 7.5 answers the question of how
changing bases affects the matrix of a linear map: if φ:V → W is linear and
b1, b2 are bases of V and c1, c2 bases of W , then

Mcb(φ) = Mcc Mcb(φ) Mbb .

Lecture 33 included a discussion of elementary column operations. Since
transposing matrices changes columns into rows it is not surprising that for every
fact about row operations there is a corresponding fact about column operations.
Since transposing reverses matrix multiplication, it turns out that postmultiplying
a matrix A by an elementary matrix performs a column operation on A, whereas
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premultiplying A by an elementary matrix performs a row operation on A. See
pages 33 and 34 of [VST] for more details.

Two matrices are said to be row-equivalent if it is possible to transform one
into the other by performing a sequence of elementary row operations. Similarly,
two matrices are said to be column-equivalent if it is possible to transform one
into the other by performing a sequence of elementary column operations. Thus A
and B are column-equivalent if and only if B = AE1E2 · · ·Ek for some elementary
matrices E1, E2, . . . , Ek. Since a matrix is invertible if and only if it can be
expressed as a product of elementary matrices, we see that A and B are column-
equivalent if and only if B = AP for some invertible P . Analogously, A and B
are row-equivalent if and only if B = PA for some invertible P .

Recall that the column space of a matrix A ∈ Mat(m× n, F ) coincides with
the set {Ay | y ∈ Fn }. If B = AP for some P ∈ Mat(n× n, F ) then

CS(B) = {Bx | x ∈ Fn }
= {A(Px) | x ∈ Fn }
⊆ {Ay | y ∈ Fn } = CS(A).

If P is invertible then A = BP−1, and so we deduce also that CS(A) ⊆ CS(B).
Hence it follows that if A and B are column equivalent then they have the same
column space. Of course we also have the corresponding result for rows: if A
and B are row-equivalent then they have the same row space. See 3.21 and 3.22
(pp. 74–75) of [VST] for more details.

Performing an elementary column operation on a matrix produces a column
equivalent matrix, and so does not change the column space. Performing an ele-
mentary row operation is, of course, likely to change the column space. However,
it is not hard to see that at least the dimension of the column space is not changed
by row operations. Indeed, if B = PA, where P is invertible, then premultiplying
any element of the set Ax | x ∈ Fn by the matrix P will give an element of the set
PAx | x ∈ Fn = Bx | x ∈ Fn . In other words, premultiplication by P defines a
map from CS(A) to CS(B). Similarly, premultiplication by P−1 maps CS(B) to
CS(A). These maps are both linear and are inverse to each other; hence they are
isomorphisms, and hence they preserve dimension, as claimed.

Finally, Theorem 7.22 of [VST] was proved. This result says that an arbitrary
m × n matrix A is equivalent to one which has 1’s in the (1, 1), (2, 2), . . . , (r, r)
positions, for some r, and zeros elsewhere. Here the word “equivalent” is used in
the following sense: A is equivalent to B if it is possible to transform A into B by
using an arbitrary combination of row and column operations. This is the same as
saying that B = PAQ for some invertible P and Q. Since neither the dimension
of the row space nor the dimension of the column space changes under elementary
row or column operations it follows that the number r is both the dimension of
the row space and the dimension of the column space. This number is called the
rank of the matrix A.
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