
WEEK 12

Summary of week 12 (Lectures 34, 35 and 36)

We have defined the right null space of A ∈ Mat(m × n, F ) to be the space
of all v ∈ Fn such that Av = 0. We call the dimension of the right null space of
A the right nullity of A. Similarly, the left null space is the space of all v ∈ tFm

such that vA = 0, and its dimension is called the left nullity.
Recall that A, B ∈ Mat(m× n, F ) are said to be equivalent if B = PAQ for

some invertible P and Q, and that equivalent matrices have the same rank. The
Rank-Nullity Theorem (Theorem 7.25 of [VST]) says that the rank of A plus the
right nullity of A equals the number of columns of A. Similarly, the rank of A
plus the left nullity of A equals the number of rows of A. The proof is a one-line
application of the Main Theorem on Linear Transformations. See [VST], p. 166.

The Rank-Nullity Theorem expresses a fact that you should be familiar with
concerning the solution space of a homogeneous system of m linear equations in n
unknowns. We may write the equations as Ax = 0, where A ∈ Mat(m×n, F ). To
solve, apply elementary row operations to A until an echelon matrix J is obtained.
It is easily seen that the nonzero rows of an echelon matrix are necessarily linearly
independent, and of course they also span the row space; so the nonzero rows of
J form a basis for RS(J), which equals RS(A) since elementary row operations
do not change the row space. So the number of nonzero rows of J equals the
rank of A. Each nonzero row contains a leading entry, and the leading entries all
lie in different columns. So the number of free variables, which is the number of
columns that do not contain leading entries, is the total number of columns minus
the rank. The number of free variables is the dimension of the solution space of
the system Ax = 0; that is, it is the dimension of the right null space of A. So
the right nullity of A is the number of columns of A minus the rank.

Here is an example. The system 1 1 1 1 1
0 0 1 0 2
1 1 2 1 3



v
w
x
y
z

 =

 0
0
0


has coefficient matrix of rank 2 (since two obvious elementary row operations
eliminate the last row, producing an echelon matrix where the number of nonzero
rows is two). There are 5 unknowns; so the solution space must have dimension
5− 2 = 3. Indeed, the general solution is

v
w
x
y
z

 = α


−1
1
0
0
0

 + β


−1
0
0
1
0

 + γ


1
0
−2
0
1


and the three column vectors appearing on the right hand side form a basis for
the solution space.
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The remainder of Lecture 34 dealt with §8c of [VST]. First we proved that if
A is a k × k matrix and M and n× n matrix such that

M =
(
A X
0 I

)
,

where I is the (n− k)× (n− k) identity matrix, X is a k × (n− k) matrix and 0
is the (n− k)× k zero matrix, then det(M) = det(A).

The proof given in lectures proceeded as follows. Let mij denote the (i, j)-
entry of M , and aij the (i, j)-entry of A. By definition,

detM =
∑
σ∈Sn

ε(σ)m1σ(1)m2σ(2) · · ·mnσ(n). (1)

For all i from k + 1 to n, the i-th row of M has only one nonzero entry; indeed
mij is 1 for j = i and 0 for j 6= i. So if σ ∈ Sn then m1σ(1)m2σ(2) · · ·mnσ(n) is
nonzero only if σ(i) = i for all i from k + 1 to n. Thus all nonzero terms on the
right hand side of Eq. (1) correspond to permutations σ ∈ Sn of the form

σ =
[

1 2 . . . k k + 1 . . . n− 1 n
τ(1) τ(2) . . . τ(k) k + 1 . . . n− 1 n

]
where τ is a permutation of {1, 2, . . . , k}. Now it is easily seen that a diagram for
τ can be extended to a diagram for σ without changing the number of crossings,

. . .

. . .

. . .

k+1 k+2 n

k+1 k+2 n

Diagram for τ

︸ ︷︷ ︸

Diagram for σ

and so it follows that ε(σ) = ε(τ). Thus Eq. (1) becomes

detM =
∑
τ∈Sk

ε(τ)m1 τ(1)m2 τ(2) · · ·mk τ(k)mk+1 k+1 · · ·mnn.

Now sincemij = aij for all i, j ∈ {1, 2, . . . , k} andmii = 1 for all i ∈ {k+1, . . . , n},
it follows that

detM =
∑
τ∈Sn

ε(τ)a1 τ(1)a2 τ(2) · · · ak τ(k),

and this is exactly detA, as required.

–2–



Suppose now that M is an n× n matrix of the form

M =

 A11 A12

0 ... 0 1 0 ... 0

A21 A22


where the 1 is in the (i, j) position, the rectangles indicate unspecified entries in
the j-th column, and the Ars are matrices of the appropriate sizes. By a total of
n − i row-swapping and n − j column-swapping operations we can convert M to
the form A11 A12

A21 A22

0 0 ...... 0 0 1


Since each row swap and each column swap multiply the determinant by −1, we
conclude that

detM = (−1)n−i(−1)n−j det

A11 A12

A21 A22

0 0 ...... 0 0 1

= (−1)i+j det
(
A11 A12

A21 A22

)
, (2)

by the result proved above (applied in the case k = 1). Observe that the last
matrix in the equation above is the matrix obtained from the original matrix M
by deleting the i-th row and the j-th column.

Definition. If A is an n× n matrix then for all i, j ∈ {1, 2, . . . , n} we define the
(i, j)-cofactor of A to be (−1)i+j times the determinant of the matrix obtained
from A by deleting row i and column j. We denote the (i, j)-cofactor of A by
cofij(A).

Now let A be any n×n matrix, and let the i-th row of A be (ai1 ai2 . . . ain).
Since

(ai1 ai2 . . . ain) = ai1(1 0 0 . . . 0) + ai2(0 1 0 . . . 0) + · · ·+ ain(0 0 0 . . . 1),

linearity of the determinant as a function of the i-th row yields that detA is

det

 X
ai1 ... ain

Y

 = ai1 det

 X
1 0 ... 0

Y

 + ai2 det

 X
0 1 ... 0

Y

 + · · ·+ ain det

 X
0 0 ... 1

Y


where X and Y designate, respectively, the first i− 1 rows and the last n− i rows
of A. But now deleting row i and column j from the matrix X

0..1..0

Y


(where the 1 is in column j) gives the same result as deleting row i and column j
from A; so in view of the formula in Eq. (2) above it follows that

detA =
n∑
j=1

aijcofij(A).
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This is known as the i-th row expansion formula for the determinant of A.
Since transposing a matrix changes rows into columns, but does not change

the determinant, it follows that there is also a j-th column expansion formula:
detA =

∑n
i=1 aijcofij(A).

Definition. If A is an n× n matrix then the adjoint matrix, adjA, is defined to
be the transposed matrix of cofactors; that is, the (i, j)-entry of adjA is cofji(A),
for all i, j ∈ {1, 2, . . . , n}.

It is a consequence of the i-th row expansion formula for the determinant that
A(adjA) = (detA)I. See [VST] (Theorem 8.25) for the proof. A similar proof,
using column expansions instead of row expansions, gives (adjA)A = (detA)I. It
follows that if detA 6= 0 then

A−1 =
1

detA
adjA.

This formula is important, but not recommended as a means of calculating in-
verses.

Lectures 35 and 36 were concerned with the material §9a, §9b and §9d of [VST].
For §9a the treatment given in lectures was similar to that in the book. (Note
that a matrix version of Theorem 9.6 was proved in an earlier lecture.)

If φ:V → V is a linear operator and U is a subspace of V then U is said to
be φ-invariant if φ(x) ∈ U for all x ∈ U . (This is Definition 9.8 of [VST].) Given a
φ-invariant subspace U we can define a linear operator φU :U → U by the rule that
φU (x) = φ(x) for all x ∈ U . The operator φU is called the restriction of φ to U .
Note that although φU (x) = φ(x) for all x ∈ U , the functions φU and φ are not the
same (unless U = V ), since their domains and codomains are different: if v ∈ V
and v /∈ U then φ(v) is defined but φU (v) is not. The relationship between φU and
φ can be depicted diagrammatically as below. The map from U → V indicated by
the vertical hooked arrows is the so-called inclusion map, which takes each u ∈ U
to itself considered as an element of V . The two alternative ways to follow the
arrows from the lower left corner to the upper right corner give the same result.

V
φ−−−→ V

↪→ ↪→

U −−−→
φU

U

If φ is a linear operator on a vector space V , and V can be expressed as
the direct sum of two φ-invariant subspaces U and W , then the matrix of φ,
relative to a basis of V made by combining a basis of U and a basis of W , has a
particularly simple form. See Theorem 9.9 of [VST]. It follows from Theorem 9.9
that in this situation the characteristic polynomial of φ is the product of the
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characteristic polynomials of φU and φW . This is Theorem 9.10 of [VST]. Note
that the paragraph on the lower half of p. 203 can be ignored: quotient spaces are
not part of the course.

Definition. A linear operator φ on a vector space V is said to be nilpotent if
some power of φ is the zero map. That is, φ is nilpotent if there exists a positive
integer n such that φn(v) = 0 for all v ∈ V .

Let φ be a linear operator on the space V , and assume that V is finite-
dimensional. For each positive integer i define Ki to be the kernel of φi. That
is,

Ki = { v ∈ V | φi(v) = 0 }.

If v ∈ Ki then φi+1(v) = φ(φi(v)) = φ(0) = 0, and so v ∈ Ki+1. Since this holds
for all v ∈ Ki it follows that Ki ⊆ Ki+1. Hence the Ki form an increasing chain
of subspaces of V :

{0} ⊆ K1 ⊆ K2 ⊆ K3 ⊆ · · · · · · · · · ⊆ V.

It follows that if di = dimKi then the di form an increasing† sequence of non-
negative integers, all of which are less than or equal to dimV . Since a bounded
set of integers must have a maximal element, there exists an integer r such that
dr ≥ di for all i, and it then follows that dr = di for all i ≥ r:

0 ≤ d1 ≤ d2 ≤ d3 ≤ · · · ≤ dr = dr+1 = dr+2 = · · · .

For i ≥ r we also have that Ki = Kr, since Kr ⊆ Ki and dimKr = dimKi (by
Proposition 4.11 of [VST]). The chain of subspaces Ki reaches a maximum and
stays there:

{0} ⊆ K1 ⊆ K2 ⊆ K3 ⊆ · · · ⊆ Kr = Kr+1 = Kr+2 = · · · .

Observe that Kr is the set of all v ∈ V that are annihilated by some power of φ:

Kr = { v ∈ V | φi(v) = 0 for some i ∈ Z }.

We call this set the generalized kernel of φ. Observe that φ is nilpotent if and
only if the generalized kernel is the whole space V .

Continuing with the same notation as above, let Hi be the image of the
operator φi. In particular, with r as above,

Hr = { v ∈ V | v = φr(u) for some u ∈ V }.

† Perhaps I should say “non-decreasing” rather than “increasing”, since the inequal-
ities need not be strict.
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Observe that, by The Main Theorem on Linear Transformations,

dimKr + dimHr = dimV. (3)

Now suppose that v ∈ Kr ∩Hr. Then v = φr(u) for some u ∈ V , since v ∈ Hr,
and since v ∈ Kr we find that

0 = φr(v) = φr(φr(u)) = φ2r(u).

Hence u ∈ kerφ2r = K2r, which equals Kr since we proved above that Ki = Kr

for all i ≥ r. But u ∈ Kr means that φr(u) = 0, and since u was chosen so that
v = φr(u) we conclude that v = 0. But since v was an arbitrary element of Kr∩Hr

we deduce that 0 is the only element of Kr ∩Hr. And since Hr ∩Kr = {0}, the
sum of the subspaces Kr and Hr is a direct sum: Kr +Hr = Kr ⊕Hr.

By Theorem 6.9 of [VST], the dimension of a direct sum is the sum of the
dimensions of the direct summands; so

dim(Kr ⊕Hr) = dimKr + dimHr = dimV,

by Eq. (3) above, and sinceKr⊕Hr is a subspace of V it follows thatKr⊕Hr = V .
It is easy to show—although the proof was omitted—that the subspaces Hr and
Kr are φ-invariant. So, in effect, φ is made up of two component operators, φKr

(acting on the direct summand Kr) and φHr
(acting on the direct summand Hr).

By Theorem 9.9, the characteristic polynomial of φ is the product of the charac-
teristic polynomials of φKr and φHr .

Since Kr is the generalized kernel of φ we see that φKr is nilpotent. Let us
now show that φHr

is bijective (and therefore invertible). If x ∈ kerφHr
then

x ∈ Hr and φ(x) = 0; so

x ∈ Hr ∩ (kerφ) = Hr ∩K1 ⊆ Hr ∩Kr = {0},

and therefore kerφHr = {0}. It follows by Proposition 3.15 of [VST] that φHr

is injective. But the Main Theorem on Linear Transformations implies that an
injective linear map from a finite-dimensional space to another of the same dimen-
sion is necessarily also surjective (see Tutorial 11); so φHr

is both injective and
surjective, and therefore bijective. Thus we have shown that an arbitrary linear
operator on a finite-dimensional space is, in some sense, made up of a nilpotent
piece and an invertible piece.

An invertible linear operator ψ does not have zero as an eigenvalue: if 0 were
an eigenvalue then there would be a nonzero v with ψ(v) = 0v = 0.† This means
that φ(v) = φ(0), contradicting the fact that an invertible map must be injective.

† Note that the first 0 here is the zero scalar, the other the zero vector.
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By contrast, a nilpotent operator θ on a space U can have no eigenvalues
other than 0. For suppose that λ is an eigenvalue of θ. Then θ(v) = λv for some
nonzero v, and now we find, successively, that

θ2(v) = θ(θ(v)) = θ(λv) = λθ(v) = λ2v,

θ3(v) = θ(θ2(v)) = θ(λ2v) = λ2θ(v) = λ3v,

θ4(v) = θ(θ3(v)) = θ(λ3v) = λ3θ(v) = λ4v,

and so on. But the nilpotence of θ implies that θn(v) = 0 for some n; so λnv = 0,
and since v 6= 0 this implies (by Proposition 3.7) that λn = 0 and hence λ = 0.

Since θ has no eigenvalues other than zero, the characteristic polynomial
cθ(x) must be a scalar multiple of xd, where d = dimU . This can also be seen by
calculating the matrix of θ relative to a suitable basis. If Kl is the kernel of θl

then the subspaces Kl form an increasing chain, with Kr = U for some r. We can
choose a basis of K1, extend this basis to a basis of K2, extend again to a basis
of K3, and continue in this way until we have a basis u1, u2, . . . , ud of U that
includes bases of all the subspaces Kl (for l from 0 to r). That is, if dl = dimKl

then the vectors u1, u2, . . . , udl
form a basis of Kl.

Let M be the matrix of θ relative to the basis u1, u2, . . . , ud of U , so that
for all j,

θ(uj) =
d∑
i=1

αijui (4)

where αij is the (i, j)-entry of M . For any j we may choose the least l such that
θl(uj) = 0. Then uj ∈ Kl and uj /∈ Kl−1, and it follows that dl−1 < j ≤ dl.
Since θl−1(θ(uj)) = 0 we see that θ(uj) ∈ ker θl−1 = Kl−1, and so θ(uj) is a
linear combination of u1, u2, . . . , udl−1 . Since these precede uj in the sequence
u1, u2, . . . , ud, the scalars αij in Eq. (4) are zero whenever i ≥ j. This means
that in the matrix M all the entries on and below the leading diagonal are zero.
Thus the characteristic polynomial cθ(x) (which is the same as the characteristic
polynomial of M) is

det(M − xI) = det


−x ∗ ∗ . . . ∗
0 −x ∗ . . . ∗
0 0 −x . . . ∗
...

...
...

...
0 0 0 . . . −x

 = (−x)d

(where the ∗’s denote the various above diagonal entries of M).
Now consider once again an arbitrary linear operator φ on a finite-dimensional

space V , and let λ be an eigenvalue of φ, so that λ−x is a factor of the characteristic
polynomial cφ(x). Write cφ(x) = (λ − x)mq(x), where q(x) does not have λ − x
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as a factor. (Thus m is the multiplicity of λ − x as a factor of cφ(x).) If we put
ψ = φ− λi, where i is the identity operator on V , then

cψ(x) = det(ψ − xi) = det(φ− (λ+ x)i) = cφ(x+ λ).

The λ-eigenspace of φ is ker(φ − λi) = kerψ, and we define the generalized λ-
eigenspace of φ to be the generalized kernel of ψ: the set

Gλ = { v ∈ V | (φ− λi)l(v) = 0 for some l ∈ Z }.

As shown above, we have that V = Gλ ⊕ H for some subspace H that is ψ-
invariant and therefore also φ-invariant. Observe that φGλ

− λi = ψGλ
, and

φH−λi = ψH . If we write f(x) and g(x) for the characteristic polynomials of φGλ

and φH respectively, so that f(x)g(x) = cφ(x) by Theorem 9.9, then f(x+λ) and
g(x+λ) are the characteristic polynomials of ψGλ

and ψH . But ψGλ
is nilpotent; so

its characteristic polynomial is (−x)dλ , where dλ = dimGλ; so f(x+λ) = (−x)dλ ,
giving

f(x) = (λ− x)dλ .

Furthermore, we also know that 0 is not an eigenvalue of ψH , and so x is not a
factor of g(x+ λ). So x− λ is not a factor of g(x), and since

cφ(x) = f(x)g(x) = (λ− x)dλg(x)

we conclude that the multiplicity of λ − x as a factor of cφ(x) is the dimension
of the generalized λ-eigenspace of φ. That is, dλ = m and g(x) = q(x), in the
notation used above.

If we now choose another eigenvalue µ of φ then the µ− x must be a factor
of g(x) = cφH

(x), and, indeed, its multiplicity as a factor of g(x) is the same as
its multiplicity in cφ(x). We can repeat the above reasoning with φ replaced by
φH and λ by µ, and deduce that H = Gµ ⊕H ′, giving V = Gλ ⊕Gµ ⊕H ′, where
Gµ is the generalized µ-eigenspace of φH and H ′ is some φH -invariant subspace.
Moreover, we see that dimGµ is the multiplicity of µ − x as a factor of cθ(x),
and it is not hard to deduce from this that Gµ coincides with the generalized µ-
eigenspace of the operator φ on the whole space V . Provided that the field we are
working over is algebraically closed we can keep repeating this process. So long as
the space H ′′ is nonzero the characteristic polynomial of the restriction of φ to H ′′

will have some factor ν−x, and thenH ′ = Gν⊕H ′′ for some φ-invariantH ′′, where
Gν is the generalized ν-eigenspace. This gives V = Gλ⊕Gµ⊕Gν⊕H ′′. The final
summand gets smaller with each step, and so we obtain eventually that V is the
direct sum of the generalized eigenspaces corresponding to all of its eigenvalues,

V = Gλ1 ⊕Gλ2 ⊕ · · · ⊕Gλs ,

the characteristic polynomial of the restriction of φ to Gλi being (λi−x)mi , where

cφ(x) = (λ1 − x)m1(λ2 − x)m2 · · · (λs − x)ms

and λ1, λ2, . . . , λs are pairwise distinct.
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